summaryrefslogtreecommitdiff
path: root/lib/CodeGen/LazyLiveness.cpp
blob: 8352fb23e31c94e75a7c5fa471d9fcd99f0e94d7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
//===- LazyLiveness.cpp - Lazy, CFG-invariant liveness information --------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass implements a lazy liveness analysis as per "Fast Liveness Checking
// for SSA-form Programs," by Boissinot, et al.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "lazyliveness"
#include "llvm/CodeGen/LazyLiveness.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/PostOrderIterator.h"
using namespace llvm;

char LazyLiveness::ID = 0;
static RegisterPass<LazyLiveness> X("lazy-liveness", "Lazy Liveness Analysis");

void LazyLiveness::computeBackedgeChain(MachineFunction& mf, 
                                        MachineBasicBlock* MBB) {
  SparseBitVector<128> tmp = rv[MBB];
  tmp.set(preorder[MBB]);
  tmp &= backedge_source;
  calculated.set(preorder[MBB]);
  
  for (SparseBitVector<128>::iterator I = tmp.begin(); I != tmp.end(); ++I) {
    assert(rev_preorder.size() > *I && "Unknown block!");
    
    MachineBasicBlock* SrcMBB = rev_preorder[*I];
    
    for (MachineBasicBlock::succ_iterator SI = SrcMBB->succ_begin(),
         SE = SrcMBB->succ_end(); SI != SE; ++SI) {
      MachineBasicBlock* TgtMBB = *SI;
      
      if (backedges.count(std::make_pair(SrcMBB, TgtMBB)) &&
          !rv[MBB].test(preorder[TgtMBB])) {
        if (!calculated.test(preorder[TgtMBB]))
          computeBackedgeChain(mf, TgtMBB);
        
        tv[MBB].set(preorder[TgtMBB]);
        SparseBitVector<128> right = tv[TgtMBB];
        tv[MBB] |= right;
      }
    }
    
    tv[MBB].reset(preorder[MBB]);
  }
}

bool LazyLiveness::runOnMachineFunction(MachineFunction &mf) {
  rv.clear();
  tv.clear();
  backedges.clear();
  backedge_source.clear();
  backedge_target.clear();
  calculated.clear();
  preorder.clear();
  rev_preorder.clear();
  
  rv.resize(mf.size());
  tv.resize(mf.size());
  preorder.resize(mf.size());
  rev_preorder.reserve(mf.size());
  
  MRI = &mf.getRegInfo();
  MachineDominatorTree& MDT = getAnalysis<MachineDominatorTree>();
  
  // Step 0: Compute preorder numbering for all MBBs.
  unsigned num = 0;
  for (df_iterator<MachineDomTreeNode*> DI = df_begin(MDT.getRootNode()),
       DE = df_end(MDT.getRootNode()); DI != DE; ++DI) {
    preorder[(*DI)->getBlock()] = num++;
    rev_preorder.push_back((*DI)->getBlock());
  }
  
  // Step 1: Compute the transitive closure of the CFG, ignoring backedges.
  for (po_iterator<MachineBasicBlock*> POI = po_begin(&*mf.begin()),
       POE = po_end(&*mf.begin()); POI != POE; ++POI) {
    MachineBasicBlock* MBB = *POI;
    SparseBitVector<128>& entry = rv[MBB];
    entry.set(preorder[MBB]);
    
    for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
         SE = MBB->succ_end(); SI != SE; ++SI) {
      DenseMap<MachineBasicBlock*, SparseBitVector<128> >::iterator SII = 
                                                         rv.find(*SI);
      
      // Because we're iterating in postorder, any successor that does not yet
      // have an rv entry must be on a backedge.
      if (SII != rv.end()) {
        entry |= SII->second;
      } else {
        backedges.insert(std::make_pair(MBB, *SI));
        backedge_source.set(preorder[MBB]);
        backedge_target.set(preorder[*SI]);
      }
    }
  }
  
  for (SparseBitVector<128>::iterator I = backedge_source.begin();
       I != backedge_source.end(); ++I)
    computeBackedgeChain(mf, rev_preorder[*I]);
  
  for (po_iterator<MachineBasicBlock*> POI = po_begin(&*mf.begin()),
       POE = po_end(&*mf.begin()); POI != POE; ++POI)
    if (!backedge_target.test(preorder[*POI]))
      for (MachineBasicBlock::succ_iterator SI = (*POI)->succ_begin(),
           SE = (*POI)->succ_end(); SI != SE; ++SI)
        if (!backedges.count(std::make_pair(*POI, *SI)) && tv.count(*SI)) {
          SparseBitVector<128> right = tv[*SI];
          tv[*POI] |= right;
        }
  
  for (po_iterator<MachineBasicBlock*> POI = po_begin(&*mf.begin()),
       POE = po_end(&*mf.begin()); POI != POE; ++POI)
    tv[*POI].set(preorder[*POI]);
  
  return false;
}

bool LazyLiveness::vregLiveIntoMBB(unsigned vreg, MachineBasicBlock* MBB) {
  MachineDominatorTree& MDT = getAnalysis<MachineDominatorTree>();
  
  MachineBasicBlock* DefMBB = MRI->def_begin(vreg)->getParent();
  unsigned def = preorder[DefMBB];
  unsigned max_dom = 0;
  for (df_iterator<MachineDomTreeNode*> DI = df_begin(MDT[DefMBB]),
       DE = df_end(MDT[DefMBB]); DI != DE; ++DI) {
    if (preorder[DI->getBlock()] > max_dom) {
      max_dom = preorder[(*DI)->getBlock()];
    }
  }
  
  if (preorder[MBB] <= def || max_dom < preorder[MBB])
    return false;
  
  SparseBitVector<128>::iterator I = tv[MBB].begin();
  while (I != tv[MBB].end() && *I <= def) ++I;
  while (I != tv[MBB].end() && *I < max_dom) {
    for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(vreg),
         UE = MachineRegisterInfo::use_end(); UI != UE; ++UI) {
      MachineBasicBlock* UseMBB = UI->getParent();
      if (rv[rev_preorder[*I]].test(preorder[UseMBB]))
        return true;
      
      unsigned t_dom = 0;
      for (df_iterator<MachineDomTreeNode*> DI =
           df_begin(MDT[rev_preorder[*I]]), DE = df_end(MDT[rev_preorder[*I]]); 
           DI != DE; ++DI)
        if (preorder[DI->getBlock()] > t_dom) {
          max_dom = preorder[(*DI)->getBlock()];
        }
      I = tv[MBB].begin();
      while (I != tv[MBB].end() && *I < t_dom) ++I;
    }
  }
  
  return false;
}