summaryrefslogtreecommitdiff
path: root/lib/CodeGen/LiveIntervalAnalysis.cpp
blob: 3c234bbd0e12d29dc65e05541d8db311f992980a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
//===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the LiveInterval analysis pass which is used
// by the Linear Scan Register allocator. This pass linearizes the
// basic blocks of the function in DFS order and uses the
// LiveVariables pass to conservatively compute live intervals for
// each virtual and physical register.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "liveintervals"
#include "LiveIntervalAnalysis.h"
#include "llvm/Value.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/Target/MRegisterInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "Support/CommandLine.h"
#include "Support/Debug.h"
#include "Support/Statistic.h"
#include "Support/STLExtras.h"
#include "VirtRegMap.h"
#include <cmath>

using namespace llvm;

namespace {
  RegisterAnalysis<LiveIntervals> X("liveintervals", "Live Interval Analysis");

  Statistic<> numIntervals
  ("liveintervals", "Number of original intervals");

  Statistic<> numIntervalsAfter
  ("liveintervals", "Number of intervals after coalescing");

  Statistic<> numJoins
  ("liveintervals", "Number of interval joins performed");

  Statistic<> numPeep
  ("liveintervals", "Number of identity moves eliminated after coalescing");

  Statistic<> numFolded
  ("liveintervals", "Number of loads/stores folded into instructions");

  cl::opt<bool>
  EnableJoining("join-liveintervals",
                cl::desc("Join compatible live intervals"),
                cl::init(true));
};

void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const
{
  AU.addPreserved<LiveVariables>();
  AU.addRequired<LiveVariables>();
  AU.addPreservedID(PHIEliminationID);
  AU.addRequiredID(PHIEliminationID);
  AU.addRequiredID(TwoAddressInstructionPassID);
  AU.addRequired<LoopInfo>();
  MachineFunctionPass::getAnalysisUsage(AU);
}

void LiveIntervals::releaseMemory()
{
  mi2iMap_.clear();
  i2miMap_.clear();
  r2iMap_.clear();
  r2rMap_.clear();
}


/// runOnMachineFunction - Register allocate the whole function
///
bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
  mf_ = &fn;
  tm_ = &fn.getTarget();
  mri_ = tm_->getRegisterInfo();
  lv_ = &getAnalysis<LiveVariables>();
  allocatableRegs_ = mri_->getAllocatableSet(fn);

  // number MachineInstrs
  unsigned miIndex = 0;
  for (MachineFunction::iterator mbb = mf_->begin(), mbbEnd = mf_->end();
       mbb != mbbEnd; ++mbb)
    for (MachineBasicBlock::iterator mi = mbb->begin(), miEnd = mbb->end();
         mi != miEnd; ++mi) {
      bool inserted = mi2iMap_.insert(std::make_pair(mi, miIndex)).second;
      assert(inserted && "multiple MachineInstr -> index mappings");
      i2miMap_.push_back(mi);
      miIndex += InstrSlots::NUM;
    }

  computeIntervals();

  numIntervals += getNumIntervals();

#if 1
  DEBUG(std::cerr << "********** INTERVALS **********\n");
  DEBUG(for (iterator I = begin(), E = end(); I != E; ++I)
        std::cerr << I->second << "\n");
#endif

  // join intervals if requested
  if (EnableJoining) joinIntervals();

  numIntervalsAfter += getNumIntervals();

  // perform a final pass over the instructions and compute spill
  // weights, coalesce virtual registers and remove identity moves
  const LoopInfo& loopInfo = getAnalysis<LoopInfo>();
  const TargetInstrInfo& tii = *tm_->getInstrInfo();

  for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
       mbbi != mbbe; ++mbbi) {
    MachineBasicBlock* mbb = mbbi;
    unsigned loopDepth = loopInfo.getLoopDepth(mbb->getBasicBlock());

    for (MachineBasicBlock::iterator mii = mbb->begin(), mie = mbb->end();
         mii != mie; ) {
      // if the move will be an identity move delete it
      unsigned srcReg, dstReg, RegRep;
      if (tii.isMoveInstr(*mii, srcReg, dstReg) &&
          (RegRep = rep(srcReg)) == rep(dstReg)) {
        // remove from def list
        LiveInterval &interval = getOrCreateInterval(RegRep);
        // remove index -> MachineInstr and
        // MachineInstr -> index mappings
        Mi2IndexMap::iterator mi2i = mi2iMap_.find(mii);
        if (mi2i != mi2iMap_.end()) {
          i2miMap_[mi2i->second/InstrSlots::NUM] = 0;
          mi2iMap_.erase(mi2i);
        }
        mii = mbbi->erase(mii);
        ++numPeep;
      }
      else {
        for (unsigned i = 0; i < mii->getNumOperands(); ++i) {
          const MachineOperand& mop = mii->getOperand(i);
          if (mop.isRegister() && mop.getReg() &&
              MRegisterInfo::isVirtualRegister(mop.getReg())) {
            // replace register with representative register
            unsigned reg = rep(mop.getReg());
            mii->SetMachineOperandReg(i, reg);

            LiveInterval &RegInt = getInterval(reg);
            RegInt.weight +=
              (mop.isUse() + mop.isDef()) * pow(10.0F, loopDepth);
          }
        }
        ++mii;
      }
    }
  }

  DEBUG(std::cerr << "********** INTERVALS **********\n");
  DEBUG (for (iterator I = begin(), E = end(); I != E; ++I)
         std::cerr << I->second << "\n");
  DEBUG(std::cerr << "********** MACHINEINSTRS **********\n");
  DEBUG(
    for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
         mbbi != mbbe; ++mbbi) {
      std::cerr << ((Value*)mbbi->getBasicBlock())->getName() << ":\n";
      for (MachineBasicBlock::iterator mii = mbbi->begin(),
             mie = mbbi->end(); mii != mie; ++mii) {
        std::cerr << getInstructionIndex(mii) << '\t';
        mii->print(std::cerr, tm_);
      }
    });

  return true;
}

std::vector<LiveInterval*> LiveIntervals::addIntervalsForSpills(
  const LiveInterval& li,
  VirtRegMap& vrm,
  int slot)
{
  // since this is called after the analysis is done we don't know if
  // LiveVariables is available
  lv_ = getAnalysisToUpdate<LiveVariables>();

  std::vector<LiveInterval*> added;

  assert(li.weight != HUGE_VAL &&
         "attempt to spill already spilled interval!");

  DEBUG(std::cerr << "\t\t\t\tadding intervals for spills for interval: "
        << li << '\n');

  const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(li.reg);

  for (LiveInterval::Ranges::const_iterator
         i = li.ranges.begin(), e = li.ranges.end(); i != e; ++i) {
    unsigned index = getBaseIndex(i->start);
    unsigned end = getBaseIndex(i->end-1) + InstrSlots::NUM;
    for (; index != end; index += InstrSlots::NUM) {
      // skip deleted instructions
      while (index != end && !getInstructionFromIndex(index))
        index += InstrSlots::NUM;
      if (index == end) break;

      MachineBasicBlock::iterator mi = getInstructionFromIndex(index);

    for_operand:
      for (unsigned i = 0; i != mi->getNumOperands(); ++i) {
        MachineOperand& mop = mi->getOperand(i);
        if (mop.isRegister() && mop.getReg() == li.reg) {
          if (MachineInstr* fmi = mri_->foldMemoryOperand(mi, i, slot)) {
            if (lv_)
              lv_->instructionChanged(mi, fmi);
            vrm.virtFolded(li.reg, mi, fmi);
            mi2iMap_.erase(mi);
            i2miMap_[index/InstrSlots::NUM] = fmi;
            mi2iMap_[fmi] = index;
            MachineBasicBlock& mbb = *mi->getParent();
            mi = mbb.insert(mbb.erase(mi), fmi);
            ++numFolded;
            goto for_operand;
          }
          else {
            // This is tricky. We need to add information in
            // the interval about the spill code so we have to
            // use our extra load/store slots.
            //
            // If we have a use we are going to have a load so
            // we start the interval from the load slot
            // onwards. Otherwise we start from the def slot.
            unsigned start = (mop.isUse() ?
                              getLoadIndex(index) :
                              getDefIndex(index));
            // If we have a def we are going to have a store
            // right after it so we end the interval after the
            // use of the next instruction. Otherwise we end
            // after the use of this instruction.
            unsigned end = 1 + (mop.isDef() ?
                                getStoreIndex(index) :
                                getUseIndex(index));

            // create a new register for this spill
            unsigned nReg = mf_->getSSARegMap()->createVirtualRegister(rc);
            mi->SetMachineOperandReg(i, nReg);
            vrm.grow();
            vrm.assignVirt2StackSlot(nReg, slot);
            LiveInterval& nI = getOrCreateInterval(nReg);
            assert(nI.empty());
            // the spill weight is now infinity as it
            // cannot be spilled again
            nI.weight = HUGE_VAL;
            LiveRange LR(start, end, nI.getNextValue());
            DEBUG(std::cerr << " +" << LR);
            nI.addRange(LR);
            added.push_back(&nI);
            // update live variables if it is available
            if (lv_)
              lv_->addVirtualRegisterKilled(nReg, mi);
            DEBUG(std::cerr << "\t\t\t\tadded new interval: " << nI << '\n');
          }
        }
      }
    }
  }

  return added;
}

void LiveIntervals::printRegName(unsigned reg) const
{
  if (MRegisterInfo::isPhysicalRegister(reg))
    std::cerr << mri_->getName(reg);
  else
    std::cerr << "%reg" << reg;
}

void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock* mbb,
                                             MachineBasicBlock::iterator mi,
                                             LiveInterval& interval)
{
  DEBUG(std::cerr << "\t\tregister: "; printRegName(interval.reg));
  LiveVariables::VarInfo& vi = lv_->getVarInfo(interval.reg);

  // Virtual registers may be defined multiple times (due to phi
  // elimination and 2-addr elimination).  Much of what we do only has to be
  // done once for the vreg.  We use an empty interval to detect the first
  // time we see a vreg.
  if (interval.empty()) {
    // Get the Idx of the defining instructions.
    unsigned defIndex = getDefIndex(getInstructionIndex(mi));

    unsigned ValNum = interval.getNextValue();
    assert(ValNum == 0 && "First value in interval is not 0?");
    ValNum = 0;  // Clue in the optimizer.

    // Loop over all of the blocks that the vreg is defined in.  There are
    // two cases we have to handle here.  The most common case is a vreg
    // whose lifetime is contained within a basic block.  In this case there
    // will be a single kill, in MBB, which comes after the definition.
    if (vi.Kills.size() == 1 && vi.Kills[0]->getParent() == mbb) {
      // FIXME: what about dead vars?
      unsigned killIdx;
      if (vi.Kills[0] != mi)
        killIdx = getUseIndex(getInstructionIndex(vi.Kills[0]))+1;
      else
        killIdx = defIndex+1;

      // If the kill happens after the definition, we have an intra-block
      // live range.
      if (killIdx > defIndex) {
        assert(vi.AliveBlocks.empty() &&
               "Shouldn't be alive across any blocks!");
        LiveRange LR(defIndex, killIdx, ValNum);
        interval.addRange(LR);
        DEBUG(std::cerr << " +" << LR << "\n");
        return;
      }
    }

    // The other case we handle is when a virtual register lives to the end
    // of the defining block, potentially live across some blocks, then is
    // live into some number of blocks, but gets killed.  Start by adding a
    // range that goes from this definition to the end of the defining block.
    LiveRange NewLR(defIndex,
                    getInstructionIndex(&mbb->back()) + InstrSlots::NUM,
                    ValNum);
    DEBUG(std::cerr << " +" << NewLR);
    interval.addRange(NewLR);

    // Iterate over all of the blocks that the variable is completely
    // live in, adding [insrtIndex(begin), instrIndex(end)+4) to the
    // live interval.
    for (unsigned i = 0, e = vi.AliveBlocks.size(); i != e; ++i) {
      if (vi.AliveBlocks[i]) {
        MachineBasicBlock* mbb = mf_->getBlockNumbered(i);
        if (!mbb->empty()) {
          LiveRange LR(getInstructionIndex(&mbb->front()),
                       getInstructionIndex(&mbb->back()) + InstrSlots::NUM,
                       ValNum);
          interval.addRange(LR);
          DEBUG(std::cerr << " +" << LR);
        }
      }
    }

    // Finally, this virtual register is live from the start of any killing
    // block to the 'use' slot of the killing instruction.
    for (unsigned i = 0, e = vi.Kills.size(); i != e; ++i) {
      MachineInstr *Kill = vi.Kills[i];
      LiveRange LR(getInstructionIndex(Kill->getParent()->begin()),
                   getUseIndex(getInstructionIndex(Kill))+1,
                   ValNum);
      interval.addRange(LR);
      DEBUG(std::cerr << " +" << LR);
    }

  } else {
    // If this is the second time we see a virtual register definition, it
    // must be due to phi elimination or two addr elimination.  If this is
    // the result of two address elimination, then the vreg is the first
    // operand, and is a def-and-use.
    if (mi->getOperand(0).isRegister() &&
        mi->getOperand(0).getReg() == interval.reg &&
        mi->getOperand(0).isDef() && mi->getOperand(0).isUse()) {
      // If this is a two-address definition, then we have already processed
      // the live range.  The only problem is that we didn't realize there
      // are actually two values in the live interval.  Because of this we
      // need to take the LiveRegion that defines this register and split it
      // into two values.
      unsigned DefIndex = getDefIndex(getInstructionIndex(vi.DefInst));
      unsigned RedefIndex = getDefIndex(getInstructionIndex(mi));

      // Delete the initial value, which should be short and continuous,
      // becuase the 2-addr copy must be in the same MBB as the redef.
      interval.removeRange(DefIndex, RedefIndex);

      LiveRange LR(DefIndex, RedefIndex, interval.getNextValue());
      DEBUG(std::cerr << " replace range with " << LR);
      interval.addRange(LR);

      // If this redefinition is dead, we need to add a dummy unit live
      // range covering the def slot.
      for (LiveVariables::killed_iterator KI = lv_->dead_begin(mi),
             E = lv_->dead_end(mi); KI != E; ++KI)
        if (KI->second == interval.reg) {
          interval.addRange(LiveRange(RedefIndex, RedefIndex+1, 0));
          break;
        }

      DEBUG(std::cerr << "RESULT: " << interval);

    } else {
      // Otherwise, this must be because of phi elimination.  If this is the
      // first redefinition of the vreg that we have seen, go back and change
      // the live range in the PHI block to be a different value number.
      if (interval.containsOneValue()) {
        assert(vi.Kills.size() == 1 &&
               "PHI elimination vreg should have one kill, the PHI itself!");

        // Remove the old range that we now know has an incorrect number.
        MachineInstr *Killer = vi.Kills[0];
        unsigned Start = getInstructionIndex(Killer->getParent()->begin());
        unsigned End = getUseIndex(getInstructionIndex(Killer))+1;
        DEBUG(std::cerr << "Removing [" << Start << "," << End << "] from: "
              << interval << "\n");
        interval.removeRange(Start, End);
        DEBUG(std::cerr << "RESULT: " << interval);

        // Replace the interval with one of a NEW value number.
        LiveRange LR(Start, End, interval.getNextValue());
        DEBUG(std::cerr << " replace range with " << LR);
        interval.addRange(LR);
        DEBUG(std::cerr << "RESULT: " << interval);
      }

      // In the case of PHI elimination, each variable definition is only
      // live until the end of the block.  We've already taken care of the
      // rest of the live range.
      unsigned defIndex = getDefIndex(getInstructionIndex(mi));
      LiveRange LR(defIndex,
                   getInstructionIndex(&mbb->back()) + InstrSlots::NUM,
                   interval.getNextValue());
      interval.addRange(LR);
      DEBUG(std::cerr << " +" << LR);
    }
  }

  DEBUG(std::cerr << '\n');
}

void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock *MBB,
                                              MachineBasicBlock::iterator mi,
                                              LiveInterval& interval)
{
  // A physical register cannot be live across basic block, so its
  // lifetime must end somewhere in its defining basic block.
  DEBUG(std::cerr << "\t\tregister: "; printRegName(interval.reg));
  typedef LiveVariables::killed_iterator KillIter;

  unsigned baseIndex = getInstructionIndex(mi);
  unsigned start = getDefIndex(baseIndex);
  unsigned end = start;

  // If it is not used after definition, it is considered dead at
  // the instruction defining it. Hence its interval is:
  // [defSlot(def), defSlot(def)+1)
  for (KillIter ki = lv_->dead_begin(mi), ke = lv_->dead_end(mi);
       ki != ke; ++ki) {
    if (interval.reg == ki->second) {
      DEBUG(std::cerr << " dead");
      end = getDefIndex(start) + 1;
      goto exit;
    }
  }

  // If it is not dead on definition, it must be killed by a
  // subsequent instruction. Hence its interval is:
  // [defSlot(def), useSlot(kill)+1)
  while (true) {
    ++mi;
    assert(mi != MBB->end() && "physreg was not killed in defining block!");
    baseIndex += InstrSlots::NUM;
    for (KillIter ki = lv_->killed_begin(mi), ke = lv_->killed_end(mi);
         ki != ke; ++ki) {
      if (interval.reg == ki->second) {
        DEBUG(std::cerr << " killed");
        end = getUseIndex(baseIndex) + 1;
        goto exit;
      }
    }
  }

exit:
  assert(start < end && "did not find end of interval?");
  LiveRange LR(start, end, interval.getNextValue());
  interval.addRange(LR);
  DEBUG(std::cerr << " +" << LR << '\n');
}

void LiveIntervals::handleRegisterDef(MachineBasicBlock *MBB,
                                      MachineBasicBlock::iterator MI,
                                      unsigned reg) {
  if (MRegisterInfo::isVirtualRegister(reg))
    handleVirtualRegisterDef(MBB, MI, getOrCreateInterval(reg));
  else if (allocatableRegs_[reg]) {
    handlePhysicalRegisterDef(MBB, MI, getOrCreateInterval(reg));
    for (const unsigned* AS = mri_->getAliasSet(reg); *AS; ++AS)
      handlePhysicalRegisterDef(MBB, MI, getOrCreateInterval(*AS));
  }
}

/// computeIntervals - computes the live intervals for virtual
/// registers. for some ordering of the machine instructions [1,N] a
/// live interval is an interval [i, j) where 1 <= i <= j < N for
/// which a variable is live
void LiveIntervals::computeIntervals()
{
  DEBUG(std::cerr << "********** COMPUTING LIVE INTERVALS **********\n");
  DEBUG(std::cerr << "********** Function: "
        << ((Value*)mf_->getFunction())->getName() << '\n');

  for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
       I != E; ++I) {
    MachineBasicBlock* mbb = I;
    DEBUG(std::cerr << ((Value*)mbb->getBasicBlock())->getName() << ":\n");

    for (MachineBasicBlock::iterator mi = mbb->begin(), miEnd = mbb->end();
         mi != miEnd; ++mi) {
      const TargetInstrDescriptor& tid =
        tm_->getInstrInfo()->get(mi->getOpcode());
      DEBUG(std::cerr << getInstructionIndex(mi) << "\t";
            mi->print(std::cerr, tm_));

      // handle implicit defs
      for (const unsigned* id = tid.ImplicitDefs; *id; ++id)
        handleRegisterDef(mbb, mi, *id);

      // handle explicit defs
      for (int i = mi->getNumOperands() - 1; i >= 0; --i) {
        MachineOperand& mop = mi->getOperand(i);
        // handle register defs - build intervals
        if (mop.isRegister() && mop.getReg() && mop.isDef())
          handleRegisterDef(mbb, mi, mop.getReg());
      }
    }
  }
}

void LiveIntervals::joinIntervalsInMachineBB(MachineBasicBlock *MBB) {
  DEBUG(std::cerr << ((Value*)MBB->getBasicBlock())->getName() << ":\n");
  const TargetInstrInfo &TII = *tm_->getInstrInfo();

  for (MachineBasicBlock::iterator mi = MBB->begin(), mie = MBB->end();
       mi != mie; ++mi) {
    DEBUG(std::cerr << getInstructionIndex(mi) << '\t' << *mi);

    // we only join virtual registers with allocatable
    // physical registers since we do not have liveness information
    // on not allocatable physical registers
    unsigned regA, regB;
    if (TII.isMoveInstr(*mi, regA, regB) &&
        (MRegisterInfo::isVirtualRegister(regA) || allocatableRegs_[regA]) &&
        (MRegisterInfo::isVirtualRegister(regB) || allocatableRegs_[regB])) {

      // Get representative registers.
      regA = rep(regA);
      regB = rep(regB);

      // If they are already joined we continue.
      if (regA == regB)
        continue;

      // If they are both physical registers, we cannot join them.
      if (MRegisterInfo::isPhysicalRegister(regA) &&
          MRegisterInfo::isPhysicalRegister(regB))
        continue;

      // If they are not of the same register class, we cannot join them.
      if (differingRegisterClasses(regA, regB))
        continue;

      LiveInterval &IntA = getInterval(regA);
      LiveInterval &IntB = getInterval(regB);
      assert(IntA.reg == regA && IntB.reg == regB &&
             "Register mapping is horribly broken!");

      DEBUG(std::cerr << "\t\tInspecting " << IntA << " and " << IntB << ": ");

      // If two intervals contain a single value and are joined by a copy, it
      // does not matter if the intervals overlap, they can always be joined.
      bool TriviallyJoinable =
        IntA.containsOneValue() && IntB.containsOneValue();

      unsigned MIDefIdx = getDefIndex(getInstructionIndex(mi));
      if ((TriviallyJoinable || IntB.joinable(IntA, MIDefIdx)) &&
          !overlapsAliases(&IntA, &IntB)) {
        IntB.join(IntA, MIDefIdx);

        if (!MRegisterInfo::isPhysicalRegister(regA)) {
          r2iMap_.erase(regA);
          r2rMap_[regA] = regB;
        } else {
          // Otherwise merge the data structures the other way so we don't lose
          // the physreg information.
          r2rMap_[regB] = regA;
          IntB.reg = regA;
          IntA.swap(IntB);
          r2iMap_.erase(regB);
        }
        DEBUG(std::cerr << "Joined.  Result = " << IntB << "\n");
        ++numJoins;
      } else {
        DEBUG(std::cerr << "Interference!\n");
      }
    }
  }
}

namespace {
  // DepthMBBCompare - Comparison predicate that sort first based on the loop
  // depth of the basic block (the unsigned), and then on the MBB number.
  struct DepthMBBCompare {
    typedef std::pair<unsigned, MachineBasicBlock*> DepthMBBPair;
    bool operator()(const DepthMBBPair &LHS, const DepthMBBPair &RHS) const {
      if (LHS.first > RHS.first) return true;   // Deeper loops first
      return LHS.first == RHS.first &&
        LHS.second->getNumber() < RHS.second->getNumber();
    }
  };
}

void LiveIntervals::joinIntervals() {
  DEBUG(std::cerr << "********** JOINING INTERVALS ***********\n");

  const LoopInfo &LI = getAnalysis<LoopInfo>();
  if (LI.begin() == LI.end()) {
    // If there are no loops in the function, join intervals in function order.
    for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
         I != E; ++I)
      joinIntervalsInMachineBB(I);
  } else {
    // Otherwise, join intervals in inner loops before other intervals.
    // Unfortunately we can't just iterate over loop hierarchy here because
    // there may be more MBB's than BB's.  Collect MBB's for sorting.
    std::vector<std::pair<unsigned, MachineBasicBlock*> > MBBs;
    for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
         I != E; ++I)
      MBBs.push_back(std::make_pair(LI.getLoopDepth(I->getBasicBlock()), I));

    // Sort by loop depth.
    std::sort(MBBs.begin(), MBBs.end(), DepthMBBCompare());

    // Finally, join intervals in loop nest order.
    for (unsigned i = 0, e = MBBs.size(); i != e; ++i)
      joinIntervalsInMachineBB(MBBs[i].second);
  }

  DEBUG(std::cerr << "*** Register mapping ***\n");
  DEBUG(for (std::map<unsigned, unsigned>::iterator I = r2rMap_.begin(),
               E = r2rMap_.end(); I != E; ++I)
        std::cerr << "  reg " << I->first << " -> reg " << I->second << "\n";);
}

/// Return true if the two specified registers belong to different register
/// classes.  The registers may be either phys or virt regs.
bool LiveIntervals::differingRegisterClasses(unsigned RegA,
                                             unsigned RegB) const {
  const TargetRegisterClass *RegClass;

  // Get the register classes for the first reg.
  if (MRegisterInfo::isVirtualRegister(RegA))
    RegClass = mf_->getSSARegMap()->getRegClass(RegA);
  else
    RegClass = mri_->getRegClass(RegA);

  // Compare against the regclass for the second reg.
  if (MRegisterInfo::isVirtualRegister(RegB))
    return RegClass != mf_->getSSARegMap()->getRegClass(RegB);
  else
    return !RegClass->contains(RegB);
}

bool LiveIntervals::overlapsAliases(const LiveInterval *LHS,
                                    const LiveInterval *RHS) const {
  if (!MRegisterInfo::isPhysicalRegister(LHS->reg)) {
    if (!MRegisterInfo::isPhysicalRegister(RHS->reg))
      return false;   // vreg-vreg merge has no aliases!
    std::swap(LHS, RHS);
  }

  assert(MRegisterInfo::isPhysicalRegister(LHS->reg) &&
         MRegisterInfo::isVirtualRegister(RHS->reg) &&
         "first interval must describe a physical register");

  for (const unsigned *AS = mri_->getAliasSet(LHS->reg); *AS; ++AS)
    if (RHS->overlaps(getInterval(*AS)))
      return true;

  return false;
}

LiveInterval LiveIntervals::createInterval(unsigned reg) {
  float Weight = MRegisterInfo::isPhysicalRegister(reg) ?  HUGE_VAL :0.0F;
  return LiveInterval(reg, Weight);
}