summaryrefslogtreecommitdiff
path: root/lib/CodeGen/MachineSink.cpp
blob: d1f91f271b9b9a2cf9655dd526c5b5add9b3b776 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
//===-- MachineSink.cpp - Sinking for machine instructions ----------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass moves instructions into successor blocks when possible, so that
// they aren't executed on paths where their results aren't needed.
//
// This pass is not intended to be a replacement or a complete alternative
// for an LLVM-IR-level sinking pass. It is only designed to sink simple
// constructs that are not exposed before lowering and instruction selection.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "machine-sink"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;

STATISTIC(NumSunk, "Number of machine instructions sunk");

namespace {
  class MachineSinking : public MachineFunctionPass {
    const TargetInstrInfo *TII;
    const TargetRegisterInfo *TRI;
    MachineRegisterInfo  *RegInfo; // Machine register information
    MachineDominatorTree *DT;   // Machine dominator tree
    MachineLoopInfo *LI;
    AliasAnalysis *AA;
    BitVector AllocatableSet;   // Which physregs are allocatable?

  public:
    static char ID; // Pass identification
    MachineSinking() : MachineFunctionPass(&ID) {}

    virtual bool runOnMachineFunction(MachineFunction &MF);

    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.setPreservesCFG();
      MachineFunctionPass::getAnalysisUsage(AU);
      AU.addRequired<AliasAnalysis>();
      AU.addRequired<MachineDominatorTree>();
      AU.addRequired<MachineLoopInfo>();
      AU.addPreserved<MachineDominatorTree>();
      AU.addPreserved<MachineLoopInfo>();
    }
  private:
    bool ProcessBlock(MachineBasicBlock &MBB);
    bool SinkInstruction(MachineInstr *MI, bool &SawStore);
    bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB) const;
  };
} // end anonymous namespace

char MachineSinking::ID = 0;
INITIALIZE_PASS(MachineSinking, "machine-sink",
                "Machine code sinking", false, false);

FunctionPass *llvm::createMachineSinkingPass() { return new MachineSinking(); }

/// AllUsesDominatedByBlock - Return true if all uses of the specified register
/// occur in blocks dominated by the specified block.
bool MachineSinking::AllUsesDominatedByBlock(unsigned Reg,
                                             MachineBasicBlock *MBB) const {
  assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
         "Only makes sense for vregs");
  // Ignoring debug uses is necessary so debug info doesn't affect the code.
  // This may leave a referencing dbg_value in the original block, before
  // the definition of the vreg.  Dwarf generator handles this although the
  // user might not get the right info at runtime.
  for (MachineRegisterInfo::use_nodbg_iterator
         I = RegInfo->use_nodbg_begin(Reg), E = RegInfo->use_nodbg_end();
       I != E; ++I) {
    // Determine the block of the use.
    MachineInstr *UseInst = &*I;
    MachineBasicBlock *UseBlock = UseInst->getParent();

    if (UseInst->isPHI()) {
      // PHI nodes use the operand in the predecessor block, not the block with
      // the PHI.
      UseBlock = UseInst->getOperand(I.getOperandNo()+1).getMBB();
    }

    // Check that it dominates.
    if (!DT->dominates(MBB, UseBlock))
      return false;
  }

  return true;
}

bool MachineSinking::runOnMachineFunction(MachineFunction &MF) {
  DEBUG(dbgs() << "******** Machine Sinking ********\n");

  const TargetMachine &TM = MF.getTarget();
  TII = TM.getInstrInfo();
  TRI = TM.getRegisterInfo();
  RegInfo = &MF.getRegInfo();
  DT = &getAnalysis<MachineDominatorTree>();
  LI = &getAnalysis<MachineLoopInfo>();
  AA = &getAnalysis<AliasAnalysis>();
  AllocatableSet = TRI->getAllocatableSet(MF);

  bool EverMadeChange = false;

  while (1) {
    bool MadeChange = false;

    // Process all basic blocks.
    for (MachineFunction::iterator I = MF.begin(), E = MF.end();
         I != E; ++I)
      MadeChange |= ProcessBlock(*I);

    // If this iteration over the code changed anything, keep iterating.
    if (!MadeChange) break;
    EverMadeChange = true;
  }
  return EverMadeChange;
}

bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) {
  // Can't sink anything out of a block that has less than two successors.
  if (MBB.succ_size() <= 1 || MBB.empty()) return false;

  // Don't bother sinking code out of unreachable blocks. In addition to being
  // unprofitable, it can also lead to infinite looping, because in an
  // unreachable loop there may be nowhere to stop.
  if (!DT->isReachableFromEntry(&MBB)) return false;

  bool MadeChange = false;

  // Walk the basic block bottom-up.  Remember if we saw a store.
  MachineBasicBlock::iterator I = MBB.end();
  --I;
  bool ProcessedBegin, SawStore = false;
  do {
    MachineInstr *MI = I;  // The instruction to sink.

    // Predecrement I (if it's not begin) so that it isn't invalidated by
    // sinking.
    ProcessedBegin = I == MBB.begin();
    if (!ProcessedBegin)
      --I;

    if (MI->isDebugValue())
      continue;

    if (SinkInstruction(MI, SawStore))
      ++NumSunk, MadeChange = true;

    // If we just processed the first instruction in the block, we're done.
  } while (!ProcessedBegin);

  return MadeChange;
}

/// SinkInstruction - Determine whether it is safe to sink the specified machine
/// instruction out of its current block into a successor.
bool MachineSinking::SinkInstruction(MachineInstr *MI, bool &SawStore) {
  // Check if it's safe to move the instruction.
  if (!MI->isSafeToMove(TII, AA, SawStore))
    return false;

  // FIXME: This should include support for sinking instructions within the
  // block they are currently in to shorten the live ranges.  We often get
  // instructions sunk into the top of a large block, but it would be better to
  // also sink them down before their first use in the block.  This xform has to
  // be careful not to *increase* register pressure though, e.g. sinking
  // "x = y + z" down if it kills y and z would increase the live ranges of y
  // and z and only shrink the live range of x.

  // Loop over all the operands of the specified instruction.  If there is
  // anything we can't handle, bail out.
  MachineBasicBlock *ParentBlock = MI->getParent();

  // SuccToSinkTo - This is the successor to sink this instruction to, once we
  // decide.
  MachineBasicBlock *SuccToSinkTo = 0;

  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    const MachineOperand &MO = MI->getOperand(i);
    if (!MO.isReg()) continue;  // Ignore non-register operands.

    unsigned Reg = MO.getReg();
    if (Reg == 0) continue;

    if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
      if (MO.isUse()) {
        // If the physreg has no defs anywhere, it's just an ambient register
        // and we can freely move its uses. Alternatively, if it's allocatable,
        // it could get allocated to something with a def during allocation.
        if (!RegInfo->def_empty(Reg))
          return false;

        if (AllocatableSet.test(Reg))
          return false;

        // Check for a def among the register's aliases too.
        for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
          unsigned AliasReg = *Alias;
          if (!RegInfo->def_empty(AliasReg))
            return false;

          if (AllocatableSet.test(AliasReg))
            return false;
        }
      } else if (!MO.isDead()) {
        // A def that isn't dead. We can't move it.
        return false;
      }
    } else {
      // Virtual register uses are always safe to sink.
      if (MO.isUse()) continue;

      // If it's not safe to move defs of the register class, then abort.
      if (!TII->isSafeToMoveRegClassDefs(RegInfo->getRegClass(Reg)))
        return false;

      // FIXME: This picks a successor to sink into based on having one
      // successor that dominates all the uses.  However, there are cases where
      // sinking can happen but where the sink point isn't a successor.  For
      // example:
      //
      //   x = computation
      //   if () {} else {}
      //   use x
      //
      // the instruction could be sunk over the whole diamond for the
      // if/then/else (or loop, etc), allowing it to be sunk into other blocks
      // after that.

      // Virtual register defs can only be sunk if all their uses are in blocks
      // dominated by one of the successors.
      if (SuccToSinkTo) {
        // If a previous operand picked a block to sink to, then this operand
        // must be sinkable to the same block.
        if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo))
          return false;

        continue;
      }

      // Otherwise, we should look at all the successors and decide which one
      // we should sink to.
      for (MachineBasicBlock::succ_iterator SI = ParentBlock->succ_begin(),
           E = ParentBlock->succ_end(); SI != E; ++SI) {
        if (AllUsesDominatedByBlock(Reg, *SI)) {
          SuccToSinkTo = *SI;
          break;
        }
      }

      // If we couldn't find a block to sink to, ignore this instruction.
      if (SuccToSinkTo == 0)
        return false;
    }
  }

  // If there are no outputs, it must have side-effects.
  if (SuccToSinkTo == 0)
    return false;

  // It's not safe to sink instructions to EH landing pad. Control flow into
  // landing pad is implicitly defined.
  if (SuccToSinkTo->isLandingPad())
    return false;

  // It is not possible to sink an instruction into its own block.  This can
  // happen with loops.
  if (MI->getParent() == SuccToSinkTo)
    return false;

  // If the instruction to move defines a dead physical register which is live
  // when leaving the basic block, don't move it because it could turn into a
  // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>)
  for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
    const MachineOperand &MO = MI->getOperand(I);
    if (!MO.isReg()) continue;
    unsigned Reg = MO.getReg();
    if (Reg == 0 || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
    if (SuccToSinkTo->isLiveIn(Reg))
      return false;
  }

  DEBUG(dbgs() << "Sink instr " << *MI << "\tinto block " << *SuccToSinkTo);

  // If the block has multiple predecessors, this would introduce computation on
  // a path that it doesn't already exist.  We could split the critical edge,
  // but for now we just punt.
  // FIXME: Split critical edges if not backedges.
  if (SuccToSinkTo->pred_size() > 1) {
    // We cannot sink a load across a critical edge - there may be stores in
    // other code paths.
    bool store = true;
    if (!MI->isSafeToMove(TII, AA, store)) {
      DEBUG(dbgs() << " *** PUNTING: Wont sink load along critical edge.\n");
      return false;
    }

    // We don't want to sink across a critical edge if we don't dominate the
    // successor. We could be introducing calculations to new code paths.
    if (!DT->dominates(ParentBlock, SuccToSinkTo)) {
      DEBUG(dbgs() << " *** PUNTING: Critical edge found\n");
      return false;
    }

    // Don't sink instructions into a loop.
    if (LI->isLoopHeader(SuccToSinkTo)) {
      DEBUG(dbgs() << " *** PUNTING: Loop header found\n");
      return false;
    }

    // Otherwise we are OK with sinking along a critical edge.
    DEBUG(dbgs() << "Sinking along critical edge.\n");
  }

  // Determine where to insert into. Skip phi nodes.
  MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin();
  while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI())
    ++InsertPos;

  // Move the instruction.
  SuccToSinkTo->splice(InsertPos, ParentBlock, MI,
                       ++MachineBasicBlock::iterator(MI));

  // Conservatively, clear any kill flags, since it's possible that they are no
  // longer correct.
  MI->clearKillInfo();

  return true;
}