summaryrefslogtreecommitdiff
path: root/lib/CodeGen/MachineSink.cpp
blob: b4e72fed28db8c793b6a627b417ad87a27d56315 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
//===-- MachineSink.cpp - Sinking for machine instructions ----------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass 
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "machine-sink"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
using namespace llvm;

STATISTIC(NumSunk, "Number of machine instructions sunk");

namespace {
  class VISIBILITY_HIDDEN MachineSinking : public MachineFunctionPass {
    const TargetMachine   *TM;
    const TargetInstrInfo *TII;
    MachineFunction       *CurMF; // Current MachineFunction
    MachineRegisterInfo  *RegInfo; // Machine register information
    MachineDominatorTree *DT;   // Machine dominator tree for the current Loop

  public:
    static char ID; // Pass identification
    MachineSinking() : MachineFunctionPass((intptr_t)&ID) {}
    
    virtual bool runOnMachineFunction(MachineFunction &MF);
    
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      MachineFunctionPass::getAnalysisUsage(AU);
      AU.addRequired<MachineDominatorTree>();
      AU.addPreserved<MachineDominatorTree>();
    }
  private:
    bool ProcessBlock(MachineBasicBlock &MBB);
    bool SinkInstruction(MachineInstr *MI, bool &SawStore);
    bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB) const;
  };
} // end anonymous namespace
  
char MachineSinking::ID = 0;
static RegisterPass<MachineSinking>
X("machine-sink", "Machine code sinking");

FunctionPass *llvm::createMachineSinkingPass() { return new MachineSinking(); }

/// AllUsesDominatedByBlock - Return true if all uses of the specified register
/// occur in blocks dominated by the specified block.
bool MachineSinking::AllUsesDominatedByBlock(unsigned Reg, 
                                             MachineBasicBlock *MBB) const {
  assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
         "Only makes sense for vregs");
  for (MachineRegisterInfo::reg_iterator I = RegInfo->reg_begin(Reg),
       E = RegInfo->reg_end(); I != E; ++I) {
    if (I.getOperand().isDef()) continue;  // ignore def.
    
    // Determine the block of the use.
    MachineInstr *UseInst = &*I;
    MachineBasicBlock *UseBlock = UseInst->getParent();
    if (UseInst->getOpcode() == TargetInstrInfo::PHI) {
      // PHI nodes use the operand in the predecessor block, not the block with
      // the PHI.
      UseBlock = UseInst->getOperand(I.getOperandNo()+1).getMBB();
    }
    // Check that it dominates.
    if (!DT->dominates(MBB, UseBlock))
      return false;
  }
  return true;
}



bool MachineSinking::runOnMachineFunction(MachineFunction &MF) {
  DOUT << "******** Machine Sinking ********\n";
  
  CurMF = &MF;
  TM = &CurMF->getTarget();
  TII = TM->getInstrInfo();
  RegInfo = &CurMF->getRegInfo();
  DT = &getAnalysis<MachineDominatorTree>();

  bool EverMadeChange = false;
  
  while (1) {
    bool MadeChange = false;

    // Process all basic blocks.
    for (MachineFunction::iterator I = CurMF->begin(), E = CurMF->end(); 
         I != E; ++I)
      MadeChange |= ProcessBlock(*I);
    
    // If this iteration over the code changed anything, keep iterating.
    if (!MadeChange) break;
    EverMadeChange = true;
  } 
  return EverMadeChange;
}

bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) {
  bool MadeChange = false;
  
  // Can't sink anything out of a block that has less than two successors.
  if (MBB.succ_size() <= 1) return false;
  
  // Walk the basic block bottom-up.  Remember if we saw a store.
  bool SawStore = false;
  for (MachineBasicBlock::iterator I = MBB.end(); I != MBB.begin(); ){
    MachineBasicBlock::iterator LastIt = I;
    if (SinkInstruction(--I, SawStore)) {
      I = LastIt;
      ++NumSunk;
    }
  }
  
  return MadeChange;
}

/// SinkInstruction - Determine whether it is safe to sink the specified machine
/// instruction out of its current block into a successor.
bool MachineSinking::SinkInstruction(MachineInstr *MI, bool &SawStore) {
  // Check if it's safe to move the instruction.
  if (!MI->isSafeToMove(TII, SawStore))
    return false;
  
  // FIXME: This should include support for sinking instructions within the
  // block they are currently in to shorten the live ranges.  We often get
  // instructions sunk into the top of a large block, but it would be better to
  // also sink them down before their first use in the block.  This xform has to
  // be careful not to *increase* register pressure though, e.g. sinking
  // "x = y + z" down if it kills y and z would increase the live ranges of y
  // and z only the shrink the live range of x.
  
  // Loop over all the operands of the specified instruction.  If there is
  // anything we can't handle, bail out.
  MachineBasicBlock *ParentBlock = MI->getParent();
  
  // SuccToSinkTo - This is the successor to sink this instruction to, once we
  // decide.
  MachineBasicBlock *SuccToSinkTo = 0;
  
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    const MachineOperand &MO = MI->getOperand(i);
    if (!MO.isReg()) continue;  // Ignore non-register operands.
    
    unsigned Reg = MO.getReg();
    if (Reg == 0) continue;
    
    if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
      // If this is a physical register use, we can't move it.  If it is a def,
      // we can move it, but only if the def is dead.
      if (MO.isUse() || !MO.isDead())
        return false;
    } else {
      // Virtual register uses are always safe to sink.
      if (MO.isUse()) continue;
      
      // FIXME: This picks a successor to sink into based on having one
      // successor that dominates all the uses.  However, there are cases where
      // sinking can happen but where the sink point isn't a successor.  For
      // example:
      //   x = computation
      //   if () {} else {}
      //   use x
      // the instruction could be sunk over the whole diamond for the 
      // if/then/else (or loop, etc), allowing it to be sunk into other blocks
      // after that.
      
      // Virtual register defs can only be sunk if all their uses are in blocks
      // dominated by one of the successors.
      if (SuccToSinkTo) {
        // If a previous operand picked a block to sink to, then this operand
        // must be sinkable to the same block.
        if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo)) 
          return false;
        continue;
      }
      
      // Otherwise, we should look at all the successors and decide which one
      // we should sink to.
      for (MachineBasicBlock::succ_iterator SI = ParentBlock->succ_begin(),
           E = ParentBlock->succ_end(); SI != E; ++SI) {
        if (AllUsesDominatedByBlock(Reg, *SI)) {
          SuccToSinkTo = *SI;
          break;
        }
      }
      
      // If we couldn't find a block to sink to, ignore this instruction.
      if (SuccToSinkTo == 0)
        return false;
    }
  }
  
  // If there are no outputs, it must have side-effects.
  if (SuccToSinkTo == 0)
    return false;
  
  DEBUG(cerr << "Sink instr " << *MI);
  DEBUG(cerr << "to block " << *SuccToSinkTo);
  
  // If the block has multiple predecessors, this would introduce computation on
  // a path that it doesn't already exist.  We could split the critical edge,
  // but for now we just punt.
  // FIXME: Split critical edges if not backedges.
  if (SuccToSinkTo->pred_size() > 1) {
    DEBUG(cerr << " *** PUNTING: Critical edge found\n");
    return false;
  }
  
  // Determine where to insert into.  Skip phi nodes.
  MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin();
  while (InsertPos != SuccToSinkTo->end() && 
         InsertPos->getOpcode() == TargetInstrInfo::PHI)
    ++InsertPos;
  
  // Move the instruction.
  SuccToSinkTo->splice(InsertPos, ParentBlock, MI,
                       ++MachineBasicBlock::iterator(MI));
  return true;
}