summaryrefslogtreecommitdiff
path: root/lib/CodeGen/LiveIntervalAnalysis.cpp
blob: 946d80de6b4c074d47b11bcaf4d6210fb130f4dc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
//===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the LiveInterval analysis pass which is used
// by the Linear Scan Register allocator. This pass linearizes the
// basic blocks of the function in DFS order and uses the
// LiveVariables pass to conservatively compute live intervals for
// each virtual and physical register.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "liveintervals"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "VirtRegMap.h"
#include "llvm/Value.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/Target/MRegisterInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
#include <algorithm>
#include <cmath>
#include <iostream>
using namespace llvm;

namespace {
  RegisterAnalysis<LiveIntervals> X("liveintervals", "Live Interval Analysis");

  Statistic<> numIntervals
  ("liveintervals", "Number of original intervals");

  Statistic<> numIntervalsAfter
  ("liveintervals", "Number of intervals after coalescing");

  Statistic<> numJoins
  ("liveintervals", "Number of interval joins performed");

  Statistic<> numPeep
  ("liveintervals", "Number of identity moves eliminated after coalescing");

  Statistic<> numFolded
  ("liveintervals", "Number of loads/stores folded into instructions");

  cl::opt<bool>
  EnableJoining("join-liveintervals",
                cl::desc("Join compatible live intervals"),
                cl::init(true));
};

void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const
{
  AU.addRequired<LiveVariables>();
  AU.addPreservedID(PHIEliminationID);
  AU.addRequiredID(PHIEliminationID);
  AU.addRequiredID(TwoAddressInstructionPassID);
  AU.addRequired<LoopInfo>();
  MachineFunctionPass::getAnalysisUsage(AU);
}

void LiveIntervals::releaseMemory()
{
  mi2iMap_.clear();
  i2miMap_.clear();
  r2iMap_.clear();
  r2rMap_.clear();
}


/// runOnMachineFunction - Register allocate the whole function
///
bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
  mf_ = &fn;
  tm_ = &fn.getTarget();
  mri_ = tm_->getRegisterInfo();
  tii_ = tm_->getInstrInfo();
  lv_ = &getAnalysis<LiveVariables>();
  allocatableRegs_ = mri_->getAllocatableSet(fn);
  r2rMap_.grow(mf_->getSSARegMap()->getLastVirtReg());

  // If this function has any live ins, insert a dummy instruction at the
  // beginning of the function that we will pretend "defines" the values.  This
  // is to make the interval analysis simpler by providing a number.
  if (fn.livein_begin() != fn.livein_end()) {
    unsigned FirstLiveIn = fn.livein_begin()->first;

    // Find a reg class that contains this live in.
    const TargetRegisterClass *RC = 0;
    for (MRegisterInfo::regclass_iterator RCI = mri_->regclass_begin(),
           E = mri_->regclass_end(); RCI != E; ++RCI)
      if ((*RCI)->contains(FirstLiveIn)) {
        RC = *RCI;
        break;
      }

    MachineInstr *OldFirstMI = fn.begin()->begin();
    mri_->copyRegToReg(*fn.begin(), fn.begin()->begin(),
                       FirstLiveIn, FirstLiveIn, RC);
    assert(OldFirstMI != fn.begin()->begin() &&
           "copyRetToReg didn't insert anything!");
  }

  // number MachineInstrs
  unsigned miIndex = 0;
  for (MachineFunction::iterator mbb = mf_->begin(), mbbEnd = mf_->end();
       mbb != mbbEnd; ++mbb)
    for (MachineBasicBlock::iterator mi = mbb->begin(), miEnd = mbb->end();
         mi != miEnd; ++mi) {
      bool inserted = mi2iMap_.insert(std::make_pair(mi, miIndex)).second;
      assert(inserted && "multiple MachineInstr -> index mappings");
      i2miMap_.push_back(mi);
      miIndex += InstrSlots::NUM;
    }

  // Note intervals due to live-in values.
  if (fn.livein_begin() != fn.livein_end()) {
    MachineBasicBlock *Entry = fn.begin();
    for (MachineFunction::livein_iterator I = fn.livein_begin(),
           E = fn.livein_end(); I != E; ++I) {
      handlePhysicalRegisterDef(Entry, Entry->begin(),
                                getOrCreateInterval(I->first), 0, 0, true);
      for (const unsigned* AS = mri_->getAliasSet(I->first); *AS; ++AS)
        handlePhysicalRegisterDef(Entry, Entry->begin(),
                                  getOrCreateInterval(*AS), 0, 0, true);
    }
  }

  computeIntervals();

  numIntervals += getNumIntervals();

  DEBUG(std::cerr << "********** INTERVALS **********\n";
        for (iterator I = begin(), E = end(); I != E; ++I) {
          I->second.print(std::cerr, mri_);
          std::cerr << "\n";
        });

  // join intervals if requested
  if (EnableJoining) joinIntervals();

  numIntervalsAfter += getNumIntervals();

  // perform a final pass over the instructions and compute spill
  // weights, coalesce virtual registers and remove identity moves
  const LoopInfo& loopInfo = getAnalysis<LoopInfo>();

  for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
       mbbi != mbbe; ++mbbi) {
    MachineBasicBlock* mbb = mbbi;
    unsigned loopDepth = loopInfo.getLoopDepth(mbb->getBasicBlock());

    for (MachineBasicBlock::iterator mii = mbb->begin(), mie = mbb->end();
         mii != mie; ) {
      // if the move will be an identity move delete it
      unsigned srcReg, dstReg, RegRep;
      if (tii_->isMoveInstr(*mii, srcReg, dstReg) &&
          (RegRep = rep(srcReg)) == rep(dstReg)) {
        // remove from def list
        LiveInterval &interval = getOrCreateInterval(RegRep);
        // remove index -> MachineInstr and
        // MachineInstr -> index mappings
        Mi2IndexMap::iterator mi2i = mi2iMap_.find(mii);
        if (mi2i != mi2iMap_.end()) {
          i2miMap_[mi2i->second/InstrSlots::NUM] = 0;
          mi2iMap_.erase(mi2i);
        }
        mii = mbbi->erase(mii);
        ++numPeep;
      }
      else {
        for (unsigned i = 0; i < mii->getNumOperands(); ++i) {
          const MachineOperand& mop = mii->getOperand(i);
          if (mop.isRegister() && mop.getReg() &&
              MRegisterInfo::isVirtualRegister(mop.getReg())) {
            // replace register with representative register
            unsigned reg = rep(mop.getReg());
            mii->getOperand(i).setReg(reg);

            LiveInterval &RegInt = getInterval(reg);
            RegInt.weight +=
              (mop.isUse() + mop.isDef()) * pow(10.0F, (int)loopDepth);
          }
        }
        ++mii;
      }
    }
  }

  DEBUG(dump());
  return true;
}

/// print - Implement the dump method.
void LiveIntervals::print(std::ostream &O, const Module* ) const {
  O << "********** INTERVALS **********\n";
  for (const_iterator I = begin(), E = end(); I != E; ++I) {
    I->second.print(std::cerr, mri_);
    std::cerr << "\n";
  }

  O << "********** MACHINEINSTRS **********\n";
  for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
       mbbi != mbbe; ++mbbi) {
    O << ((Value*)mbbi->getBasicBlock())->getName() << ":\n";
    for (MachineBasicBlock::iterator mii = mbbi->begin(),
           mie = mbbi->end(); mii != mie; ++mii) {
      O << getInstructionIndex(mii) << '\t' << *mii;
    }
  }
}

std::vector<LiveInterval*> LiveIntervals::
addIntervalsForSpills(const LiveInterval &li, VirtRegMap &vrm, int slot) {
  // since this is called after the analysis is done we don't know if
  // LiveVariables is available
  lv_ = getAnalysisToUpdate<LiveVariables>();

  std::vector<LiveInterval*> added;

  assert(li.weight != HUGE_VAL &&
         "attempt to spill already spilled interval!");

  DEBUG(std::cerr << "\t\t\t\tadding intervals for spills for interval: "
        << li << '\n');

  const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(li.reg);

  for (LiveInterval::Ranges::const_iterator
         i = li.ranges.begin(), e = li.ranges.end(); i != e; ++i) {
    unsigned index = getBaseIndex(i->start);
    unsigned end = getBaseIndex(i->end-1) + InstrSlots::NUM;
    for (; index != end; index += InstrSlots::NUM) {
      // skip deleted instructions
      while (index != end && !getInstructionFromIndex(index))
        index += InstrSlots::NUM;
      if (index == end) break;

      MachineInstr *MI = getInstructionFromIndex(index);

      // NewRegLiveIn - This instruction might have multiple uses of the spilled
      // register.  In this case, for the first use, keep track of the new vreg
      // that we reload it into.  If we see a second use, reuse this vreg
      // instead of creating live ranges for two reloads.
      unsigned NewRegLiveIn = 0;

    for_operand:
      for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
        MachineOperand& mop = MI->getOperand(i);
        if (mop.isRegister() && mop.getReg() == li.reg) {
          if (NewRegLiveIn && mop.isUse()) {
            // We already emitted a reload of this value, reuse it for
            // subsequent operands.
            MI->getOperand(i).setReg(NewRegLiveIn);
            DEBUG(std::cerr << "\t\t\t\treused reload into reg" << NewRegLiveIn
                            << " for operand #" << i << '\n');
          } else if (MachineInstr* fmi = mri_->foldMemoryOperand(MI, i, slot)) {
            // Attempt to fold the memory reference into the instruction.  If we
            // can do this, we don't need to insert spill code.
            if (lv_)
              lv_->instructionChanged(MI, fmi);
            MachineBasicBlock &MBB = *MI->getParent();
            vrm.virtFolded(li.reg, MI, i, fmi);
            mi2iMap_.erase(MI);
            i2miMap_[index/InstrSlots::NUM] = fmi;
            mi2iMap_[fmi] = index;
            MI = MBB.insert(MBB.erase(MI), fmi);
            ++numFolded;
            // Folding the load/store can completely change the instruction in
            // unpredictable ways, rescan it from the beginning.
            goto for_operand;
          } else {
            // This is tricky. We need to add information in the interval about
            // the spill code so we have to use our extra load/store slots.
            //
            // If we have a use we are going to have a load so we start the
            // interval from the load slot onwards. Otherwise we start from the
            // def slot.
            unsigned start = (mop.isUse() ?
                              getLoadIndex(index) :
                              getDefIndex(index));
            // If we have a def we are going to have a store right after it so
            // we end the interval after the use of the next
            // instruction. Otherwise we end after the use of this instruction.
            unsigned end = 1 + (mop.isDef() ?
                                getStoreIndex(index) :
                                getUseIndex(index));

            // create a new register for this spill
            NewRegLiveIn = mf_->getSSARegMap()->createVirtualRegister(rc);
            MI->getOperand(i).setReg(NewRegLiveIn);
            vrm.grow();
            vrm.assignVirt2StackSlot(NewRegLiveIn, slot);
            LiveInterval& nI = getOrCreateInterval(NewRegLiveIn);
            assert(nI.empty());

            // the spill weight is now infinity as it
            // cannot be spilled again
            nI.weight = float(HUGE_VAL);
            LiveRange LR(start, end, nI.getNextValue());
            DEBUG(std::cerr << " +" << LR);
            nI.addRange(LR);
            added.push_back(&nI);

            // update live variables if it is available
            if (lv_)
              lv_->addVirtualRegisterKilled(NewRegLiveIn, MI);
            
            // If this is a live in, reuse it for subsequent live-ins.  If it's
            // a def, we can't do this.
            if (!mop.isUse()) NewRegLiveIn = 0;
            
            DEBUG(std::cerr << "\t\t\t\tadded new interval: " << nI << '\n');
          }
        }
      }
    }
  }

  return added;
}

void LiveIntervals::printRegName(unsigned reg) const
{
  if (MRegisterInfo::isPhysicalRegister(reg))
    std::cerr << mri_->getName(reg);
  else
    std::cerr << "%reg" << reg;
}

void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock* mbb,
                                             MachineBasicBlock::iterator mi,
                                             LiveInterval& interval)
{
  DEBUG(std::cerr << "\t\tregister: "; printRegName(interval.reg));
  LiveVariables::VarInfo& vi = lv_->getVarInfo(interval.reg);

  // Virtual registers may be defined multiple times (due to phi
  // elimination and 2-addr elimination).  Much of what we do only has to be
  // done once for the vreg.  We use an empty interval to detect the first
  // time we see a vreg.
  if (interval.empty()) {
    // Get the Idx of the defining instructions.
    unsigned defIndex = getDefIndex(getInstructionIndex(mi));

    unsigned ValNum = interval.getNextValue();
    assert(ValNum == 0 && "First value in interval is not 0?");
    ValNum = 0;  // Clue in the optimizer.

    // Loop over all of the blocks that the vreg is defined in.  There are
    // two cases we have to handle here.  The most common case is a vreg
    // whose lifetime is contained within a basic block.  In this case there
    // will be a single kill, in MBB, which comes after the definition.
    if (vi.Kills.size() == 1 && vi.Kills[0]->getParent() == mbb) {
      // FIXME: what about dead vars?
      unsigned killIdx;
      if (vi.Kills[0] != mi)
        killIdx = getUseIndex(getInstructionIndex(vi.Kills[0]))+1;
      else
        killIdx = defIndex+1;

      // If the kill happens after the definition, we have an intra-block
      // live range.
      if (killIdx > defIndex) {
        assert(vi.AliveBlocks.empty() &&
               "Shouldn't be alive across any blocks!");
        LiveRange LR(defIndex, killIdx, ValNum);
        interval.addRange(LR);
        DEBUG(std::cerr << " +" << LR << "\n");
        return;
      }
    }

    // The other case we handle is when a virtual register lives to the end
    // of the defining block, potentially live across some blocks, then is
    // live into some number of blocks, but gets killed.  Start by adding a
    // range that goes from this definition to the end of the defining block.
    LiveRange NewLR(defIndex,
                    getInstructionIndex(&mbb->back()) + InstrSlots::NUM,
                    ValNum);
    DEBUG(std::cerr << " +" << NewLR);
    interval.addRange(NewLR);

    // Iterate over all of the blocks that the variable is completely
    // live in, adding [insrtIndex(begin), instrIndex(end)+4) to the
    // live interval.
    for (unsigned i = 0, e = vi.AliveBlocks.size(); i != e; ++i) {
      if (vi.AliveBlocks[i]) {
        MachineBasicBlock* mbb = mf_->getBlockNumbered(i);
        if (!mbb->empty()) {
          LiveRange LR(getInstructionIndex(&mbb->front()),
                       getInstructionIndex(&mbb->back()) + InstrSlots::NUM,
                       ValNum);
          interval.addRange(LR);
          DEBUG(std::cerr << " +" << LR);
        }
      }
    }

    // Finally, this virtual register is live from the start of any killing
    // block to the 'use' slot of the killing instruction.
    for (unsigned i = 0, e = vi.Kills.size(); i != e; ++i) {
      MachineInstr *Kill = vi.Kills[i];
      LiveRange LR(getInstructionIndex(Kill->getParent()->begin()),
                   getUseIndex(getInstructionIndex(Kill))+1,
                   ValNum);
      interval.addRange(LR);
      DEBUG(std::cerr << " +" << LR);
    }

  } else {
    // If this is the second time we see a virtual register definition, it
    // must be due to phi elimination or two addr elimination.  If this is
    // the result of two address elimination, then the vreg is the first
    // operand, and is a def-and-use.
    if (mi->getOperand(0).isRegister() &&
        mi->getOperand(0).getReg() == interval.reg &&
        mi->getOperand(0).isDef() && mi->getOperand(0).isUse()) {
      // If this is a two-address definition, then we have already processed
      // the live range.  The only problem is that we didn't realize there
      // are actually two values in the live interval.  Because of this we
      // need to take the LiveRegion that defines this register and split it
      // into two values.
      unsigned DefIndex = getDefIndex(getInstructionIndex(vi.DefInst));
      unsigned RedefIndex = getDefIndex(getInstructionIndex(mi));

      // Delete the initial value, which should be short and continuous,
      // becuase the 2-addr copy must be in the same MBB as the redef.
      interval.removeRange(DefIndex, RedefIndex);

      LiveRange LR(DefIndex, RedefIndex, interval.getNextValue());
      DEBUG(std::cerr << " replace range with " << LR);
      interval.addRange(LR);

      // If this redefinition is dead, we need to add a dummy unit live
      // range covering the def slot.
      if (lv_->RegisterDefIsDead(mi, interval.reg))
        interval.addRange(LiveRange(RedefIndex, RedefIndex+1, 0));

      DEBUG(std::cerr << "RESULT: " << interval);

    } else {
      // Otherwise, this must be because of phi elimination.  If this is the
      // first redefinition of the vreg that we have seen, go back and change
      // the live range in the PHI block to be a different value number.
      if (interval.containsOneValue()) {
        assert(vi.Kills.size() == 1 &&
               "PHI elimination vreg should have one kill, the PHI itself!");

        // Remove the old range that we now know has an incorrect number.
        MachineInstr *Killer = vi.Kills[0];
        unsigned Start = getInstructionIndex(Killer->getParent()->begin());
        unsigned End = getUseIndex(getInstructionIndex(Killer))+1;
        DEBUG(std::cerr << "Removing [" << Start << "," << End << "] from: "
              << interval << "\n");
        interval.removeRange(Start, End);
        DEBUG(std::cerr << "RESULT: " << interval);

        // Replace the interval with one of a NEW value number.
        LiveRange LR(Start, End, interval.getNextValue());
        DEBUG(std::cerr << " replace range with " << LR);
        interval.addRange(LR);
        DEBUG(std::cerr << "RESULT: " << interval);
      }

      // In the case of PHI elimination, each variable definition is only
      // live until the end of the block.  We've already taken care of the
      // rest of the live range.
      unsigned defIndex = getDefIndex(getInstructionIndex(mi));
      LiveRange LR(defIndex,
                   getInstructionIndex(&mbb->back()) + InstrSlots::NUM,
                   interval.getNextValue());
      interval.addRange(LR);
      DEBUG(std::cerr << " +" << LR);
    }
  }

  DEBUG(std::cerr << '\n');
}

void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock *MBB,
                                              MachineBasicBlock::iterator mi,
                                              LiveInterval& interval,
                                              unsigned SrcReg, unsigned DestReg,
                                              bool isLiveIn)
{
  // A physical register cannot be live across basic block, so its
  // lifetime must end somewhere in its defining basic block.
  DEBUG(std::cerr << "\t\tregister: "; printRegName(interval.reg));
  typedef LiveVariables::killed_iterator KillIter;

  unsigned baseIndex = getInstructionIndex(mi);
  unsigned start = getDefIndex(baseIndex);
  unsigned end = start;

  // If it is not used after definition, it is considered dead at
  // the instruction defining it. Hence its interval is:
  // [defSlot(def), defSlot(def)+1)
  if (lv_->RegisterDefIsDead(mi, interval.reg)) {
    DEBUG(std::cerr << " dead");
    end = getDefIndex(start) + 1;
    goto exit;
  }

  // If it is not dead on definition, it must be killed by a
  // subsequent instruction. Hence its interval is:
  // [defSlot(def), useSlot(kill)+1)
  while (++mi != MBB->end()) {
    baseIndex += InstrSlots::NUM;
    if (lv_->KillsRegister(mi, interval.reg)) {
      DEBUG(std::cerr << " killed");
      end = getUseIndex(baseIndex) + 1;
      goto exit;
    }
  }
  
  // The only case we should have a dead physreg here without a killing or
  // instruction where we know it's dead is if it is live-in to the function
  // and never used.
  assert(isLiveIn && "physreg was not killed in defining block!");
  end = getDefIndex(start) + 1;  // It's dead.

exit:
  assert(start < end && "did not find end of interval?");

  // Finally, if this is defining a new range for the physical register, and if
  // that physreg is just a copy from a vreg, and if THAT vreg was a copy from
  // the physreg, then the new fragment has the same value as the one copied
  // into the vreg.
  if (interval.reg == DestReg && !interval.empty() &&
      MRegisterInfo::isVirtualRegister(SrcReg)) {

    // Get the live interval for the vreg, see if it is defined by a copy.
    LiveInterval &SrcInterval = getOrCreateInterval(SrcReg);

    if (SrcInterval.containsOneValue()) {
      assert(!SrcInterval.empty() && "Can't contain a value and be empty!");

      // Get the first index of the first range.  Though the interval may have
      // multiple liveranges in it, we only check the first.
      unsigned StartIdx = SrcInterval.begin()->start;
      MachineInstr *SrcDefMI = getInstructionFromIndex(StartIdx);

      // Check to see if the vreg was defined by a copy instruction, and that
      // the source was this physreg.
      unsigned VRegSrcSrc, VRegSrcDest;
      if (tii_->isMoveInstr(*SrcDefMI, VRegSrcSrc, VRegSrcDest) &&
          SrcReg == VRegSrcDest && VRegSrcSrc == DestReg) {
        // Okay, now we know that the vreg was defined by a copy from this
        // physreg.  Find the value number being copied and use it as the value
        // for this range.
        const LiveRange *DefRange = interval.getLiveRangeContaining(StartIdx-1);
        if (DefRange) {
          LiveRange LR(start, end, DefRange->ValId);
          interval.addRange(LR);
          DEBUG(std::cerr << " +" << LR << '\n');
          return;
        }
      }
    }
  }


  LiveRange LR(start, end, interval.getNextValue());
  interval.addRange(LR);
  DEBUG(std::cerr << " +" << LR << '\n');
}

void LiveIntervals::handleRegisterDef(MachineBasicBlock *MBB,
                                      MachineBasicBlock::iterator MI,
                                      unsigned reg) {
  if (MRegisterInfo::isVirtualRegister(reg))
    handleVirtualRegisterDef(MBB, MI, getOrCreateInterval(reg));
  else if (allocatableRegs_[reg]) {
    unsigned SrcReg = 0, DestReg = 0;
    if (!tii_->isMoveInstr(*MI, SrcReg, DestReg))
      SrcReg = DestReg = 0;

    handlePhysicalRegisterDef(MBB, MI, getOrCreateInterval(reg),
                              SrcReg, DestReg);
    for (const unsigned* AS = mri_->getAliasSet(reg); *AS; ++AS)
      handlePhysicalRegisterDef(MBB, MI, getOrCreateInterval(*AS),
                                SrcReg, DestReg);
  }
}

/// computeIntervals - computes the live intervals for virtual
/// registers. for some ordering of the machine instructions [1,N] a
/// live interval is an interval [i, j) where 1 <= i <= j < N for
/// which a variable is live
void LiveIntervals::computeIntervals()
{
  DEBUG(std::cerr << "********** COMPUTING LIVE INTERVALS **********\n");
  DEBUG(std::cerr << "********** Function: "
        << ((Value*)mf_->getFunction())->getName() << '\n');
  bool IgnoreFirstInstr = mf_->livein_begin() != mf_->livein_end();

  for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
       I != E; ++I) {
    MachineBasicBlock* mbb = I;
    DEBUG(std::cerr << ((Value*)mbb->getBasicBlock())->getName() << ":\n");

    MachineBasicBlock::iterator mi = mbb->begin(), miEnd = mbb->end();
    if (IgnoreFirstInstr) { ++mi; IgnoreFirstInstr = false; }
    for (; mi != miEnd; ++mi) {
      const TargetInstrDescriptor& tid =
        tm_->getInstrInfo()->get(mi->getOpcode());
      DEBUG(std::cerr << getInstructionIndex(mi) << "\t" << *mi);

      // handle implicit defs
      for (const unsigned* id = tid.ImplicitDefs; *id; ++id)
        handleRegisterDef(mbb, mi, *id);

      // handle explicit defs
      for (int i = mi->getNumOperands() - 1; i >= 0; --i) {
        MachineOperand& mop = mi->getOperand(i);
        // handle register defs - build intervals
        if (mop.isRegister() && mop.getReg() && mop.isDef())
          handleRegisterDef(mbb, mi, mop.getReg());
      }
    }
  }
}

/// IntA is defined as a copy from IntB and we know it only has one value
/// number.  If all of the places that IntA and IntB overlap are defined by
/// copies from IntA to IntB, we know that these two ranges can really be
/// merged if we adjust the value numbers.  If it is safe, adjust the value
/// numbers and return true, allowing coalescing to occur.
bool LiveIntervals::
AdjustIfAllOverlappingRangesAreCopiesFrom(LiveInterval &IntA,
                                          LiveInterval &IntB,
                                          unsigned CopyIdx) {
  std::vector<LiveRange*> Ranges;
  IntA.getOverlapingRanges(IntB, CopyIdx, Ranges);
  
  assert(!Ranges.empty() && "Why didn't we do a simple join of this?");
  
  unsigned IntBRep = rep(IntB.reg);
  
  // Check to see if all of the overlaps (entries in Ranges) are defined by a
  // copy from IntA.  If not, exit.
  for (unsigned i = 0, e = Ranges.size(); i != e; ++i) {
    unsigned Idx = Ranges[i]->start;
    MachineInstr *MI = getInstructionFromIndex(Idx);
    unsigned SrcReg, DestReg;
    if (!tii_->isMoveInstr(*MI, SrcReg, DestReg)) return false;
    
    // If this copy isn't actually defining this range, it must be a live
    // range spanning basic blocks or something.
    if (rep(DestReg) != rep(IntA.reg)) return false;
    
    // Check to see if this is coming from IntB.  If not, bail out.
    if (rep(SrcReg) != IntBRep) return false;
  }

  // Okay, we can change this one.  Get the IntB value number that IntA is
  // copied from.
  unsigned ActualValNo = IntA.getLiveRangeContaining(CopyIdx-1)->ValId;
  
  // Change all of the value numbers to the same as what we IntA is copied from.
  for (unsigned i = 0, e = Ranges.size(); i != e; ++i)
    Ranges[i]->ValId = ActualValNo;
  
  return true;
}

void LiveIntervals::joinIntervalsInMachineBB(MachineBasicBlock *MBB) {
  DEBUG(std::cerr << ((Value*)MBB->getBasicBlock())->getName() << ":\n");

  for (MachineBasicBlock::iterator mi = MBB->begin(), mie = MBB->end();
       mi != mie; ++mi) {
    DEBUG(std::cerr << getInstructionIndex(mi) << '\t' << *mi);

    // we only join virtual registers with allocatable
    // physical registers since we do not have liveness information
    // on not allocatable physical registers
    unsigned SrcReg, DestReg;
    if (tii_->isMoveInstr(*mi, SrcReg, DestReg) &&
        (MRegisterInfo::isVirtualRegister(SrcReg) || allocatableRegs_[SrcReg])&&
        (MRegisterInfo::isVirtualRegister(DestReg)||allocatableRegs_[DestReg])){

      // Get representative registers.
      SrcReg = rep(SrcReg);
      DestReg = rep(DestReg);

      // If they are already joined we continue.
      if (SrcReg == DestReg)
        continue;

      // If they are both physical registers, we cannot join them.
      if (MRegisterInfo::isPhysicalRegister(SrcReg) &&
          MRegisterInfo::isPhysicalRegister(DestReg))
        continue;

      // If they are not of compatible register classes, we cannot join them.
      bool Swap = false;
      if (!compatibleRegisterClasses(SrcReg, DestReg, Swap)) {
        DEBUG(std::cerr << "Register classes aren't compatible!\n");
        continue;
      }

      LiveInterval &SrcInt = getInterval(SrcReg);
      LiveInterval &DestInt = getInterval(DestReg);
      assert(SrcInt.reg == SrcReg && DestInt.reg == DestReg &&
             "Register mapping is horribly broken!");

      DEBUG(std::cerr << "\t\tInspecting " << SrcInt << " and " << DestInt
                      << ": ");

      // If two intervals contain a single value and are joined by a copy, it
      // does not matter if the intervals overlap, they can always be joined.
      bool Joinable = SrcInt.containsOneValue() && DestInt.containsOneValue();

      unsigned MIDefIdx = getDefIndex(getInstructionIndex(mi));
      
      // If the intervals think that this is joinable, do so now.
      if (!Joinable && DestInt.joinable(SrcInt, MIDefIdx))
        Joinable = true;

      // If DestInt is actually a copy from SrcInt (which we know) that is used
      // to define another value of SrcInt, we can change the other range of
      // SrcInt to be the value of the range that defines DestInt, allowing a
      // coalesce.
      if (!Joinable && DestInt.containsOneValue() &&
          AdjustIfAllOverlappingRangesAreCopiesFrom(SrcInt, DestInt, MIDefIdx))
        Joinable = true;
      
      if (!Joinable || overlapsAliases(&SrcInt, &DestInt)) {
        DEBUG(std::cerr << "Interference!\n");
      } else {
        DestInt.join(SrcInt, MIDefIdx);
        DEBUG(std::cerr << "Joined.  Result = " << DestInt << "\n");

        if (!Swap && !MRegisterInfo::isPhysicalRegister(SrcReg)) {
          r2iMap_.erase(SrcReg);
          r2rMap_[SrcReg] = DestReg;
        } else {
          // Otherwise merge the data structures the other way so we don't lose
          // the physreg information.
          r2rMap_[DestReg] = SrcReg;
          DestInt.reg = SrcReg;
          SrcInt.swap(DestInt);
          r2iMap_.erase(DestReg);
        }
        ++numJoins;
      }
    }
  }
}

namespace {
  // DepthMBBCompare - Comparison predicate that sort first based on the loop
  // depth of the basic block (the unsigned), and then on the MBB number.
  struct DepthMBBCompare {
    typedef std::pair<unsigned, MachineBasicBlock*> DepthMBBPair;
    bool operator()(const DepthMBBPair &LHS, const DepthMBBPair &RHS) const {
      if (LHS.first > RHS.first) return true;   // Deeper loops first
      return LHS.first == RHS.first &&
        LHS.second->getNumber() < RHS.second->getNumber();
    }
  };
}

void LiveIntervals::joinIntervals() {
  DEBUG(std::cerr << "********** JOINING INTERVALS ***********\n");

  const LoopInfo &LI = getAnalysis<LoopInfo>();
  if (LI.begin() == LI.end()) {
    // If there are no loops in the function, join intervals in function order.
    for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
         I != E; ++I)
      joinIntervalsInMachineBB(I);
  } else {
    // Otherwise, join intervals in inner loops before other intervals.
    // Unfortunately we can't just iterate over loop hierarchy here because
    // there may be more MBB's than BB's.  Collect MBB's for sorting.
    std::vector<std::pair<unsigned, MachineBasicBlock*> > MBBs;
    for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
         I != E; ++I)
      MBBs.push_back(std::make_pair(LI.getLoopDepth(I->getBasicBlock()), I));

    // Sort by loop depth.
    std::sort(MBBs.begin(), MBBs.end(), DepthMBBCompare());

    // Finally, join intervals in loop nest order.
    for (unsigned i = 0, e = MBBs.size(); i != e; ++i)
      joinIntervalsInMachineBB(MBBs[i].second);
  }

  DEBUG(std::cerr << "*** Register mapping ***\n");
  DEBUG(for (int i = 0, e = r2rMap_.size(); i != e; ++i)
          if (r2rMap_[i])
             std::cerr << "  reg " << i << " -> reg " << r2rMap_[i] << "\n");
}

/// Return true if the two specified registers belong to same or compatible
/// register classes. The registers may be either phys or virt regs.
bool LiveIntervals::compatibleRegisterClasses(unsigned RegA, unsigned RegB,
                                                 bool &Swap) const {

  // Get the register classes for the first reg.
  if (MRegisterInfo::isPhysicalRegister(RegA)) {
    assert(MRegisterInfo::isVirtualRegister(RegB) &&
           "Shouldn't consider two physregs!");
    return mf_->getSSARegMap()->getRegClass(RegB)->contains(RegA);
  }

  // Compare against the regclass for the second reg.
  const TargetRegisterClass *RegClassA = mf_->getSSARegMap()->getRegClass(RegA);
  if (MRegisterInfo::isVirtualRegister(RegB)) {
    const TargetRegisterClass *RegClassB=mf_->getSSARegMap()->getRegClass(RegB);
    if (RegClassA == RegClassB)
      return true;
    else {
      if (RegClassB->hasSubRegClass(RegClassA)) {
        Swap = true;
        return true;
      }
      return RegClassA->hasSubRegClass(RegClassB);
    }
  } else
    return RegClassA->contains(RegB);
}

bool LiveIntervals::overlapsAliases(const LiveInterval *LHS,
                                    const LiveInterval *RHS) const {
  if (!MRegisterInfo::isPhysicalRegister(LHS->reg)) {
    if (!MRegisterInfo::isPhysicalRegister(RHS->reg))
      return false;   // vreg-vreg merge has no aliases!
    std::swap(LHS, RHS);
  }

  assert(MRegisterInfo::isPhysicalRegister(LHS->reg) &&
         MRegisterInfo::isVirtualRegister(RHS->reg) &&
         "first interval must describe a physical register");

  for (const unsigned *AS = mri_->getAliasSet(LHS->reg); *AS; ++AS)
    if (RHS->overlaps(getInterval(*AS)))
      return true;

  return false;
}

LiveInterval LiveIntervals::createInterval(unsigned reg) {
  float Weight = MRegisterInfo::isPhysicalRegister(reg) ?
                       (float)HUGE_VAL :0.0F;
  return LiveInterval(reg, Weight);
}