summaryrefslogtreecommitdiff
path: root/lib/CodeGen/PHIElimination.cpp
blob: ceba842970d3005e474a3bec805546065b7643c9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
//===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass eliminates machine instruction PHI nodes by inserting copy
// instructions.  This destroys SSA information, but is the desired input for
// some register allocators.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "phielim"
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Compiler.h"
#include <algorithm>
#include <map>
using namespace llvm;

STATISTIC(NumAtomic, "Number of atomic phis lowered");

namespace {
  class VISIBILITY_HIDDEN PNE : public MachineFunctionPass {
    MachineRegisterInfo  *MRI; // Machine register information

  public:
    static char ID; // Pass identification, replacement for typeid
    PNE() : MachineFunctionPass((intptr_t)&ID) {}

    virtual bool runOnMachineFunction(MachineFunction &Fn);
    
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.addPreserved<LiveVariables>();
      AU.addPreservedID(MachineLoopInfoID);
      AU.addPreservedID(MachineDominatorsID);
      MachineFunctionPass::getAnalysisUsage(AU);
    }

  private:
    /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
    /// in predecessor basic blocks.
    ///
    bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
    void LowerAtomicPHINode(MachineBasicBlock &MBB,
                            MachineBasicBlock::iterator AfterPHIsIt);

    /// analyzePHINodes - Gather information about the PHI nodes in
    /// here. In particular, we want to map the number of uses of a virtual
    /// register which is used in a PHI node. We map that to the BB the
    /// vreg is coming from. This is used later to determine when the vreg
    /// is killed in the BB.
    ///
    void analyzePHINodes(const MachineFunction& Fn);

    typedef std::pair<const MachineBasicBlock*, unsigned> BBVRegPair;
    typedef std::map<BBVRegPair, unsigned> VRegPHIUse;

    VRegPHIUse VRegPHIUseCount;

    // Defs of PHI sources which are implicit_def.
    SmallPtrSet<MachineInstr*, 4> ImpDefs;
  };
}

char PNE::ID = 0;
static RegisterPass<PNE>
X("phi-node-elimination", "Eliminate PHI nodes for register allocation");

const PassInfo *const llvm::PHIEliminationID = &X;

bool PNE::runOnMachineFunction(MachineFunction &Fn) {
  MRI = &Fn.getRegInfo();

  analyzePHINodes(Fn);

  bool Changed = false;

  // Eliminate PHI instructions by inserting copies into predecessor blocks.
  for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
    Changed |= EliminatePHINodes(Fn, *I);

  // Remove dead IMPLICIT_DEF instructions.
  for (SmallPtrSet<MachineInstr*,4>::iterator I = ImpDefs.begin(),
         E = ImpDefs.end(); I != E; ++I) {
    MachineInstr *DefMI = *I;
    unsigned DefReg = DefMI->getOperand(0).getReg();
    if (MRI->use_empty(DefReg))
      DefMI->eraseFromParent();
  }

  ImpDefs.clear();
  VRegPHIUseCount.clear();
  return Changed;
}


/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
/// predecessor basic blocks.
///
bool PNE::EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB) {
  if (MBB.empty() || MBB.front().getOpcode() != TargetInstrInfo::PHI)
    return false;   // Quick exit for basic blocks without PHIs.

  // Get an iterator to the first instruction after the last PHI node (this may
  // also be the end of the basic block).
  MachineBasicBlock::iterator AfterPHIsIt = MBB.begin();
  while (AfterPHIsIt != MBB.end() &&
         AfterPHIsIt->getOpcode() == TargetInstrInfo::PHI)
    ++AfterPHIsIt;    // Skip over all of the PHI nodes...

  while (MBB.front().getOpcode() == TargetInstrInfo::PHI)
    LowerAtomicPHINode(MBB, AfterPHIsIt);

  return true;
}

/// isSourceDefinedByImplicitDef - Return true if all sources of the phi node
/// are implicit_def's.
static bool isSourceDefinedByImplicitDef(const MachineInstr *MPhi,
                                         const MachineRegisterInfo *MRI) {
  for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) {
    unsigned SrcReg = MPhi->getOperand(i).getReg();
    const MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
    if (!DefMI || DefMI->getOpcode() != TargetInstrInfo::IMPLICIT_DEF)
      return false;
  }
  return true;
}

/// LowerAtomicPHINode - Lower the PHI node at the top of the specified block,
/// under the assuption that it needs to be lowered in a way that supports
/// atomic execution of PHIs.  This lowering method is always correct all of the
/// time.
/// 
void PNE::LowerAtomicPHINode(MachineBasicBlock &MBB,
                             MachineBasicBlock::iterator AfterPHIsIt) {
  // Unlink the PHI node from the basic block, but don't delete the PHI yet.
  MachineInstr *MPhi = MBB.remove(MBB.begin());

  unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
  unsigned DestReg = MPhi->getOperand(0).getReg();
  bool isDead = MPhi->getOperand(0).isDead();

  // Create a new register for the incoming PHI arguments.
  MachineFunction &MF = *MBB.getParent();
  const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
  unsigned IncomingReg = 0;

  // Insert a register to register copy at the top of the current block (but
  // after any remaining phi nodes) which copies the new incoming register
  // into the phi node destination.
  const TargetInstrInfo *TII = MF.getTarget().getInstrInfo();
  if (isSourceDefinedByImplicitDef(MPhi, MRI))
    // If all sources of a PHI node are implicit_def, just emit an
    // implicit_def instead of a copy.
    BuildMI(MBB, AfterPHIsIt,
            TII->get(TargetInstrInfo::IMPLICIT_DEF), DestReg);
  else {
    IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
    TII->copyRegToReg(MBB, AfterPHIsIt, DestReg, IncomingReg, RC, RC);
  }

  // Update live variable information if there is any.
  LiveVariables *LV = getAnalysisToUpdate<LiveVariables>();
  if (LV) {
    MachineInstr *PHICopy = prior(AfterPHIsIt);

    if (IncomingReg) {
      // Increment use count of the newly created virtual register.
      LV->getVarInfo(IncomingReg).NumUses++;

      // Add information to LiveVariables to know that the incoming value is
      // killed.  Note that because the value is defined in several places (once
      // each for each incoming block), the "def" block and instruction fields
      // for the VarInfo is not filled in.
      LV->addVirtualRegisterKilled(IncomingReg, PHICopy);

      LV->getVarInfo(IncomingReg).UsedBlocks[MBB.getNumber()] = true;
    }

    // Since we are going to be deleting the PHI node, if it is the last use of
    // any registers, or if the value itself is dead, we need to move this
    // information over to the new copy we just inserted.
    LV->removeVirtualRegistersKilled(MPhi);

    // If the result is dead, update LV.
    if (isDead) {
      LV->addVirtualRegisterDead(DestReg, PHICopy);
      LV->removeVirtualRegisterDead(DestReg, MPhi);
    }
  }

  // Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
  for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
    --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i + 1).getMBB(),
                                 MPhi->getOperand(i).getReg())];

  // Now loop over all of the incoming arguments, changing them to copy into the
  // IncomingReg register in the corresponding predecessor basic block.
  SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
  for (int i = NumSrcs - 1; i >= 0; --i) {
    unsigned SrcReg = MPhi->getOperand(i*2+1).getReg();
    assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
           "Machine PHI Operands must all be virtual registers!");

    // If source is defined by an implicit def, there is no need to insert a
    // copy.
    MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
    if (DefMI->getOpcode() == TargetInstrInfo::IMPLICIT_DEF) {
      ImpDefs.insert(DefMI);
      continue;
    }

    // Get the MachineBasicBlock equivalent of the BasicBlock that is the source
    // path the PHI.
    MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();

    // Check to make sure we haven't already emitted the copy for this block.
    // This can happen because PHI nodes may have multiple entries for the same
    // basic block.
    if (!MBBsInsertedInto.insert(&opBlock))
      continue;  // If the copy has already been emitted, we're done.
 
    // Find a safe location to insert the copy, this may be the first terminator
    // in the block (or end()).
    MachineBasicBlock::iterator InsertPos = opBlock.getFirstTerminator();

    // Insert the copy.
    TII->copyRegToReg(opBlock, InsertPos, IncomingReg, SrcReg, RC, RC);

    // Now update live variable information if we have it.  Otherwise we're done
    if (!LV) continue;
    
    // We want to be able to insert a kill of the register if this PHI (aka, the
    // copy we just inserted) is the last use of the source value.  Live
    // variable analysis conservatively handles this by saying that the value is
    // live until the end of the block the PHI entry lives in.  If the value
    // really is dead at the PHI copy, there will be no successor blocks which
    // have the value live-in.
    //
    // Check to see if the copy is the last use, and if so, update the live
    // variables information so that it knows the copy source instruction kills
    // the incoming value.
    LiveVariables::VarInfo &InRegVI = LV->getVarInfo(SrcReg);
    InRegVI.UsedBlocks[opBlock.getNumber()] = true;

    // Loop over all of the successors of the basic block, checking to see if
    // the value is either live in the block, or if it is killed in the block.
    // Also check to see if this register is in use by another PHI node which
    // has not yet been eliminated.  If so, it will be killed at an appropriate
    // point later.

    // Is it used by any PHI instructions in this block?
    bool ValueIsLive = VRegPHIUseCount[BBVRegPair(&opBlock, SrcReg)] != 0;

    std::vector<MachineBasicBlock*> OpSuccBlocks;
    
    // Otherwise, scan successors, including the BB the PHI node lives in.
    for (MachineBasicBlock::succ_iterator SI = opBlock.succ_begin(),
           E = opBlock.succ_end(); SI != E && !ValueIsLive; ++SI) {
      MachineBasicBlock *SuccMBB = *SI;

      // Is it alive in this successor?
      unsigned SuccIdx = SuccMBB->getNumber();
      if (SuccIdx < InRegVI.AliveBlocks.size() &&
          InRegVI.AliveBlocks[SuccIdx]) {
        ValueIsLive = true;
        break;
      }

      OpSuccBlocks.push_back(SuccMBB);
    }

    // Check to see if this value is live because there is a use in a successor
    // that kills it.
    if (!ValueIsLive) {
      switch (OpSuccBlocks.size()) {
      case 1: {
        MachineBasicBlock *MBB = OpSuccBlocks[0];
        for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i)
          if (InRegVI.Kills[i]->getParent() == MBB) {
            ValueIsLive = true;
            break;
          }
        break;
      }
      case 2: {
        MachineBasicBlock *MBB1 = OpSuccBlocks[0], *MBB2 = OpSuccBlocks[1];
        for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i)
          if (InRegVI.Kills[i]->getParent() == MBB1 || 
              InRegVI.Kills[i]->getParent() == MBB2) {
            ValueIsLive = true;
            break;
          }
        break;        
      }
      default:
        std::sort(OpSuccBlocks.begin(), OpSuccBlocks.end());
        for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i)
          if (std::binary_search(OpSuccBlocks.begin(), OpSuccBlocks.end(),
                                 InRegVI.Kills[i]->getParent())) {
            ValueIsLive = true;
            break;
          }
      }
    }        

    // Okay, if we now know that the value is not live out of the block, we can
    // add a kill marker in this block saying that it kills the incoming value!
    if (!ValueIsLive) {
      // In our final twist, we have to decide which instruction kills the
      // register.  In most cases this is the copy, however, the first
      // terminator instruction at the end of the block may also use the value.
      // In this case, we should mark *it* as being the killing block, not the
      // copy.
      MachineBasicBlock::iterator KillInst = prior(InsertPos);
      MachineBasicBlock::iterator Term = opBlock.getFirstTerminator();
      if (Term != opBlock.end()) {
        if (Term->readsRegister(SrcReg))
          KillInst = Term;
      
        // Check that no other terminators use values.
#ifndef NDEBUG
        for (MachineBasicBlock::iterator TI = next(Term); TI != opBlock.end();
             ++TI) {
          assert(!TI->readsRegister(SrcReg) &&
                 "Terminator instructions cannot use virtual registers unless"
                 "they are the first terminator in a block!");
        }
#endif
      }
      
      // Finally, mark it killed.
      LV->addVirtualRegisterKilled(SrcReg, KillInst);

      // This vreg no longer lives all of the way through opBlock.
      unsigned opBlockNum = opBlock.getNumber();
      if (opBlockNum < InRegVI.AliveBlocks.size())
        InRegVI.AliveBlocks[opBlockNum] = false;
    }
  }
    
  // Really delete the PHI instruction now!
  MF.DeleteMachineInstr(MPhi);
  ++NumAtomic;
}

/// analyzePHINodes - Gather information about the PHI nodes in here. In
/// particular, we want to map the number of uses of a virtual register which is
/// used in a PHI node. We map that to the BB the vreg is coming from. This is
/// used later to determine when the vreg is killed in the BB.
///
void PNE::analyzePHINodes(const MachineFunction& Fn) {
  for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end();
       I != E; ++I)
    for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
         BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI)
      for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
        ++VRegPHIUseCount[BBVRegPair(BBI->getOperand(i + 1).getMBB(),
                                     BBI->getOperand(i).getReg())];
}