summaryrefslogtreecommitdiff
path: root/lib/CodeGen/PHIElimination.cpp
blob: 91dbc2e17ba45cd896bd5560ac052505e3b6fdf8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
//===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass eliminates machine instruction PHI nodes by inserting copy
// instructions.  This destroys SSA information, but is the desired input for
// some register allocators.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "phielim"
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Compiler.h"
#include <set>
#include <algorithm>
using namespace llvm;

STATISTIC(NumAtomic, "Number of atomic phis lowered");
//STATISTIC(NumSimple, "Number of simple phis lowered");

namespace {
  struct VISIBILITY_HIDDEN PNE : public MachineFunctionPass {
    static const char ID; // Pass identifcation, replacement for typeid
    PNE() : MachineFunctionPass((intptr_t)&ID) {}

    bool runOnMachineFunction(MachineFunction &Fn) {
      analyzePHINodes(Fn);

      bool Changed = false;

      // Eliminate PHI instructions by inserting copies into predecessor blocks.
      for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
        Changed |= EliminatePHINodes(Fn, *I);

      VRegPHIUseCount.clear();
      return Changed;
    }

    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.addPreserved<LiveVariables>();
      MachineFunctionPass::getAnalysisUsage(AU);
    }

  private:
    /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
    /// in predecessor basic blocks.
    ///
    bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
    void LowerAtomicPHINode(MachineBasicBlock &MBB,
                            MachineBasicBlock::iterator AfterPHIsIt);

    /// analyzePHINodes - Gather information about the PHI nodes in
    /// here. In particular, we want to map the number of uses of a virtual
    /// register which is used in a PHI node. We map that to the BB the
    /// vreg is coming from. This is used later to determine when the vreg
    /// is killed in the BB.
    ///
    void analyzePHINodes(const MachineFunction& Fn);

    typedef std::pair<const MachineBasicBlock*, unsigned> BBVRegPair;
    typedef std::map<BBVRegPair, unsigned> VRegPHIUse;

    VRegPHIUse VRegPHIUseCount;
  };

  const char PNE::ID = 0;
  RegisterPass<PNE> X("phi-node-elimination",
                      "Eliminate PHI nodes for register allocation");
}

const PassInfo *llvm::PHIEliminationID = X.getPassInfo();

/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
/// predecessor basic blocks.
///
bool PNE::EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB) {
  if (MBB.empty() || MBB.front().getOpcode() != TargetInstrInfo::PHI)
    return false;   // Quick exit for basic blocks without PHIs.

  // Get an iterator to the first instruction after the last PHI node (this may
  // also be the end of the basic block).
  MachineBasicBlock::iterator AfterPHIsIt = MBB.begin();
  while (AfterPHIsIt != MBB.end() &&
         AfterPHIsIt->getOpcode() == TargetInstrInfo::PHI)
    ++AfterPHIsIt;    // Skip over all of the PHI nodes...

  while (MBB.front().getOpcode() == TargetInstrInfo::PHI)
    LowerAtomicPHINode(MBB, AfterPHIsIt);

  return true;
}

/// InstructionUsesRegister - Return true if the specified machine instr has a
/// use of the specified register.
static bool InstructionUsesRegister(MachineInstr *MI, unsigned SrcReg) {
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i)
    if (MI->getOperand(i).isRegister() &&
        MI->getOperand(i).getReg() == SrcReg &&
        MI->getOperand(i).isUse())
      return true;
  return false;
}

/// LowerAtomicPHINode - Lower the PHI node at the top of the specified block,
/// under the assuption that it needs to be lowered in a way that supports
/// atomic execution of PHIs.  This lowering method is always correct all of the
/// time.
void PNE::LowerAtomicPHINode(MachineBasicBlock &MBB,
                             MachineBasicBlock::iterator AfterPHIsIt) {
  // Unlink the PHI node from the basic block, but don't delete the PHI yet.
  MachineInstr *MPhi = MBB.remove(MBB.begin());

  unsigned DestReg = MPhi->getOperand(0).getReg();

  // Create a new register for the incoming PHI arguments.
  MachineFunction &MF = *MBB.getParent();
  const TargetRegisterClass *RC = MF.getSSARegMap()->getRegClass(DestReg);
  unsigned IncomingReg = MF.getSSARegMap()->createVirtualRegister(RC);

  // Insert a register to register copy in the top of the current block (but
  // after any remaining phi nodes) which copies the new incoming register
  // into the phi node destination.
  //
  const MRegisterInfo *RegInfo = MF.getTarget().getRegisterInfo();
  RegInfo->copyRegToReg(MBB, AfterPHIsIt, DestReg, IncomingReg, RC);

  // Update live variable information if there is any...
  LiveVariables *LV = getAnalysisToUpdate<LiveVariables>();
  if (LV) {
    MachineInstr *PHICopy = prior(AfterPHIsIt);

    // Increment use count of the newly created virtual register.
    LV->getVarInfo(IncomingReg).NumUses++;

    // Add information to LiveVariables to know that the incoming value is
    // killed.  Note that because the value is defined in several places (once
    // each for each incoming block), the "def" block and instruction fields
    // for the VarInfo is not filled in.
    //
    LV->addVirtualRegisterKilled(IncomingReg, PHICopy);

    // Since we are going to be deleting the PHI node, if it is the last use
    // of any registers, or if the value itself is dead, we need to move this
    // information over to the new copy we just inserted.
    //
    LV->removeVirtualRegistersKilled(MPhi);

    // If the result is dead, update LV.
    if (LV->RegisterDefIsDead(MPhi, DestReg)) {
      LV->addVirtualRegisterDead(DestReg, PHICopy);
      LV->removeVirtualRegistersDead(MPhi);
    }
    
    // Realize that the destination register is defined by the PHI copy now, not
    // the PHI itself.
    LV->getVarInfo(DestReg).DefInst = PHICopy;
  }

  // Adjust the VRegPHIUseCount map to account for the removal of this PHI
  // node.
  for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
    --VRegPHIUseCount[BBVRegPair(
                        MPhi->getOperand(i + 1).getMachineBasicBlock(),
                        MPhi->getOperand(i).getReg())];

  // Now loop over all of the incoming arguments, changing them to copy into
  // the IncomingReg register in the corresponding predecessor basic block.
  //
  std::set<MachineBasicBlock*> MBBsInsertedInto;
  for (int i = MPhi->getNumOperands() - 1; i >= 2; i-=2) {
    unsigned SrcReg = MPhi->getOperand(i-1).getReg();
    assert(MRegisterInfo::isVirtualRegister(SrcReg) &&
           "Machine PHI Operands must all be virtual registers!");

    // Get the MachineBasicBlock equivalent of the BasicBlock that is the
    // source path the PHI.
    MachineBasicBlock &opBlock = *MPhi->getOperand(i).getMachineBasicBlock();

    // Check to make sure we haven't already emitted the copy for this block.
    // This can happen because PHI nodes may have multiple entries for the
    // same basic block.
    if (!MBBsInsertedInto.insert(&opBlock).second)
      continue;  // If the copy has already been emitted, we're done.
 
    // Get an iterator pointing to the first terminator in the block (or end()).
    // This is the point where we can insert a copy if we'd like to.
    MachineBasicBlock::iterator I = opBlock.getFirstTerminator();
    
    // Insert the copy.
    RegInfo->copyRegToReg(opBlock, I, IncomingReg, SrcReg, RC);

    // Now update live variable information if we have it.  Otherwise we're done
    if (!LV) continue;
    
    // We want to be able to insert a kill of the register if this PHI
    // (aka, the copy we just inserted) is the last use of the source
    // value.  Live variable analysis conservatively handles this by
    // saying that the value is live until the end of the block the PHI
    // entry lives in.  If the value really is dead at the PHI copy, there
    // will be no successor blocks which have the value live-in.
    //
    // Check to see if the copy is the last use, and if so, update the
    // live variables information so that it knows the copy source
    // instruction kills the incoming value.
    //
    LiveVariables::VarInfo &InRegVI = LV->getVarInfo(SrcReg);

    // Loop over all of the successors of the basic block, checking to see
    // if the value is either live in the block, or if it is killed in the
    // block.  Also check to see if this register is in use by another PHI
    // node which has not yet been eliminated.  If so, it will be killed
    // at an appropriate point later.
    //

    // Is it used by any PHI instructions in this block?
    bool ValueIsLive = VRegPHIUseCount[BBVRegPair(&opBlock, SrcReg)] != 0;

    std::vector<MachineBasicBlock*> OpSuccBlocks;
    
    // Otherwise, scan successors, including the BB the PHI node lives in.
    for (MachineBasicBlock::succ_iterator SI = opBlock.succ_begin(),
           E = opBlock.succ_end(); SI != E && !ValueIsLive; ++SI) {
      MachineBasicBlock *SuccMBB = *SI;

      // Is it alive in this successor?
      unsigned SuccIdx = SuccMBB->getNumber();
      if (SuccIdx < InRegVI.AliveBlocks.size() &&
          InRegVI.AliveBlocks[SuccIdx]) {
        ValueIsLive = true;
        break;
      }

      OpSuccBlocks.push_back(SuccMBB);
    }

    // Check to see if this value is live because there is a use in a successor
    // that kills it.
    if (!ValueIsLive) {
      switch (OpSuccBlocks.size()) {
      case 1: {
        MachineBasicBlock *MBB = OpSuccBlocks[0];
        for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i)
          if (InRegVI.Kills[i]->getParent() == MBB) {
            ValueIsLive = true;
            break;
          }
        break;
      }
      case 2: {
        MachineBasicBlock *MBB1 = OpSuccBlocks[0], *MBB2 = OpSuccBlocks[1];
        for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i)
          if (InRegVI.Kills[i]->getParent() == MBB1 || 
              InRegVI.Kills[i]->getParent() == MBB2) {
            ValueIsLive = true;
            break;
          }
        break;        
      }
      default:
        std::sort(OpSuccBlocks.begin(), OpSuccBlocks.end());
        for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i)
          if (std::binary_search(OpSuccBlocks.begin(), OpSuccBlocks.end(),
                                 InRegVI.Kills[i]->getParent())) {
            ValueIsLive = true;
            break;
          }
      }
    }        

    // Okay, if we now know that the value is not live out of the block,
    // we can add a kill marker in this block saying that it kills the incoming
    // value!
    if (!ValueIsLive) {
      // In our final twist, we have to decide which instruction kills the
      // register.  In most cases this is the copy, however, the first 
      // terminator instruction at the end of the block may also use the value.
      // In this case, we should mark *it* as being the killing block, not the
      // copy.
      bool FirstTerminatorUsesValue = false;
      if (I != opBlock.end()) {
        FirstTerminatorUsesValue = InstructionUsesRegister(I, SrcReg);
      
        // Check that no other terminators use values.
#ifndef NDEBUG
        for (MachineBasicBlock::iterator TI = next(I); TI != opBlock.end();
             ++TI) {
          assert(!InstructionUsesRegister(TI, SrcReg) &&
                 "Terminator instructions cannot use virtual registers unless"
                 "they are the first terminator in a block!");
        }
#endif
      }
      
      MachineBasicBlock::iterator KillInst;
      if (!FirstTerminatorUsesValue) 
        KillInst = prior(I);
      else
        KillInst = I;
      
      // Finally, mark it killed.
      LV->addVirtualRegisterKilled(SrcReg, KillInst);

      // This vreg no longer lives all of the way through opBlock.
      unsigned opBlockNum = opBlock.getNumber();
      if (opBlockNum < InRegVI.AliveBlocks.size())
        InRegVI.AliveBlocks[opBlockNum] = false;
    }
  }
    
  // Really delete the PHI instruction now!
  delete MPhi;
  ++NumAtomic;
}

/// analyzePHINodes - Gather information about the PHI nodes in here. In
/// particular, we want to map the number of uses of a virtual register which is
/// used in a PHI node. We map that to the BB the vreg is coming from. This is
/// used later to determine when the vreg is killed in the BB.
///
void PNE::analyzePHINodes(const MachineFunction& Fn) {
  for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end();
       I != E; ++I)
    for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
         BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI)
      for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
        ++VRegPHIUseCount[BBVRegPair(
                            BBI->getOperand(i + 1).getMachineBasicBlock(),
                            BBI->getOperand(i).getReg())];
}