summaryrefslogtreecommitdiff
path: root/lib/CodeGen/RegAllocBasic.cpp
blob: 18a5a4545221afb46b64ecef83c998621c5809aa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
//===-- RegAllocBasic.cpp - basic register allocator ----------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the RABasic function pass, which provides a minimal
// implementation of the basic register allocator.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "regalloc"
#include "LiveIntervalUnion.h"
#include "RegAllocBase.h"
#include "RenderMachineFunction.h"
#include "Spiller.h"
#include "VirtRegMap.h"
#include "VirtRegRewriter.h"
#include "llvm/ADT/OwningPtr.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Function.h"
#include "llvm/PassAnalysisSupport.h"
#include "llvm/CodeGen/CalcSpillWeights.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/LiveStackAnalysis.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/RegAllocRegistry.h"
#include "llvm/CodeGen/RegisterCoalescer.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Target/TargetRegisterInfo.h"
#ifndef NDEBUG
#include "llvm/ADT/SparseBitVector.h"
#endif
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/Timer.h"

#include <cstdlib>

using namespace llvm;

STATISTIC(NumAssigned     , "Number of registers assigned");
STATISTIC(NumUnassigned   , "Number of registers unassigned");
STATISTIC(NumNewQueued    , "Number of new live ranges queued");

static RegisterRegAlloc basicRegAlloc("basic", "basic register allocator",
                                      createBasicRegisterAllocator);

// Temporary verification option until we can put verification inside
// MachineVerifier.
static cl::opt<bool, true>
VerifyRegAlloc("verify-regalloc", cl::location(RegAllocBase::VerifyEnabled),
               cl::desc("Verify during register allocation"));

const char *RegAllocBase::TimerGroupName = "Register Allocation";
bool RegAllocBase::VerifyEnabled = false;

namespace {
/// RABasic provides a minimal implementation of the basic register allocation
/// algorithm. It prioritizes live virtual registers by spill weight and spills
/// whenever a register is unavailable. This is not practical in production but
/// provides a useful baseline both for measuring other allocators and comparing
/// the speed of the basic algorithm against other styles of allocators.
class RABasic : public MachineFunctionPass, public RegAllocBase
{
  // context
  MachineFunction *MF;
  BitVector ReservedRegs;

  // analyses
  LiveStacks *LS;
  RenderMachineFunction *RMF;

  // state
  std::auto_ptr<Spiller> SpillerInstance;

public:
  RABasic();

  /// Return the pass name.
  virtual const char* getPassName() const {
    return "Basic Register Allocator";
  }

  /// RABasic analysis usage.
  virtual void getAnalysisUsage(AnalysisUsage &AU) const;

  virtual void releaseMemory();

  virtual Spiller &spiller() { return *SpillerInstance; }

  virtual float getPriority(LiveInterval *LI) { return LI->weight; }

  virtual unsigned selectOrSplit(LiveInterval &VirtReg,
                                 SmallVectorImpl<LiveInterval*> &SplitVRegs);

  /// Perform register allocation.
  virtual bool runOnMachineFunction(MachineFunction &mf);

  static char ID;
};

char RABasic::ID = 0;

} // end anonymous namespace

RABasic::RABasic(): MachineFunctionPass(ID) {
  initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
  initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
  initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry());
  initializeRegisterCoalescerAnalysisGroup(*PassRegistry::getPassRegistry());
  initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
  initializeLiveStacksPass(*PassRegistry::getPassRegistry());
  initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
  initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
  initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
  initializeRenderMachineFunctionPass(*PassRegistry::getPassRegistry());
}

void RABasic::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.setPreservesCFG();
  AU.addRequired<AliasAnalysis>();
  AU.addPreserved<AliasAnalysis>();
  AU.addRequired<LiveIntervals>();
  AU.addPreserved<SlotIndexes>();
  if (StrongPHIElim)
    AU.addRequiredID(StrongPHIEliminationID);
  AU.addRequiredTransitive<RegisterCoalescer>();
  AU.addRequired<CalculateSpillWeights>();
  AU.addRequired<LiveStacks>();
  AU.addPreserved<LiveStacks>();
  AU.addRequiredID(MachineDominatorsID);
  AU.addPreservedID(MachineDominatorsID);
  AU.addRequired<MachineLoopInfo>();
  AU.addPreserved<MachineLoopInfo>();
  AU.addRequired<VirtRegMap>();
  AU.addPreserved<VirtRegMap>();
  DEBUG(AU.addRequired<RenderMachineFunction>());
  MachineFunctionPass::getAnalysisUsage(AU);
}

void RABasic::releaseMemory() {
  SpillerInstance.reset(0);
  RegAllocBase::releaseMemory();
}

#ifndef NDEBUG
// Verify each LiveIntervalUnion.
void RegAllocBase::verify() {
  LiveVirtRegBitSet VisitedVRegs;
  OwningArrayPtr<LiveVirtRegBitSet>
    unionVRegs(new LiveVirtRegBitSet[PhysReg2LiveUnion.numRegs()]);

  // Verify disjoint unions.
  for (unsigned PhysReg = 0; PhysReg < PhysReg2LiveUnion.numRegs(); ++PhysReg) {
    DEBUG(PhysReg2LiveUnion[PhysReg].print(dbgs(), TRI));
    LiveVirtRegBitSet &VRegs = unionVRegs[PhysReg];
    PhysReg2LiveUnion[PhysReg].verify(VRegs);
    // Union + intersection test could be done efficiently in one pass, but
    // don't add a method to SparseBitVector unless we really need it.
    assert(!VisitedVRegs.intersects(VRegs) && "vreg in multiple unions");
    VisitedVRegs |= VRegs;
  }

  // Verify vreg coverage.
  for (LiveIntervals::iterator liItr = LIS->begin(), liEnd = LIS->end();
       liItr != liEnd; ++liItr) {
    unsigned reg = liItr->first;
    if (TargetRegisterInfo::isPhysicalRegister(reg)) continue;
    if (!VRM->hasPhys(reg)) continue; // spilled?
    unsigned PhysReg = VRM->getPhys(reg);
    if (!unionVRegs[PhysReg].test(reg)) {
      dbgs() << "LiveVirtReg " << reg << " not in union " <<
        TRI->getName(PhysReg) << "\n";
      llvm_unreachable("unallocated live vreg");
    }
  }
  // FIXME: I'm not sure how to verify spilled intervals.
}
#endif //!NDEBUG

//===----------------------------------------------------------------------===//
//                         RegAllocBase Implementation
//===----------------------------------------------------------------------===//

// Instantiate a LiveIntervalUnion for each physical register.
void RegAllocBase::LiveUnionArray::init(LiveIntervalUnion::Allocator &allocator,
                                        unsigned NRegs) {
  NumRegs = NRegs;
  Array =
    static_cast<LiveIntervalUnion*>(malloc(sizeof(LiveIntervalUnion)*NRegs));
  for (unsigned r = 0; r != NRegs; ++r)
    new(Array + r) LiveIntervalUnion(r, allocator);
}

void RegAllocBase::init(VirtRegMap &vrm, LiveIntervals &lis) {
  NamedRegionTimer T("Initialize", TimerGroupName, TimePassesIsEnabled);
  TRI = &vrm.getTargetRegInfo();
  MRI = &vrm.getRegInfo();
  VRM = &vrm;
  LIS = &lis;
  PhysReg2LiveUnion.init(UnionAllocator, TRI->getNumRegs());
  // Cache an interferece query for each physical reg
  Queries.reset(new LiveIntervalUnion::Query[PhysReg2LiveUnion.numRegs()]);
}

void RegAllocBase::LiveUnionArray::clear() {
  if (!Array)
    return;
  for (unsigned r = 0; r != NumRegs; ++r)
    Array[r].~LiveIntervalUnion();
  free(Array);
  NumRegs =  0;
  Array = 0;
}

void RegAllocBase::releaseMemory() {
  PhysReg2LiveUnion.clear();
}

// Visit all the live virtual registers. If they are already assigned to a
// physical register, unify them with the corresponding LiveIntervalUnion,
// otherwise push them on the priority queue for later assignment.
void RegAllocBase::
seedLiveVirtRegs(std::priority_queue<std::pair<float, unsigned> > &VirtRegQ) {
  for (LiveIntervals::iterator I = LIS->begin(), E = LIS->end(); I != E; ++I) {
    unsigned RegNum = I->first;
    LiveInterval &VirtReg = *I->second;
    if (TargetRegisterInfo::isPhysicalRegister(RegNum))
      PhysReg2LiveUnion[RegNum].unify(VirtReg);
    else
      VirtRegQ.push(std::make_pair(getPriority(&VirtReg), RegNum));
  }
}

void RegAllocBase::assign(LiveInterval &VirtReg, unsigned PhysReg) {
  DEBUG(dbgs() << "assigning " << PrintReg(VirtReg.reg, TRI)
               << " to " << PrintReg(PhysReg, TRI) << '\n');
  assert(!VRM->hasPhys(VirtReg.reg) && "Duplicate VirtReg assignment");
  VRM->assignVirt2Phys(VirtReg.reg, PhysReg);
  PhysReg2LiveUnion[PhysReg].unify(VirtReg);
  ++NumAssigned;
}

void RegAllocBase::unassign(LiveInterval &VirtReg, unsigned PhysReg) {
  DEBUG(dbgs() << "unassigning " << PrintReg(VirtReg.reg, TRI)
               << " from " << PrintReg(PhysReg, TRI) << '\n');
  assert(VRM->getPhys(VirtReg.reg) == PhysReg && "Inconsistent unassign");
  PhysReg2LiveUnion[PhysReg].extract(VirtReg);
  VRM->clearVirt(VirtReg.reg);
  ++NumUnassigned;
}

// Top-level driver to manage the queue of unassigned VirtRegs and call the
// selectOrSplit implementation.
void RegAllocBase::allocatePhysRegs() {

  // Push each vreg onto a queue or "precolor" by adding it to a physreg union.
  std::priority_queue<std::pair<float, unsigned> > VirtRegQ;
  seedLiveVirtRegs(VirtRegQ);

  // Continue assigning vregs one at a time to available physical registers.
  while (!VirtRegQ.empty()) {
    // Pop the highest priority vreg.
    LiveInterval &VirtReg = LIS->getInterval(VirtRegQ.top().second);
    VirtRegQ.pop();

    // selectOrSplit requests the allocator to return an available physical
    // register if possible and populate a list of new live intervals that
    // result from splitting.
    DEBUG(dbgs() << "\nselectOrSplit " << MRI->getRegClass(VirtReg.reg)->getName()
                 << ':' << VirtReg << '\n');
    typedef SmallVector<LiveInterval*, 4> VirtRegVec;
    VirtRegVec SplitVRegs;
    unsigned AvailablePhysReg = selectOrSplit(VirtReg, SplitVRegs);

    if (AvailablePhysReg)
      assign(VirtReg, AvailablePhysReg);

    for (VirtRegVec::iterator I = SplitVRegs.begin(), E = SplitVRegs.end();
         I != E; ++I) {
      LiveInterval* SplitVirtReg = *I;
      if (SplitVirtReg->empty()) continue;
      DEBUG(dbgs() << "queuing new interval: " << *SplitVirtReg << "\n");
      assert(TargetRegisterInfo::isVirtualRegister(SplitVirtReg->reg) &&
             "expect split value in virtual register");
      VirtRegQ.push(std::make_pair(getPriority(SplitVirtReg),
                                   SplitVirtReg->reg));
      ++NumNewQueued;
    }
  }
}

// Check if this live virtual register interferes with a physical register. If
// not, then check for interference on each register that aliases with the
// physical register. Return the interfering register.
unsigned RegAllocBase::checkPhysRegInterference(LiveInterval &VirtReg,
                                                unsigned PhysReg) {
  for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI)
    if (query(VirtReg, *AliasI).checkInterference())
      return *AliasI;
  return 0;
}

// Helper for spillInteferences() that spills all interfering vregs currently
// assigned to this physical register.
void RegAllocBase::spillReg(LiveInterval& VirtReg, unsigned PhysReg,
                            SmallVectorImpl<LiveInterval*> &SplitVRegs) {
  LiveIntervalUnion::Query &Q = query(VirtReg, PhysReg);
  assert(Q.seenAllInterferences() && "need collectInterferences()");
  const SmallVectorImpl<LiveInterval*> &PendingSpills = Q.interferingVRegs();

  for (SmallVectorImpl<LiveInterval*>::const_iterator I = PendingSpills.begin(),
         E = PendingSpills.end(); I != E; ++I) {
    LiveInterval &SpilledVReg = **I;
    DEBUG(dbgs() << "extracting from " <<
          TRI->getName(PhysReg) << " " << SpilledVReg << '\n');

    // Deallocate the interfering vreg by removing it from the union.
    // A LiveInterval instance may not be in a union during modification!
    unassign(SpilledVReg, PhysReg);

    // Spill the extracted interval.
    spiller().spill(&SpilledVReg, SplitVRegs, PendingSpills);
  }
  // After extracting segments, the query's results are invalid. But keep the
  // contents valid until we're done accessing pendingSpills.
  Q.clear();
}

// Spill or split all live virtual registers currently unified under PhysReg
// that interfere with VirtReg. The newly spilled or split live intervals are
// returned by appending them to SplitVRegs.
bool
RegAllocBase::spillInterferences(LiveInterval &VirtReg, unsigned PhysReg,
                                 SmallVectorImpl<LiveInterval*> &SplitVRegs) {
  // Record each interference and determine if all are spillable before mutating
  // either the union or live intervals.
  unsigned NumInterferences = 0;
  // Collect interferences assigned to any alias of the physical register.
  for (const unsigned *asI = TRI->getOverlaps(PhysReg); *asI; ++asI) {
    LiveIntervalUnion::Query &QAlias = query(VirtReg, *asI);
    NumInterferences += QAlias.collectInterferingVRegs();
    if (QAlias.seenUnspillableVReg()) {
      return false;
    }
  }
  DEBUG(dbgs() << "spilling " << TRI->getName(PhysReg) <<
        " interferences with " << VirtReg << "\n");
  assert(NumInterferences > 0 && "expect interference");

  // Spill each interfering vreg allocated to PhysReg or an alias.
  for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI)
    spillReg(VirtReg, *AliasI, SplitVRegs);
  return true;
}

// Add newly allocated physical registers to the MBB live in sets.
void RegAllocBase::addMBBLiveIns(MachineFunction *MF) {
  NamedRegionTimer T("MBB Live Ins", TimerGroupName, TimePassesIsEnabled);
  typedef SmallVector<MachineBasicBlock*, 8> MBBVec;
  MBBVec liveInMBBs;
  MachineBasicBlock &entryMBB = *MF->begin();

  for (unsigned PhysReg = 0; PhysReg < PhysReg2LiveUnion.numRegs(); ++PhysReg) {
    LiveIntervalUnion &LiveUnion = PhysReg2LiveUnion[PhysReg];
    if (LiveUnion.empty())
      continue;
    for (LiveIntervalUnion::SegmentIter SI = LiveUnion.begin(); SI.valid();
         ++SI) {

      // Find the set of basic blocks which this range is live into...
      liveInMBBs.clear();
      if (!LIS->findLiveInMBBs(SI.start(), SI.stop(), liveInMBBs)) continue;

      // And add the physreg for this interval to their live-in sets.
      for (MBBVec::iterator I = liveInMBBs.begin(), E = liveInMBBs.end();
           I != E; ++I) {
        MachineBasicBlock *MBB = *I;
        if (MBB == &entryMBB) continue;
        if (MBB->isLiveIn(PhysReg)) continue;
        MBB->addLiveIn(PhysReg);
      }
    }
  }
}


//===----------------------------------------------------------------------===//
//                         RABasic Implementation
//===----------------------------------------------------------------------===//

// Driver for the register assignment and splitting heuristics.
// Manages iteration over the LiveIntervalUnions.
//
// This is a minimal implementation of register assignment and splitting that
// spills whenever we run out of registers.
//
// selectOrSplit can only be called once per live virtual register. We then do a
// single interference test for each register the correct class until we find an
// available register. So, the number of interference tests in the worst case is
// |vregs| * |machineregs|. And since the number of interference tests is
// minimal, there is no value in caching them outside the scope of
// selectOrSplit().
unsigned RABasic::selectOrSplit(LiveInterval &VirtReg,
                                SmallVectorImpl<LiveInterval*> &SplitVRegs) {
  // Populate a list of physical register spill candidates.
  SmallVector<unsigned, 8> PhysRegSpillCands;

  // Check for an available register in this class.
  const TargetRegisterClass *TRC = MRI->getRegClass(VirtReg.reg);

  for (TargetRegisterClass::iterator I = TRC->allocation_order_begin(*MF),
         E = TRC->allocation_order_end(*MF);
       I != E; ++I) {

    unsigned PhysReg = *I;
    if (ReservedRegs.test(PhysReg)) continue;

    // Check interference and as a side effect, intialize queries for this
    // VirtReg and its aliases.
    unsigned interfReg = checkPhysRegInterference(VirtReg, PhysReg);
    if (interfReg == 0) {
      // Found an available register.
      return PhysReg;
    }
    LiveInterval *interferingVirtReg =
      Queries[interfReg].firstInterference().liveUnionPos().value();

    // The current VirtReg must either be spillable, or one of its interferences
    // must have less spill weight.
    if (interferingVirtReg->weight < VirtReg.weight ) {
      PhysRegSpillCands.push_back(PhysReg);
    }
  }
  // Try to spill another interfering reg with less spill weight.
  for (SmallVectorImpl<unsigned>::iterator PhysRegI = PhysRegSpillCands.begin(),
         PhysRegE = PhysRegSpillCands.end(); PhysRegI != PhysRegE; ++PhysRegI) {

    if (!spillInterferences(VirtReg, *PhysRegI, SplitVRegs)) continue;

    assert(checkPhysRegInterference(VirtReg, *PhysRegI) == 0 &&
           "Interference after spill.");
    // Tell the caller to allocate to this newly freed physical register.
    return *PhysRegI;
  }
  // No other spill candidates were found, so spill the current VirtReg.
  DEBUG(dbgs() << "spilling: " << VirtReg << '\n');
  SmallVector<LiveInterval*, 1> pendingSpills;

  spiller().spill(&VirtReg, SplitVRegs, pendingSpills);

  // The live virtual register requesting allocation was spilled, so tell
  // the caller not to allocate anything during this round.
  return 0;
}

bool RABasic::runOnMachineFunction(MachineFunction &mf) {
  DEBUG(dbgs() << "********** BASIC REGISTER ALLOCATION **********\n"
               << "********** Function: "
               << ((Value*)mf.getFunction())->getName() << '\n');

  MF = &mf;
  DEBUG(RMF = &getAnalysis<RenderMachineFunction>());

  RegAllocBase::init(getAnalysis<VirtRegMap>(), getAnalysis<LiveIntervals>());

  ReservedRegs = TRI->getReservedRegs(*MF);

  SpillerInstance.reset(createSpiller(*this, *MF, *VRM));

  allocatePhysRegs();

  addMBBLiveIns(MF);

  // Diagnostic output before rewriting
  DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << *VRM << "\n");

  // optional HTML output
  DEBUG(RMF->renderMachineFunction("After basic register allocation.", VRM));

  // FIXME: Verification currently must run before VirtRegRewriter. We should
  // make the rewriter a separate pass and override verifyAnalysis instead. When
  // that happens, verification naturally falls under VerifyMachineCode.
#ifndef NDEBUG
  if (VerifyEnabled) {
    // Verify accuracy of LiveIntervals. The standard machine code verifier
    // ensures that each LiveIntervals covers all uses of the virtual reg.

    // FIXME: MachineVerifier is badly broken when using the standard
    // spiller. Always use -spiller=inline with -verify-regalloc. Even with the
    // inline spiller, some tests fail to verify because the coalescer does not
    // always generate verifiable code.
    MF->verify(this, "In RABasic::verify");

    // Verify that LiveIntervals are partitioned into unions and disjoint within
    // the unions.
    verify();
  }
#endif // !NDEBUG

  // Run rewriter
  std::auto_ptr<VirtRegRewriter> rewriter(createVirtRegRewriter());
  rewriter->runOnMachineFunction(*MF, *VRM, LIS);

  // The pass output is in VirtRegMap. Release all the transient data.
  releaseMemory();

  return true;
}

FunctionPass* llvm::createBasicRegisterAllocator()
{
  return new RABasic();
}