summaryrefslogtreecommitdiff
path: root/lib/CodeGen/PHIElimination.cpp
blob: 4df9a92bb459e0f82863e4fd44e3b00e23177ed6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
//===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===//
// 
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
// 
//===----------------------------------------------------------------------===//
//
// This pass eliminates machine instruction PHI nodes by inserting copy
// instructions.  This destroys SSA information, but is the desired input for
// some register allocators.
//
//===----------------------------------------------------------------------===//

#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "Support/DenseMap.h"
#include "Support/STLExtras.h"
using namespace llvm;

namespace {
  struct PNE : public MachineFunctionPass {
    bool runOnMachineFunction(MachineFunction &Fn) {
      bool Changed = false;

      // Eliminate PHI instructions by inserting copies into predecessor blocks.
      //
      for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
	Changed |= EliminatePHINodes(Fn, *I);

      //std::cerr << "AFTER PHI NODE ELIM:\n";
      //Fn.dump();
      return Changed;
    }

    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.addPreserved<LiveVariables>();
      MachineFunctionPass::getAnalysisUsage(AU);
    }

  private:
    /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
    /// in predecessor basic blocks.
    ///
    bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
  };

  RegisterPass<PNE> X("phi-node-elimination",
		      "Eliminate PHI nodes for register allocation");
}


const PassInfo *llvm::PHIEliminationID = X.getPassInfo();

/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
/// predecessor basic blocks.
///
bool PNE::EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB) {
  if (MBB.empty() || MBB.front().getOpcode() != TargetInstrInfo::PHI)
    return false;   // Quick exit for normal case...

  LiveVariables *LV = getAnalysisToUpdate<LiveVariables>();
  const TargetInstrInfo &MII = *MF.getTarget().getInstrInfo();
  const MRegisterInfo *RegInfo = MF.getTarget().getRegisterInfo();

  // VRegPHIUseCount - Keep track of the number of times each virtual register
  // is used by PHI nodes in successors of this block.
  DenseMap<unsigned, VirtReg2IndexFunctor> VRegPHIUseCount;
  VRegPHIUseCount.grow(MF.getSSARegMap()->getLastVirtReg());

  unsigned BBIsSuccOfPreds = 0;  // Number of times MBB is a succ of preds
  for (MachineBasicBlock::pred_iterator PI = MBB.pred_begin(),
         E = MBB.pred_end(); PI != E; ++PI)
    for (MachineBasicBlock::succ_iterator SI = (*PI)->succ_begin(),
           E = (*PI)->succ_end(); SI != E; ++SI) {
    BBIsSuccOfPreds += *SI == &MBB;
    for (MachineBasicBlock::iterator BBI = (*SI)->begin(); BBI !=(*SI)->end() &&
           BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI)
      for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
        VRegPHIUseCount[BBI->getOperand(i).getReg()]++;
  }

  // Get an iterator to the first instruction after the last PHI node (this may
  // also be the end of the basic block).  While we are scanning the PHIs,
  // populate the VRegPHIUseCount map.
  MachineBasicBlock::iterator AfterPHIsIt = MBB.begin();
  while (AfterPHIsIt != MBB.end() &&
         AfterPHIsIt->getOpcode() == TargetInstrInfo::PHI)
    ++AfterPHIsIt;    // Skip over all of the PHI nodes...

  while (MBB.front().getOpcode() == TargetInstrInfo::PHI) {
    // Unlink the PHI node from the basic block, but don't delete the PHI yet.
    MachineInstr *MPhi = MBB.remove(MBB.begin());
    
    assert(MRegisterInfo::isVirtualRegister(MPhi->getOperand(0).getReg()) &&
           "PHI node doesn't write virt reg?");

    unsigned DestReg = MPhi->getOperand(0).getReg();
    
    // Create a new register for the incoming PHI arguments
    const TargetRegisterClass *RC = MF.getSSARegMap()->getRegClass(DestReg);
    unsigned IncomingReg = MF.getSSARegMap()->createVirtualRegister(RC);

    // Insert a register to register copy in the top of the current block (but
    // after any remaining phi nodes) which copies the new incoming register
    // into the phi node destination.
    //
    RegInfo->copyRegToReg(MBB, AfterPHIsIt, DestReg, IncomingReg, RC);
    
    // Update live variable information if there is any...
    if (LV) {
      MachineInstr *PHICopy = prior(AfterPHIsIt);

      // Add information to LiveVariables to know that the incoming value is
      // killed.  Note that because the value is defined in several places (once
      // each for each incoming block), the "def" block and instruction fields
      // for the VarInfo is not filled in.
      //
      LV->addVirtualRegisterKilled(IncomingReg, PHICopy);

      // Since we are going to be deleting the PHI node, if it is the last use
      // of any registers, or if the value itself is dead, we need to move this
      // information over to the new copy we just inserted.
      //
      std::pair<LiveVariables::killed_iterator, LiveVariables::killed_iterator> 
        RKs = LV->killed_range(MPhi);
      std::vector<std::pair<MachineInstr*, unsigned> > Range;
      if (RKs.first != RKs.second) // Delete the range.
        LV->removeVirtualRegistersKilled(RKs.first, RKs.second);

      RKs = LV->dead_range(MPhi);
      if (RKs.first != RKs.second) {
        // Works as above...
        Range.assign(RKs.first, RKs.second);
        LV->removeVirtualRegistersDead(RKs.first, RKs.second);
        for (unsigned i = 0, e = Range.size(); i != e; ++i)
          LV->addVirtualRegisterDead(Range[i].second, PHICopy);
      }
    }

    // Adjust the VRegPHIUseCount map to account for the removal of this PHI
    // node.
    for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
      VRegPHIUseCount[MPhi->getOperand(i).getReg()] -= BBIsSuccOfPreds;

    // Now loop over all of the incoming arguments, changing them to copy into
    // the IncomingReg register in the corresponding predecessor basic block.
    //
    for (int i = MPhi->getNumOperands() - 1; i >= 2; i-=2) {
      MachineOperand &opVal = MPhi->getOperand(i-1);
      
      // Get the MachineBasicBlock equivalent of the BasicBlock that is the
      // source path the PHI.
      MachineBasicBlock &opBlock = *MPhi->getOperand(i).getMachineBasicBlock();

      MachineBasicBlock::iterator I = opBlock.getFirstTerminator();
      
      // Check to make sure we haven't already emitted the copy for this block.
      // This can happen because PHI nodes may have multiple entries for the
      // same basic block.  It doesn't matter which entry we use though, because
      // all incoming values are guaranteed to be the same for a particular bb.
      //
      // If we emitted a copy for this basic block already, it will be right
      // where we want to insert one now.  Just check for a definition of the
      // register we are interested in!
      //
      bool HaveNotEmitted = true;
      
      if (I != opBlock.begin()) {
        MachineBasicBlock::iterator PrevInst = prior(I);
        for (unsigned i = 0, e = PrevInst->getNumOperands(); i != e; ++i) {
          MachineOperand &MO = PrevInst->getOperand(i);
          if (MO.isRegister() && MO.getReg() == IncomingReg)
            if (MO.isDef()) {
              HaveNotEmitted = false;
              break;
            }             
        }
      }

      if (HaveNotEmitted) { // If the copy has not already been emitted, do it.
        assert(MRegisterInfo::isVirtualRegister(opVal.getReg()) &&
               "Machine PHI Operands must all be virtual registers!");
        unsigned SrcReg = opVal.getReg();
        RegInfo->copyRegToReg(opBlock, I, IncomingReg, SrcReg, RC);

        // Now update live variable information if we have it.
        if (LV) {
          // We want to be able to insert a kill of the register if this PHI
          // (aka, the copy we just inserted) is the last use of the source
          // value.  Live variable analysis conservatively handles this by
          // saying that the value is live until the end of the block the PHI
          // entry lives in.  If the value really is dead at the PHI copy, there
          // will be no successor blocks which have the value live-in.
          //
          // Check to see if the copy is the last use, and if so, update the
          // live variables information so that it knows the copy source
          // instruction kills the incoming value.
          //
          LiveVariables::VarInfo &InRegVI = LV->getVarInfo(SrcReg);

          // Loop over all of the successors of the basic block, checking to see
          // if the value is either live in the block, or if it is killed in the
          // block.  Also check to see if this register is in use by another PHI
          // node which has not yet been eliminated.  If so, it will be killed
          // at an appropriate point later.
          //
          bool ValueIsLive = false;
          for (MachineBasicBlock::succ_iterator SI = opBlock.succ_begin(),
                 E = opBlock.succ_end(); SI != E && !ValueIsLive; ++SI) {
            MachineBasicBlock *SuccMBB = *SI;
            
            // Is it alive in this successor?
            unsigned SuccIdx = SuccMBB->getNumber();
            if (SuccIdx < InRegVI.AliveBlocks.size() &&
                InRegVI.AliveBlocks[SuccIdx]) {
              ValueIsLive = true;
              break;
            }
            
            // Is it killed in this successor?
            for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i)
              if (InRegVI.Kills[i]->getParent() == SuccMBB) {
                ValueIsLive = true;
                break;
              }

            // Is it used by any PHI instructions in this block?
            if (!ValueIsLive)
              ValueIsLive = VRegPHIUseCount[SrcReg] != 0;
          }
          
          // Okay, if we now know that the value is not live out of the block,
          // we can add a kill marker to the copy we inserted saying that it
          // kills the incoming value!
          //
          if (!ValueIsLive) {
            MachineBasicBlock::iterator Prev = prior(I);
            LV->addVirtualRegisterKilled(SrcReg, Prev);

            // This vreg no longer lives all of the way through opBlock.
            unsigned opBlockNum = opBlock.getNumber();
            if (opBlockNum < InRegVI.AliveBlocks.size())
              InRegVI.AliveBlocks[opBlockNum] = false;
          }
        }
      }
    }
    
    // Really delete the PHI instruction now!
    delete MPhi;
  }
  return true;
}