summaryrefslogtreecommitdiff
path: root/lib/CodeGen/RegAllocGreedy.cpp
blob: 46cfbe7234b7a851814c28fff9a8068c31edbdbd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
//===-- RegAllocGreedy.cpp - greedy register allocator --------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the RAGreedy function pass for register allocation in
// optimized builds.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "regalloc"
#include "AllocationOrder.h"
#include "LiveIntervalUnion.h"
#include "RegAllocBase.h"
#include "Spiller.h"
#include "VirtRegMap.h"
#include "VirtRegRewriter.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Function.h"
#include "llvm/PassAnalysisSupport.h"
#include "llvm/CodeGen/CalcSpillWeights.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/LiveStackAnalysis.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/RegAllocRegistry.h"
#include "llvm/CodeGen/RegisterCoalescer.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/Timer.h"

using namespace llvm;

static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
                                       createGreedyRegisterAllocator);

namespace {
class RAGreedy : public MachineFunctionPass, public RegAllocBase {
  // context
  MachineFunction *MF;
  BitVector ReservedRegs;

  // analyses
  LiveStacks *LS;

  // state
  std::auto_ptr<Spiller> SpillerInstance;

public:
  RAGreedy();

  /// Return the pass name.
  virtual const char* getPassName() const {
    return "Greedy Register Allocator";
  }

  /// RAGreedy analysis usage.
  virtual void getAnalysisUsage(AnalysisUsage &AU) const;

  virtual void releaseMemory();

  virtual Spiller &spiller() { return *SpillerInstance; }

  virtual float getPriority(LiveInterval *LI);

  virtual unsigned selectOrSplit(LiveInterval &VirtReg,
                                 SmallVectorImpl<LiveInterval*> &SplitVRegs);

  /// Perform register allocation.
  virtual bool runOnMachineFunction(MachineFunction &mf);

  static char ID;

private:
  bool checkUncachedInterference(LiveInterval&, unsigned);
  LiveInterval *getSingleInterference(LiveInterval&, unsigned);
  bool reassignVReg(LiveInterval &InterferingVReg, unsigned OldPhysReg);
  bool reassignInterferences(LiveInterval &VirtReg, unsigned PhysReg);

  unsigned tryReassign(LiveInterval&, AllocationOrder&);
  unsigned trySplit(LiveInterval&, AllocationOrder&,
                    SmallVectorImpl<LiveInterval*>&);
};
} // end anonymous namespace

char RAGreedy::ID = 0;

FunctionPass* llvm::createGreedyRegisterAllocator() {
  return new RAGreedy();
}

RAGreedy::RAGreedy(): MachineFunctionPass(ID) {
  initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
  initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
  initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry());
  initializeRegisterCoalescerAnalysisGroup(*PassRegistry::getPassRegistry());
  initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
  initializeLiveStacksPass(*PassRegistry::getPassRegistry());
  initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
  initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
  initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
}

void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.setPreservesCFG();
  AU.addRequired<AliasAnalysis>();
  AU.addPreserved<AliasAnalysis>();
  AU.addRequired<LiveIntervals>();
  AU.addPreserved<SlotIndexes>();
  if (StrongPHIElim)
    AU.addRequiredID(StrongPHIEliminationID);
  AU.addRequiredTransitive<RegisterCoalescer>();
  AU.addRequired<CalculateSpillWeights>();
  AU.addRequired<LiveStacks>();
  AU.addPreserved<LiveStacks>();
  AU.addRequiredID(MachineDominatorsID);
  AU.addPreservedID(MachineDominatorsID);
  AU.addRequired<MachineLoopInfo>();
  AU.addPreserved<MachineLoopInfo>();
  AU.addRequired<VirtRegMap>();
  AU.addPreserved<VirtRegMap>();
  MachineFunctionPass::getAnalysisUsage(AU);
}

void RAGreedy::releaseMemory() {
  SpillerInstance.reset(0);
  RegAllocBase::releaseMemory();
}

float RAGreedy::getPriority(LiveInterval *LI) {
  float Priority = LI->weight;

  // Prioritize hinted registers so they are allocated first.
  std::pair<unsigned, unsigned> Hint;
  if (Hint.first || Hint.second) {
    // The hint can be target specific, a virtual register, or a physreg.
    Priority *= 2;

    // Prefer physreg hints above anything else.
    if (Hint.first == 0 && TargetRegisterInfo::isPhysicalRegister(Hint.second))
      Priority *= 2;
  }
  return Priority;
}

// Check interference without using the cache.
bool RAGreedy::checkUncachedInterference(LiveInterval &VirtReg,
                                         unsigned PhysReg) {
  LiveIntervalUnion::Query subQ(&VirtReg, &PhysReg2LiveUnion[PhysReg]);
  if (subQ.checkInterference())
      return true;
  for (const unsigned *AliasI = TRI->getAliasSet(PhysReg); *AliasI; ++AliasI) {
    subQ.init(&VirtReg, &PhysReg2LiveUnion[*AliasI]);
    if (subQ.checkInterference())
      return true;
  }
  return false;
}

/// getSingleInterference - Return the single interfering virtual register
/// assigned to PhysReg. Return 0 if more than one virtual register is
/// interfering.
LiveInterval *RAGreedy::getSingleInterference(LiveInterval &VirtReg,
                                              unsigned PhysReg) {
  LiveInterval *Interference = 0;

  // Check direct interferences.
  LiveIntervalUnion::Query &Q = query(VirtReg, PhysReg);
  if (Q.checkInterference()) {
    Q.collectInterferingVRegs(1);
    if (!Q.seenAllInterferences())
      return 0;
    Interference = Q.interferingVRegs().front();
  }

  // Check aliases.
  for (const unsigned *AliasI = TRI->getAliasSet(PhysReg); *AliasI; ++AliasI) {
    LiveIntervalUnion::Query &Q = query(VirtReg, *AliasI);
    if (Q.checkInterference()) {
      if (Interference)
        return 0;
      Q.collectInterferingVRegs(1);
      if (!Q.seenAllInterferences())
        return 0;
      Interference = Q.interferingVRegs().front();
    }
  }
  return Interference;
}

// Attempt to reassign this virtual register to a different physical register.
//
// FIXME: we are not yet caching these "second-level" interferences discovered
// in the sub-queries. These interferences can change with each call to
// selectOrSplit. However, we could implement a "may-interfere" cache that
// could be conservatively dirtied when we reassign or split.
//
// FIXME: This may result in a lot of alias queries. We could summarize alias
// live intervals in their parent register's live union, but it's messy.
bool RAGreedy::reassignVReg(LiveInterval &InterferingVReg,
                            unsigned WantedPhysReg) {
  assert(TargetRegisterInfo::isVirtualRegister(InterferingVReg.reg) &&
         "Can only reassign virtual registers");
  assert(TRI->regsOverlap(WantedPhysReg, VRM->getPhys(InterferingVReg.reg)) &&
         "inconsistent phys reg assigment");

  AllocationOrder Order(InterferingVReg.reg, *VRM, ReservedRegs);
  while (unsigned PhysReg = Order.next()) {
    // Don't reassign to a WantedPhysReg alias.
    if (TRI->regsOverlap(PhysReg, WantedPhysReg))
      continue;

    if (checkUncachedInterference(InterferingVReg, PhysReg))
      continue;

    // Reassign the interfering virtual reg to this physical reg.
    unsigned OldAssign = VRM->getPhys(InterferingVReg.reg);
    DEBUG(dbgs() << "reassigning: " << InterferingVReg << " from " <<
          TRI->getName(OldAssign) << " to " << TRI->getName(PhysReg) << '\n');
    PhysReg2LiveUnion[OldAssign].extract(InterferingVReg);
    VRM->clearVirt(InterferingVReg.reg);
    VRM->assignVirt2Phys(InterferingVReg.reg, PhysReg);
    PhysReg2LiveUnion[PhysReg].unify(InterferingVReg);

    return true;
  }
  return false;
}

/// reassignInterferences - Reassign all interferences to different physical
/// registers such that Virtreg can be assigned to PhysReg.
/// Currently this only works with a single interference.
/// @param  VirtReg Currently unassigned virtual register.
/// @param  PhysReg Physical register to be cleared.
/// @return True on success, false if nothing was changed.
bool RAGreedy::reassignInterferences(LiveInterval &VirtReg, unsigned PhysReg) {
  LiveInterval *InterferingVReg = getSingleInterference(VirtReg, PhysReg);
  if (!InterferingVReg)
    return false;
  if (TargetRegisterInfo::isPhysicalRegister(InterferingVReg->reg))
    return false;
  return reassignVReg(*InterferingVReg, PhysReg);
}

/// tryReassign - Try to reassign interferences to different physregs.
/// @param  VirtReg Currently unassigned virtual register.
/// @param  Order   Physregs to try.
/// @return         Physreg to assign VirtReg, or 0.
unsigned RAGreedy::tryReassign(LiveInterval &VirtReg, AllocationOrder &Order) {
  NamedRegionTimer T("Reassign", TimerGroupName, TimePassesIsEnabled);
  Order.rewind();
  while (unsigned PhysReg = Order.next())
    if (reassignInterferences(VirtReg, PhysReg))
      return PhysReg;
  return 0;
}

/// trySplit - Try to split VirtReg or one of its interferences, making it
/// assignable.
/// @return Physreg when VirtReg may be assigned and/or new SplitVRegs.
unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order,
                            SmallVectorImpl<LiveInterval*>&SplitVRegs) {
  NamedRegionTimer T("Splitter", TimerGroupName, TimePassesIsEnabled);
  return 0;
}

unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg,
                                SmallVectorImpl<LiveInterval*> &SplitVRegs) {
  // Populate a list of physical register spill candidates.
  SmallVector<unsigned, 8> PhysRegSpillCands;

  // Check for an available register in this class.
  AllocationOrder Order(VirtReg.reg, *VRM, ReservedRegs);
  while (unsigned PhysReg = Order.next()) {
    // Check interference and as a side effect, intialize queries for this
    // VirtReg and its aliases.
    unsigned InterfReg = checkPhysRegInterference(VirtReg, PhysReg);
    if (InterfReg == 0) {
      // Found an available register.
      return PhysReg;
    }
    assert(!VirtReg.empty() && "Empty VirtReg has interference");
    LiveInterval *InterferingVirtReg =
      Queries[InterfReg].firstInterference().liveUnionPos().value();

    // The current VirtReg must either be spillable, or one of its interferences
    // must have less spill weight.
    if (InterferingVirtReg->weight < VirtReg.weight )
      PhysRegSpillCands.push_back(PhysReg);
  }

  // Try to reassign interferences.
  if (unsigned PhysReg = tryReassign(VirtReg, Order))
    return PhysReg;

  // Try splitting VirtReg or interferences.
  unsigned PhysReg = trySplit(VirtReg, Order, SplitVRegs);
  if (PhysReg || !SplitVRegs.empty())
    return PhysReg;

  // Try to spill another interfering reg with less spill weight.
  NamedRegionTimer T("Spiller", TimerGroupName, TimePassesIsEnabled);
  //
  // FIXME: do this in two steps: (1) check for unspillable interferences while
  // accumulating spill weight; (2) spill the interferences with lowest
  // aggregate spill weight.
  for (SmallVectorImpl<unsigned>::iterator PhysRegI = PhysRegSpillCands.begin(),
         PhysRegE = PhysRegSpillCands.end(); PhysRegI != PhysRegE; ++PhysRegI) {

    if (!spillInterferences(VirtReg, *PhysRegI, SplitVRegs)) continue;

    assert(checkPhysRegInterference(VirtReg, *PhysRegI) == 0 &&
           "Interference after spill.");
    // Tell the caller to allocate to this newly freed physical register.
    return *PhysRegI;
  }

  // No other spill candidates were found, so spill the current VirtReg.
  DEBUG(dbgs() << "spilling: " << VirtReg << '\n');
  SmallVector<LiveInterval*, 1> pendingSpills;

  spiller().spill(&VirtReg, SplitVRegs, pendingSpills);

  // The live virtual register requesting allocation was spilled, so tell
  // the caller not to allocate anything during this round.
  return 0;
}

bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
  DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
               << "********** Function: "
               << ((Value*)mf.getFunction())->getName() << '\n');

  MF = &mf;
  RegAllocBase::init(getAnalysis<VirtRegMap>(), getAnalysis<LiveIntervals>());

  ReservedRegs = TRI->getReservedRegs(*MF);
  SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));
  allocatePhysRegs();
  addMBBLiveIns(MF);

  // Run rewriter
  {
    NamedRegionTimer T("Rewriter", TimerGroupName, TimePassesIsEnabled);
    std::auto_ptr<VirtRegRewriter> rewriter(createVirtRegRewriter());
    rewriter->runOnMachineFunction(*MF, *VRM, LIS);
  }

  // The pass output is in VirtRegMap. Release all the transient data.
  releaseMemory();

  return true;
}