summaryrefslogtreecommitdiff
path: root/lib/CodeGen/PostRASchedulerList.cpp
blob: 2f7c0118a05d92771e9e94b04a6e4b7884f9fbd7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
//===----- SchedulePostRAList.cpp - list scheduler ------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This implements a top-down list scheduler, using standard algorithms.
// The basic approach uses a priority queue of available nodes to schedule.
// One at a time, nodes are taken from the priority queue (thus in priority
// order), checked for legality to schedule, and emitted if legal.
//
// Nodes may not be legal to schedule either due to structural hazards (e.g.
// pipeline or resource constraints) or because an input to the instruction has
// not completed execution.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "post-RA-sched"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/ScheduleDAGInstrs.h"
#include "llvm/CodeGen/LatencyPriorityQueue.h"
#include "llvm/CodeGen/SchedulerRegistry.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SmallVector.h"
#include <map>
#include <climits>
using namespace llvm;

STATISTIC(NumStalls, "Number of pipeline stalls");

static cl::opt<bool>
EnableAntiDepBreaking("break-anti-dependencies",
                      cl::desc("Break scheduling anti-dependencies"),
                      cl::init(false));

namespace {
  class VISIBILITY_HIDDEN PostRAScheduler : public MachineFunctionPass {
  public:
    static char ID;
    PostRAScheduler() : MachineFunctionPass(&ID) {}

    const char *getPassName() const {
      return "Post RA top-down list latency scheduler";
    }

    bool runOnMachineFunction(MachineFunction &Fn);
  };
  char PostRAScheduler::ID = 0;

  class VISIBILITY_HIDDEN SchedulePostRATDList : public ScheduleDAGInstrs {
    /// AvailableQueue - The priority queue to use for the available SUnits.
    ///
    LatencyPriorityQueue AvailableQueue;
  
    /// PendingQueue - This contains all of the instructions whose operands have
    /// been issued, but their results are not ready yet (due to the latency of
    /// the operation).  Once the operands becomes available, the instruction is
    /// added to the AvailableQueue.
    std::vector<SUnit*> PendingQueue;

    /// Topo - A topological ordering for SUnits.
    ScheduleDAGTopologicalSort Topo;

  public:
    SchedulePostRATDList(MachineBasicBlock *mbb, const TargetMachine &tm)
      : ScheduleDAGInstrs(mbb, tm), Topo(SUnits) {}

    void Schedule();

  private:
    void ReleaseSucc(SUnit *SU, SDep *SuccEdge);
    void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
    void ListScheduleTopDown();
    bool BreakAntiDependencies();
  };
}

bool PostRAScheduler::runOnMachineFunction(MachineFunction &Fn) {
  DOUT << "PostRAScheduler\n";

  // Loop over all of the basic blocks
  for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
       MBB != MBBe; ++MBB) {

    SchedulePostRATDList Scheduler(MBB, Fn.getTarget());

    Scheduler.Run();

    Scheduler.EmitSchedule();
  }

  return true;
}
  
/// Schedule - Schedule the DAG using list scheduling.
void SchedulePostRATDList::Schedule() {
  DOUT << "********** List Scheduling **********\n";
  
  // Build scheduling units.
  BuildSchedUnits();

  if (EnableAntiDepBreaking) {
    if (BreakAntiDependencies()) {
      // We made changes. Update the dependency graph.
      // Theoretically we could update the graph in place:
      // When a live range is changed to use a different register, remove
      // the def's anti-dependence *and* output-dependence edges due to
      // that register, and add new anti-dependence and output-dependence
      // edges based on the next live range of the register.
      SUnits.clear();
      BuildSchedUnits();
    }
  }

  AvailableQueue.initNodes(SUnits);

  ListScheduleTopDown();
  
  AvailableQueue.releaseState();
}

/// getInstrOperandRegClass - Return register class of the operand of an
/// instruction of the specified TargetInstrDesc.
static const TargetRegisterClass*
getInstrOperandRegClass(const TargetRegisterInfo *TRI,
                        const TargetInstrInfo *TII, const TargetInstrDesc &II,
                        unsigned Op) {
  if (Op >= II.getNumOperands())
    return NULL;
  if (II.OpInfo[Op].isLookupPtrRegClass())
    return TII->getPointerRegClass();
  return TRI->getRegClass(II.OpInfo[Op].RegClass);
}

/// BreakAntiDependencies - Identifiy anti-dependencies along the critical path
/// of the ScheduleDAG and break them by renaming registers.
///
bool SchedulePostRATDList::BreakAntiDependencies() {
  // The code below assumes that there is at least one instruction,
  // so just duck out immediately if the block is empty.
  if (BB->empty()) return false;

  Topo.InitDAGTopologicalSorting();

  // Compute a critical path for the DAG.
  SUnit *Max = 0;
  std::vector<SDep *> CriticalPath(SUnits.size());
  for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(),
       E = Topo.end(); I != E; ++I) {
    SUnit *SU = &SUnits[*I];
    for (SUnit::pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
         P != PE; ++P) {
      SUnit *PredSU = P->getSUnit();
      // This assumes that there's no delay for reusing registers.
      unsigned PredLatency = P->getLatency();
      unsigned PredTotalLatency = PredSU->CycleBound + PredLatency;
      if (SU->CycleBound < PredTotalLatency ||
          (SU->CycleBound == PredTotalLatency &&
           P->getKind() == SDep::Anti)) {
        SU->CycleBound = PredTotalLatency;
        CriticalPath[*I] = &*P;
      }
    }
    // Keep track of the node at the end of the critical path.
    if (!Max || SU->CycleBound + SU->Latency > Max->CycleBound + Max->Latency)
      Max = SU;
  }

  DOUT << "Critical path has total latency "
       << (Max ? Max->CycleBound + Max->Latency : 0) << "\n";

  // Walk the critical path from the bottom up. Collect all anti-dependence
  // edges on the critical path. Skip anti-dependencies between SUnits that
  // are connected with other edges, since such units won't be able to be
  // scheduled past each other anyway.
  //
  // The heuristic is that edges on the critical path are more important to
  // break than other edges. And since there are a limited number of
  // registers, we don't want to waste them breaking edges that aren't
  // important.
  // 
  // TODO: Instructions with multiple defs could have multiple
  // anti-dependencies. The current code here only knows how to break one
  // edge per instruction. Note that we'd have to be able to break all of
  // the anti-dependencies in an instruction in order to be effective.
  BitVector AllocatableSet = TRI->getAllocatableSet(*MF);
  DenseMap<MachineInstr *, unsigned> CriticalAntiDeps;
  for (SUnit *SU = Max; CriticalPath[SU->NodeNum];
       SU = CriticalPath[SU->NodeNum]->getSUnit()) {
    SDep *Edge = CriticalPath[SU->NodeNum];
    SUnit *NextSU = Edge->getSUnit();
    // Only consider anti-dependence edges.
    if (Edge->getKind() != SDep::Anti)
      continue;
    unsigned AntiDepReg = Edge->getReg();
    assert(AntiDepReg != 0 && "Anti-dependence on reg0?");
    // Don't break anti-dependencies on non-allocatable registers.
    if (!AllocatableSet.test(AntiDepReg))
      continue;
    // If the SUnit has other dependencies on the SUnit that it
    // anti-depends on, don't bother breaking the anti-dependency.
    // Also, if there are dependencies on other SUnits with the
    // same register as the anti-dependency, don't attempt to
    // break it.
    for (SUnit::pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
         P != PE; ++P)
      if (P->getSUnit() == NextSU ?
            (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) :
            (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) {
        AntiDepReg = 0;
        break;
      }
    if (AntiDepReg != 0)
      CriticalAntiDeps[SU->getInstr()] = AntiDepReg;
  }

  // For live regs that are only used in one register class in a live range,
  // the register class. If the register is not live, the corresponding value
  // is null. If the register is live but used in multiple register classes,
  // the corresponding value is -1 casted to a pointer.
  const TargetRegisterClass *
    Classes[TargetRegisterInfo::FirstVirtualRegister] = {};

  // Map registers to all their references within a live range.
  std::multimap<unsigned, MachineOperand *> RegRefs;

  // The index of the most recent kill (proceding bottom-up), or -1 if
  // the register is not live.
  unsigned KillIndices[TargetRegisterInfo::FirstVirtualRegister];
  std::fill(KillIndices, array_endof(KillIndices), -1);
  // The index of the most recent def (proceding bottom up), or -1 if
  // the register is live.
  unsigned DefIndices[TargetRegisterInfo::FirstVirtualRegister];
  std::fill(DefIndices, array_endof(DefIndices), BB->size());

  // Determine the live-out physregs for this block.
  if (!BB->empty() && BB->back().getDesc().isReturn())
    // In a return block, examine the function live-out regs.
    for (MachineRegisterInfo::liveout_iterator I = MRI.liveout_begin(),
         E = MRI.liveout_end(); I != E; ++I) {
      unsigned Reg = *I;
      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
      KillIndices[Reg] = BB->size();
      DefIndices[Reg] = -1;
      // Repeat, for all aliases.
      for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
        unsigned AliasReg = *Alias;
        Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
        KillIndices[AliasReg] = BB->size();
        DefIndices[AliasReg] = -1;
      }
    }
  else
    // In a non-return block, examine the live-in regs of all successors.
    for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
         SE = BB->succ_end(); SI != SE; ++SI) 
      for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
           E = (*SI)->livein_end(); I != E; ++I) {
        unsigned Reg = *I;
        Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
        KillIndices[Reg] = BB->size();
        DefIndices[Reg] = -1;
        // Repeat, for all aliases.
        for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
          unsigned AliasReg = *Alias;
          Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
          KillIndices[AliasReg] = BB->size();
          DefIndices[AliasReg] = -1;
        }
      }

  // Consider callee-saved registers as live-out, since we're running after
  // prologue/epilogue insertion so there's no way to add additional
  // saved registers.
  //
  // TODO: If the callee saves and restores these, then we can potentially
  // use them between the save and the restore. To do that, we could scan
  // the exit blocks to see which of these registers are defined.
  // Alternatively, calle-saved registers that aren't saved and restored
  // could be marked live-in in every block.
  for (const unsigned *I = TRI->getCalleeSavedRegs(); *I; ++I) {
    unsigned Reg = *I;
    Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
    KillIndices[Reg] = BB->size();
    DefIndices[Reg] = -1;
    // Repeat, for all aliases.
    for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
      unsigned AliasReg = *Alias;
      Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
      KillIndices[AliasReg] = BB->size();
      DefIndices[AliasReg] = -1;
    }
  }

  // Consider this pattern:
  //   A = ...
  //   ... = A
  //   A = ...
  //   ... = A
  //   A = ...
  //   ... = A
  //   A = ...
  //   ... = A
  // There are three anti-dependencies here, and without special care,
  // we'd break all of them using the same register:
  //   A = ...
  //   ... = A
  //   B = ...
  //   ... = B
  //   B = ...
  //   ... = B
  //   B = ...
  //   ... = B
  // because at each anti-dependence, B is the first register that
  // isn't A which is free.  This re-introduces anti-dependencies
  // at all but one of the original anti-dependencies that we were
  // trying to break.  To avoid this, keep track of the most recent
  // register that each register was replaced with, avoid avoid
  // using it to repair an anti-dependence on the same register.
  // This lets us produce this:
  //   A = ...
  //   ... = A
  //   B = ...
  //   ... = B
  //   C = ...
  //   ... = C
  //   B = ...
  //   ... = B
  // This still has an anti-dependence on B, but at least it isn't on the
  // original critical path.
  //
  // TODO: If we tracked more than one register here, we could potentially
  // fix that remaining critical edge too. This is a little more involved,
  // because unlike the most recent register, less recent registers should
  // still be considered, though only if no other registers are available.
  unsigned LastNewReg[TargetRegisterInfo::FirstVirtualRegister] = {};

  // Attempt to break anti-dependence edges on the critical path. Walk the
  // instructions from the bottom up, tracking information about liveness
  // as we go to help determine which registers are available.
  bool Changed = false;
  unsigned Count = BB->size() - 1;
  for (MachineBasicBlock::reverse_iterator I = BB->rbegin(), E = BB->rend();
       I != E; ++I, --Count) {
    MachineInstr *MI = &*I;

    // After regalloc, IMPLICIT_DEF instructions aren't safe to treat as
    // dependence-breaking. In the case of an INSERT_SUBREG, the IMPLICIT_DEF
    // is left behind appearing to clobber the super-register, while the
    // subregister needs to remain live. So we just ignore them.
    if (MI->getOpcode() == TargetInstrInfo::IMPLICIT_DEF)
      continue;

    // Check if this instruction has an anti-dependence that we're
    // interested in.
    DenseMap<MachineInstr *, unsigned>::iterator C = CriticalAntiDeps.find(MI);
    unsigned AntiDepReg = C != CriticalAntiDeps.end() ?
      C->second : 0;

    // Scan the register operands for this instruction and update
    // Classes and RegRefs.
    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
      MachineOperand &MO = MI->getOperand(i);
      if (!MO.isReg()) continue;
      unsigned Reg = MO.getReg();
      if (Reg == 0) continue;
      const TargetRegisterClass *NewRC =
        getInstrOperandRegClass(TRI, TII, MI->getDesc(), i);

      // If this instruction has a use of AntiDepReg, breaking it
      // is invalid.
      if (MO.isUse() && AntiDepReg == Reg)
        AntiDepReg = 0;

      // For now, only allow the register to be changed if its register
      // class is consistent across all uses.
      if (!Classes[Reg] && NewRC)
        Classes[Reg] = NewRC;
      else if (!NewRC || Classes[Reg] != NewRC)
        Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);

      // Now check for aliases.
      for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
        // If an alias of the reg is used during the live range, give up.
        // Note that this allows us to skip checking if AntiDepReg
        // overlaps with any of the aliases, among other things.
        unsigned AliasReg = *Alias;
        if (Classes[AliasReg]) {
          Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
          Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
        }
      }

      // If we're still willing to consider this register, note the reference.
      if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1))
        RegRefs.insert(std::make_pair(Reg, &MO));
    }

    // Determine AntiDepReg's register class, if it is live and is
    // consistently used within a single class.
    const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg] : 0;
    assert((AntiDepReg == 0 || RC != NULL) &&
           "Register should be live if it's causing an anti-dependence!");
    if (RC == reinterpret_cast<TargetRegisterClass *>(-1))
      AntiDepReg = 0;

    // Look for a suitable register to use to break the anti-depenence.
    //
    // TODO: Instead of picking the first free register, consider which might
    // be the best.
    if (AntiDepReg != 0) {
      for (TargetRegisterClass::iterator R = RC->allocation_order_begin(*MF),
           RE = RC->allocation_order_end(*MF); R != RE; ++R) {
        unsigned NewReg = *R;
        // Don't replace a register with itself.
        if (NewReg == AntiDepReg) continue;
        // Don't replace a register with one that was recently used to repair
        // an anti-dependence with this AntiDepReg, because that would
        // re-introduce that anti-dependence.
        if (NewReg == LastNewReg[AntiDepReg]) continue;
        // If NewReg is dead and NewReg's most recent def is not before
        // AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg.
        assert(((KillIndices[AntiDepReg] == -1u) != (DefIndices[AntiDepReg] == -1u)) &&
               "Kill and Def maps aren't consistent for AntiDepReg!");
        assert(((KillIndices[NewReg] == -1u) != (DefIndices[NewReg] == -1u)) &&
               "Kill and Def maps aren't consistent for NewReg!");
        if (KillIndices[NewReg] == -1u &&
            KillIndices[AntiDepReg] <= DefIndices[NewReg]) {
          DOUT << "Breaking anti-dependence edge on "
               << TRI->getName(AntiDepReg)
               << " with " << RegRefs.count(AntiDepReg) << " references"
               << " using " << TRI->getName(NewReg) << "!\n";

          // Update the references to the old register to refer to the new
          // register.
          std::pair<std::multimap<unsigned, MachineOperand *>::iterator,
                    std::multimap<unsigned, MachineOperand *>::iterator>
             Range = RegRefs.equal_range(AntiDepReg);
          for (std::multimap<unsigned, MachineOperand *>::iterator
               Q = Range.first, QE = Range.second; Q != QE; ++Q)
            Q->second->setReg(NewReg);

          // We just went back in time and modified history; the
          // liveness information for the anti-depenence reg is now
          // inconsistent. Set the state as if it were dead.
          Classes[NewReg] = Classes[AntiDepReg];
          DefIndices[NewReg] = DefIndices[AntiDepReg];
          KillIndices[NewReg] = KillIndices[AntiDepReg];

          Classes[AntiDepReg] = 0;
          DefIndices[AntiDepReg] = KillIndices[AntiDepReg];
          KillIndices[AntiDepReg] = -1;

          RegRefs.erase(AntiDepReg);
          Changed = true;
          LastNewReg[AntiDepReg] = NewReg;
          break;
        }
      }
    }

    // Update liveness.
    // Proceding upwards, registers that are defed but not used in this
    // instruction are now dead.
    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
      MachineOperand &MO = MI->getOperand(i);
      if (!MO.isReg()) continue;
      unsigned Reg = MO.getReg();
      if (Reg == 0) continue;
      if (!MO.isDef()) continue;
      // Ignore two-addr defs.
      if (MI->isRegReDefinedByTwoAddr(i)) continue;

      DefIndices[Reg] = Count;
      KillIndices[Reg] = -1;
      Classes[Reg] = 0;
      RegRefs.erase(Reg);
      // Repeat, for all subregs.
      for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
           *Subreg; ++Subreg) {
        unsigned SubregReg = *Subreg;
        DefIndices[SubregReg] = Count;
        KillIndices[SubregReg] = -1;
        Classes[SubregReg] = 0;
        RegRefs.erase(SubregReg);
      }
    }
    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
      MachineOperand &MO = MI->getOperand(i);
      if (!MO.isReg()) continue;
      unsigned Reg = MO.getReg();
      if (Reg == 0) continue;
      if (!MO.isUse()) continue;

      const TargetRegisterClass *NewRC =
        getInstrOperandRegClass(TRI, TII, MI->getDesc(), i);

      // For now, only allow the register to be changed if its register
      // class is consistent across all uses.
      if (!Classes[Reg] && NewRC)
        Classes[Reg] = NewRC;
      else if (!NewRC || Classes[Reg] != NewRC)
        Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);

      RegRefs.insert(std::make_pair(Reg, &MO));

      // It wasn't previously live but now it is, this is a kill.
      if (KillIndices[Reg] == -1u) {
        KillIndices[Reg] = Count;
        DefIndices[Reg] = -1u;
      }
      // Repeat, for all aliases.
      for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
        unsigned AliasReg = *Alias;
        if (KillIndices[AliasReg] == -1u) {
          KillIndices[AliasReg] = Count;
          DefIndices[AliasReg] = -1u;
        }
      }
    }
  }
  assert(Count == -1u && "Count mismatch!");

  return Changed;
}

//===----------------------------------------------------------------------===//
//  Top-Down Scheduling
//===----------------------------------------------------------------------===//

/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
/// the PendingQueue if the count reaches zero. Also update its cycle bound.
void SchedulePostRATDList::ReleaseSucc(SUnit *SU, SDep *SuccEdge) {
  SUnit *SuccSU = SuccEdge->getSUnit();
  --SuccSU->NumPredsLeft;
  
#ifndef NDEBUG
  if (SuccSU->NumPredsLeft < 0) {
    cerr << "*** Scheduling failed! ***\n";
    SuccSU->dump(this);
    cerr << " has been released too many times!\n";
    assert(0);
  }
#endif
  
  // Compute how many cycles it will be before this actually becomes
  // available.  This is the max of the start time of all predecessors plus
  // their latencies.
  unsigned PredDoneCycle = SU->Cycle + SuccEdge->getLatency();
  SuccSU->CycleBound = std::max(SuccSU->CycleBound, PredDoneCycle);
  
  if (SuccSU->NumPredsLeft == 0) {
    PendingQueue.push_back(SuccSU);
  }
}

/// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
/// count of its successors. If a successor pending count is zero, add it to
/// the Available queue.
void SchedulePostRATDList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
  DOUT << "*** Scheduling [" << CurCycle << "]: ";
  DEBUG(SU->dump(this));
  
  Sequence.push_back(SU);
  SU->Cycle = CurCycle;

  // Top down: release successors.
  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
       I != E; ++I)
    ReleaseSucc(SU, &*I);

  SU->isScheduled = true;
  AvailableQueue.ScheduledNode(SU);
}

/// ListScheduleTopDown - The main loop of list scheduling for top-down
/// schedulers.
void SchedulePostRATDList::ListScheduleTopDown() {
  unsigned CurCycle = 0;

  // All leaves to Available queue.
  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
    // It is available if it has no predecessors.
    if (SUnits[i].Preds.empty()) {
      AvailableQueue.push(&SUnits[i]);
      SUnits[i].isAvailable = true;
    }
  }
  
  // While Available queue is not empty, grab the node with the highest
  // priority. If it is not ready put it back.  Schedule the node.
  Sequence.reserve(SUnits.size());
  while (!AvailableQueue.empty() || !PendingQueue.empty()) {
    // Check to see if any of the pending instructions are ready to issue.  If
    // so, add them to the available queue.
    for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
      if (PendingQueue[i]->CycleBound == CurCycle) {
        AvailableQueue.push(PendingQueue[i]);
        PendingQueue[i]->isAvailable = true;
        PendingQueue[i] = PendingQueue.back();
        PendingQueue.pop_back();
        --i; --e;
      } else {
        assert(PendingQueue[i]->CycleBound > CurCycle && "Non-positive latency?");
      }
    }
    
    // If there are no instructions available, don't try to issue anything.
    if (AvailableQueue.empty()) {
      ++CurCycle;
      continue;
    }

    SUnit *FoundSUnit = AvailableQueue.pop();
    
    // If we found a node to schedule, do it now.
    if (FoundSUnit) {
      ScheduleNodeTopDown(FoundSUnit, CurCycle);

      // If this is a pseudo-op node, we don't want to increment the current
      // cycle.
      if (FoundSUnit->Latency)  // Don't increment CurCycle for pseudo-ops!
        ++CurCycle;        
    } else {
      // Otherwise, we have a pipeline stall, but no other problem, just advance
      // the current cycle and try again.
      DOUT << "*** Advancing cycle, no work to do\n";
      ++NumStalls;
      ++CurCycle;
    }
  }

#ifndef NDEBUG
  VerifySchedule(/*isBottomUp=*/false);
#endif
}

//===----------------------------------------------------------------------===//
//                         Public Constructor Functions
//===----------------------------------------------------------------------===//

FunctionPass *llvm::createPostRAScheduler() {
  return new PostRAScheduler();
}