summaryrefslogtreecommitdiff
path: root/lib/CodeGen/RegAllocGreedy.cpp
blob: 8677a3e257a5838ecbf9b522488ac98939604be8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
//===-- RegAllocGreedy.cpp - greedy register allocator --------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the RAGreedy function pass for register allocation in
// optimized builds.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "regalloc"
#include "AllocationOrder.h"
#include "InterferenceCache.h"
#include "LiveDebugVariables.h"
#include "LiveRangeEdit.h"
#include "RegAllocBase.h"
#include "Spiller.h"
#include "SpillPlacement.h"
#include "SplitKit.h"
#include "VirtRegMap.h"
#include "RegisterCoalescer.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Function.h"
#include "llvm/PassAnalysisSupport.h"
#include "llvm/CodeGen/CalcSpillWeights.h"
#include "llvm/CodeGen/EdgeBundles.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/LiveStackAnalysis.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineLoopRanges.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/RegAllocRegistry.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/Timer.h"

#include <queue>

using namespace llvm;

STATISTIC(NumGlobalSplits, "Number of split global live ranges");
STATISTIC(NumLocalSplits,  "Number of split local live ranges");
STATISTIC(NumEvicted,      "Number of interferences evicted");

static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
                                       createGreedyRegisterAllocator);

namespace {
class RAGreedy : public MachineFunctionPass,
                 public RegAllocBase,
                 private LiveRangeEdit::Delegate {

  // context
  MachineFunction *MF;

  // analyses
  SlotIndexes *Indexes;
  LiveStacks *LS;
  MachineDominatorTree *DomTree;
  MachineLoopInfo *Loops;
  MachineLoopRanges *LoopRanges;
  EdgeBundles *Bundles;
  SpillPlacement *SpillPlacer;
  LiveDebugVariables *DebugVars;

  // state
  std::auto_ptr<Spiller> SpillerInstance;
  std::priority_queue<std::pair<unsigned, unsigned> > Queue;
  unsigned NextCascade;

  // Live ranges pass through a number of stages as we try to allocate them.
  // Some of the stages may also create new live ranges:
  //
  // - Region splitting.
  // - Per-block splitting.
  // - Local splitting.
  // - Spilling.
  //
  // Ranges produced by one of the stages skip the previous stages when they are
  // dequeued. This improves performance because we can skip interference checks
  // that are unlikely to give any results. It also guarantees that the live
  // range splitting algorithm terminates, something that is otherwise hard to
  // ensure.
  enum LiveRangeStage {
    RS_New,      ///< Never seen before.
    RS_First,    ///< First time in the queue.
    RS_Second,   ///< Second time in the queue.
    RS_Global,   ///< Produced by global splitting.
    RS_Local,    ///< Produced by local splitting.
    RS_Spill     ///< Produced by spilling.
  };

  static const char *const StageName[];

  // RegInfo - Keep additional information about each live range.
  struct RegInfo {
    LiveRangeStage Stage;

    // Cascade - Eviction loop prevention. See canEvictInterference().
    unsigned Cascade;

    RegInfo() : Stage(RS_New), Cascade(0) {}
  };

  IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo;

  LiveRangeStage getStage(const LiveInterval &VirtReg) const {
    return ExtraRegInfo[VirtReg.reg].Stage;
  }

  void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) {
    ExtraRegInfo.resize(MRI->getNumVirtRegs());
    ExtraRegInfo[VirtReg.reg].Stage = Stage;
  }

  template<typename Iterator>
  void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) {
    ExtraRegInfo.resize(MRI->getNumVirtRegs());
    for (;Begin != End; ++Begin) {
      unsigned Reg = (*Begin)->reg;
      if (ExtraRegInfo[Reg].Stage == RS_New)
        ExtraRegInfo[Reg].Stage = NewStage;
    }
  }

  /// Cost of evicting interference.
  struct EvictionCost {
    unsigned BrokenHints; ///< Total number of broken hints.
    float MaxWeight;      ///< Maximum spill weight evicted.

    EvictionCost(unsigned B = 0) : BrokenHints(B), MaxWeight(0) {}

    bool operator<(const EvictionCost &O) const {
      if (BrokenHints != O.BrokenHints)
        return BrokenHints < O.BrokenHints;
      return MaxWeight < O.MaxWeight;
    }
  };

  // splitting state.
  std::auto_ptr<SplitAnalysis> SA;
  std::auto_ptr<SplitEditor> SE;

  /// Cached per-block interference maps
  InterferenceCache IntfCache;

  /// All basic blocks where the current register has uses.
  SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints;

  /// Global live range splitting candidate info.
  struct GlobalSplitCandidate {
    unsigned PhysReg;
    InterferenceCache::Cursor Intf;
    BitVector LiveBundles;
    SmallVector<unsigned, 8> ActiveBlocks;

    void reset(InterferenceCache &Cache, unsigned Reg) {
      PhysReg = Reg;
      Intf.setPhysReg(Cache, Reg);
      LiveBundles.clear();
      ActiveBlocks.clear();
    }
  };

  /// Candidate info for for each PhysReg in AllocationOrder.
  /// This vector never shrinks, but grows to the size of the largest register
  /// class.
  SmallVector<GlobalSplitCandidate, 32> GlobalCand;

public:
  RAGreedy();

  /// Return the pass name.
  virtual const char* getPassName() const {
    return "Greedy Register Allocator";
  }

  /// RAGreedy analysis usage.
  virtual void getAnalysisUsage(AnalysisUsage &AU) const;
  virtual void releaseMemory();
  virtual Spiller &spiller() { return *SpillerInstance; }
  virtual void enqueue(LiveInterval *LI);
  virtual LiveInterval *dequeue();
  virtual unsigned selectOrSplit(LiveInterval&,
                                 SmallVectorImpl<LiveInterval*>&);

  /// Perform register allocation.
  virtual bool runOnMachineFunction(MachineFunction &mf);

  static char ID;

private:
  void LRE_WillEraseInstruction(MachineInstr*);
  bool LRE_CanEraseVirtReg(unsigned);
  void LRE_WillShrinkVirtReg(unsigned);
  void LRE_DidCloneVirtReg(unsigned, unsigned);

  float calcSpillCost();
  bool addSplitConstraints(InterferenceCache::Cursor, float&);
  void addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>);
  void growRegion(GlobalSplitCandidate &Cand);
  float calcGlobalSplitCost(GlobalSplitCandidate&);
  void splitAroundRegion(LiveInterval&, GlobalSplitCandidate&,
                         SmallVectorImpl<LiveInterval*>&);
  void calcGapWeights(unsigned, SmallVectorImpl<float>&);
  bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool);
  bool canEvictInterference(LiveInterval&, unsigned, bool, EvictionCost&);
  void evictInterference(LiveInterval&, unsigned,
                         SmallVectorImpl<LiveInterval*>&);

  unsigned tryAssign(LiveInterval&, AllocationOrder&,
                     SmallVectorImpl<LiveInterval*>&);
  unsigned tryEvict(LiveInterval&, AllocationOrder&,
                    SmallVectorImpl<LiveInterval*>&, unsigned = ~0u);
  unsigned tryRegionSplit(LiveInterval&, AllocationOrder&,
                          SmallVectorImpl<LiveInterval*>&);
  unsigned tryLocalSplit(LiveInterval&, AllocationOrder&,
    SmallVectorImpl<LiveInterval*>&);
  unsigned trySplit(LiveInterval&, AllocationOrder&,
                    SmallVectorImpl<LiveInterval*>&);
};
} // end anonymous namespace

char RAGreedy::ID = 0;

#ifndef NDEBUG
const char *const RAGreedy::StageName[] = {
  "RS_New",
  "RS_First",
  "RS_Second",
  "RS_Global",
  "RS_Local",
  "RS_Spill"
};
#endif

// Hysteresis to use when comparing floats.
// This helps stabilize decisions based on float comparisons.
const float Hysteresis = 0.98f;


FunctionPass* llvm::createGreedyRegisterAllocator() {
  return new RAGreedy();
}

RAGreedy::RAGreedy(): MachineFunctionPass(ID) {
  initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
  initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
  initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
  initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
  initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry());
  initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
  initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
  initializeLiveStacksPass(*PassRegistry::getPassRegistry());
  initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
  initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
  initializeMachineLoopRangesPass(*PassRegistry::getPassRegistry());
  initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
  initializeEdgeBundlesPass(*PassRegistry::getPassRegistry());
  initializeSpillPlacementPass(*PassRegistry::getPassRegistry());
}

void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.setPreservesCFG();
  AU.addRequired<AliasAnalysis>();
  AU.addPreserved<AliasAnalysis>();
  AU.addRequired<LiveIntervals>();
  AU.addRequired<SlotIndexes>();
  AU.addPreserved<SlotIndexes>();
  AU.addRequired<LiveDebugVariables>();
  AU.addPreserved<LiveDebugVariables>();
  if (StrongPHIElim)
    AU.addRequiredID(StrongPHIEliminationID);
  AU.addRequiredTransitive<RegisterCoalescer>();
  AU.addRequired<CalculateSpillWeights>();
  AU.addRequired<LiveStacks>();
  AU.addPreserved<LiveStacks>();
  AU.addRequired<MachineDominatorTree>();
  AU.addPreserved<MachineDominatorTree>();
  AU.addRequired<MachineLoopInfo>();
  AU.addPreserved<MachineLoopInfo>();
  AU.addRequired<MachineLoopRanges>();
  AU.addPreserved<MachineLoopRanges>();
  AU.addRequired<VirtRegMap>();
  AU.addPreserved<VirtRegMap>();
  AU.addRequired<EdgeBundles>();
  AU.addRequired<SpillPlacement>();
  MachineFunctionPass::getAnalysisUsage(AU);
}


//===----------------------------------------------------------------------===//
//                     LiveRangeEdit delegate methods
//===----------------------------------------------------------------------===//

void RAGreedy::LRE_WillEraseInstruction(MachineInstr *MI) {
  // LRE itself will remove from SlotIndexes and parent basic block.
  VRM->RemoveMachineInstrFromMaps(MI);
}

bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) {
  if (unsigned PhysReg = VRM->getPhys(VirtReg)) {
    unassign(LIS->getInterval(VirtReg), PhysReg);
    return true;
  }
  // Unassigned virtreg is probably in the priority queue.
  // RegAllocBase will erase it after dequeueing.
  return false;
}

void RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) {
  unsigned PhysReg = VRM->getPhys(VirtReg);
  if (!PhysReg)
    return;

  // Register is assigned, put it back on the queue for reassignment.
  LiveInterval &LI = LIS->getInterval(VirtReg);
  unassign(LI, PhysReg);
  enqueue(&LI);
}

void RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) {
  // LRE may clone a virtual register because dead code elimination causes it to
  // be split into connected components. Ensure that the new register gets the
  // same stage as the parent.
  ExtraRegInfo.grow(New);
  ExtraRegInfo[New] = ExtraRegInfo[Old];
}

void RAGreedy::releaseMemory() {
  SpillerInstance.reset(0);
  ExtraRegInfo.clear();
  GlobalCand.clear();
  RegAllocBase::releaseMemory();
}

void RAGreedy::enqueue(LiveInterval *LI) {
  // Prioritize live ranges by size, assigning larger ranges first.
  // The queue holds (size, reg) pairs.
  const unsigned Size = LI->getSize();
  const unsigned Reg = LI->reg;
  assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
         "Can only enqueue virtual registers");
  unsigned Prio;

  ExtraRegInfo.grow(Reg);
  if (ExtraRegInfo[Reg].Stage == RS_New)
    ExtraRegInfo[Reg].Stage = RS_First;

  if (ExtraRegInfo[Reg].Stage == RS_Second)
    // Unsplit ranges that couldn't be allocated immediately are deferred until
    // everything else has been allocated. Long ranges are allocated last so
    // they are split against realistic interference.
    Prio = (1u << 31) - Size;
  else {
    // Everything else is allocated in long->short order. Long ranges that don't
    // fit should be spilled ASAP so they don't create interference.
    Prio = (1u << 31) + Size;

    // Boost ranges that have a physical register hint.
    if (TargetRegisterInfo::isPhysicalRegister(VRM->getRegAllocPref(Reg)))
      Prio |= (1u << 30);
  }

  Queue.push(std::make_pair(Prio, Reg));
}

LiveInterval *RAGreedy::dequeue() {
  if (Queue.empty())
    return 0;
  LiveInterval *LI = &LIS->getInterval(Queue.top().second);
  Queue.pop();
  return LI;
}


//===----------------------------------------------------------------------===//
//                            Direct Assignment
//===----------------------------------------------------------------------===//

/// tryAssign - Try to assign VirtReg to an available register.
unsigned RAGreedy::tryAssign(LiveInterval &VirtReg,
                             AllocationOrder &Order,
                             SmallVectorImpl<LiveInterval*> &NewVRegs) {
  Order.rewind();
  unsigned PhysReg;
  while ((PhysReg = Order.next()))
    if (!checkPhysRegInterference(VirtReg, PhysReg))
      break;
  if (!PhysReg || Order.isHint(PhysReg))
    return PhysReg;

  // PhysReg is available, but there may be a better choice.

  // If we missed a simple hint, try to cheaply evict interference from the
  // preferred register.
  if (unsigned Hint = MRI->getSimpleHint(VirtReg.reg))
    if (Order.isHint(Hint)) {
      DEBUG(dbgs() << "missed hint " << PrintReg(Hint, TRI) << '\n');
      EvictionCost MaxCost(1);
      if (canEvictInterference(VirtReg, Hint, true, MaxCost)) {
        evictInterference(VirtReg, Hint, NewVRegs);
        return Hint;
      }
    }

  // Try to evict interference from a cheaper alternative.
  unsigned Cost = TRI->getCostPerUse(PhysReg);

  // Most registers have 0 additional cost.
  if (!Cost)
    return PhysReg;

  DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is available at cost " << Cost
               << '\n');
  unsigned CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost);
  return CheapReg ? CheapReg : PhysReg;
}


//===----------------------------------------------------------------------===//
//                         Interference eviction
//===----------------------------------------------------------------------===//

/// shouldEvict - determine if A should evict the assigned live range B. The
/// eviction policy defined by this function together with the allocation order
/// defined by enqueue() decides which registers ultimately end up being split
/// and spilled.
///
/// Cascade numbers are used to prevent infinite loops if this function is a
/// cyclic relation.
///
/// @param A          The live range to be assigned.
/// @param IsHint     True when A is about to be assigned to its preferred
///                   register.
/// @param B          The live range to be evicted.
/// @param BreaksHint True when B is already assigned to its preferred register.
bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint,
                           LiveInterval &B, bool BreaksHint) {
  bool CanSplit = getStage(B) <= RS_Second;

  // Be fairly aggressive about following hints as long as the evictee can be
  // split.
  if (CanSplit && IsHint && !BreaksHint)
    return true;

  return A.weight > B.weight;
}

/// canEvictInterference - Return true if all interferences between VirtReg and
/// PhysReg can be evicted.  When OnlyCheap is set, don't do anything
///
/// @param VirtReg Live range that is about to be assigned.
/// @param PhysReg Desired register for assignment.
/// @prarm IsHint  True when PhysReg is VirtReg's preferred register.
/// @param MaxCost Only look for cheaper candidates and update with new cost
///                when returning true.
/// @returns True when interference can be evicted cheaper than MaxCost.
bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, unsigned PhysReg,
                                    bool IsHint, EvictionCost &MaxCost) {
  // Find VirtReg's cascade number. This will be unassigned if VirtReg was never
  // involved in an eviction before. If a cascade number was assigned, deny
  // evicting anything with the same or a newer cascade number. This prevents
  // infinite eviction loops.
  //
  // This works out so a register without a cascade number is allowed to evict
  // anything, and it can be evicted by anything.
  unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
  if (!Cascade)
    Cascade = NextCascade;

  EvictionCost Cost;
  for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI) {
    LiveIntervalUnion::Query &Q = query(VirtReg, *AliasI);
    // If there is 10 or more interferences, chances are one is heavier.
    if (Q.collectInterferingVRegs(10) >= 10)
      return false;

    // Check if any interfering live range is heavier than MaxWeight.
    for (unsigned i = Q.interferingVRegs().size(); i; --i) {
      LiveInterval *Intf = Q.interferingVRegs()[i - 1];
      if (TargetRegisterInfo::isPhysicalRegister(Intf->reg))
        return false;
      // Never evict spill products. They cannot split or spill.
      if (getStage(*Intf) == RS_Spill)
        return false;
      // Once a live range becomes small enough, it is urgent that we find a
      // register for it. This is indicated by an infinite spill weight. These
      // urgent live ranges get to evict almost anything.
      bool Urgent = !VirtReg.isSpillable() && Intf->isSpillable();
      // Only evict older cascades or live ranges without a cascade.
      unsigned IntfCascade = ExtraRegInfo[Intf->reg].Cascade;
      if (Cascade <= IntfCascade) {
        if (!Urgent)
          return false;
        // We permit breaking cascades for urgent evictions. It should be the
        // last resort, though, so make it really expensive.
        Cost.BrokenHints += 10;
      }
      // Would this break a satisfied hint?
      bool BreaksHint = VRM->hasPreferredPhys(Intf->reg);
      // Update eviction cost.
      Cost.BrokenHints += BreaksHint;
      Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight);
      // Abort if this would be too expensive.
      if (!(Cost < MaxCost))
        return false;
      // Finally, apply the eviction policy for non-urgent evictions.
      if (!Urgent && !shouldEvict(VirtReg, IsHint, *Intf, BreaksHint))
        return false;
    }
  }
  MaxCost = Cost;
  return true;
}

/// evictInterference - Evict any interferring registers that prevent VirtReg
/// from being assigned to Physreg. This assumes that canEvictInterference
/// returned true.
void RAGreedy::evictInterference(LiveInterval &VirtReg, unsigned PhysReg,
                                 SmallVectorImpl<LiveInterval*> &NewVRegs) {
  // Make sure that VirtReg has a cascade number, and assign that cascade
  // number to every evicted register. These live ranges than then only be
  // evicted by a newer cascade, preventing infinite loops.
  unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
  if (!Cascade)
    Cascade = ExtraRegInfo[VirtReg.reg].Cascade = NextCascade++;

  DEBUG(dbgs() << "evicting " << PrintReg(PhysReg, TRI)
               << " interference: Cascade " << Cascade << '\n');
  for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI) {
    LiveIntervalUnion::Query &Q = query(VirtReg, *AliasI);
    assert(Q.seenAllInterferences() && "Didn't check all interfererences.");
    for (unsigned i = 0, e = Q.interferingVRegs().size(); i != e; ++i) {
      LiveInterval *Intf = Q.interferingVRegs()[i];
      unassign(*Intf, VRM->getPhys(Intf->reg));
      assert((ExtraRegInfo[Intf->reg].Cascade < Cascade ||
              VirtReg.isSpillable() < Intf->isSpillable()) &&
             "Cannot decrease cascade number, illegal eviction");
      ExtraRegInfo[Intf->reg].Cascade = Cascade;
      ++NumEvicted;
      NewVRegs.push_back(Intf);
    }
  }
}

/// tryEvict - Try to evict all interferences for a physreg.
/// @param  VirtReg Currently unassigned virtual register.
/// @param  Order   Physregs to try.
/// @return         Physreg to assign VirtReg, or 0.
unsigned RAGreedy::tryEvict(LiveInterval &VirtReg,
                            AllocationOrder &Order,
                            SmallVectorImpl<LiveInterval*> &NewVRegs,
                            unsigned CostPerUseLimit) {
  NamedRegionTimer T("Evict", TimerGroupName, TimePassesIsEnabled);

  // Keep track of the cheapest interference seen so far.
  EvictionCost BestCost(~0u);
  unsigned BestPhys = 0;

  // When we are just looking for a reduced cost per use, don't break any
  // hints, and only evict smaller spill weights.
  if (CostPerUseLimit < ~0u) {
    BestCost.BrokenHints = 0;
    BestCost.MaxWeight = VirtReg.weight;
  }

  Order.rewind();
  while (unsigned PhysReg = Order.next()) {
    if (TRI->getCostPerUse(PhysReg) >= CostPerUseLimit)
      continue;
    // The first use of a callee-saved register in a function has cost 1.
    // Don't start using a CSR when the CostPerUseLimit is low.
    if (CostPerUseLimit == 1)
     if (unsigned CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg))
       if (!MRI->isPhysRegUsed(CSR)) {
         DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " would clobber CSR "
                      << PrintReg(CSR, TRI) << '\n');
         continue;
       }

    if (!canEvictInterference(VirtReg, PhysReg, false, BestCost))
      continue;

    // Best so far.
    BestPhys = PhysReg;

    // Stop if the hint can be used.
    if (Order.isHint(PhysReg))
      break;
  }

  if (!BestPhys)
    return 0;

  evictInterference(VirtReg, BestPhys, NewVRegs);
  return BestPhys;
}


//===----------------------------------------------------------------------===//
//                              Region Splitting
//===----------------------------------------------------------------------===//

/// addSplitConstraints - Fill out the SplitConstraints vector based on the
/// interference pattern in Physreg and its aliases. Add the constraints to
/// SpillPlacement and return the static cost of this split in Cost, assuming
/// that all preferences in SplitConstraints are met.
/// Return false if there are no bundles with positive bias.
bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf,
                                   float &Cost) {
  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();

  // Reset interference dependent info.
  SplitConstraints.resize(UseBlocks.size());
  float StaticCost = 0;
  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
    SpillPlacement::BlockConstraint &BC = SplitConstraints[i];

    BC.Number = BI.MBB->getNumber();
    Intf.moveToBlock(BC.Number);
    BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
    BC.Exit = BI.LiveOut ? SpillPlacement::PrefReg : SpillPlacement::DontCare;

    if (!Intf.hasInterference())
      continue;

    // Number of spill code instructions to insert.
    unsigned Ins = 0;

    // Interference for the live-in value.
    if (BI.LiveIn) {
      if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number))
        BC.Entry = SpillPlacement::MustSpill, ++Ins;
      else if (Intf.first() < BI.FirstUse)
        BC.Entry = SpillPlacement::PrefSpill, ++Ins;
      else if (Intf.first() < BI.LastUse)
        ++Ins;
    }

    // Interference for the live-out value.
    if (BI.LiveOut) {
      if (Intf.last() >= SA->getLastSplitPoint(BC.Number))
        BC.Exit = SpillPlacement::MustSpill, ++Ins;
      else if (Intf.last() > BI.LastUse)
        BC.Exit = SpillPlacement::PrefSpill, ++Ins;
      else if (Intf.last() > BI.FirstUse)
        ++Ins;
    }

    // Accumulate the total frequency of inserted spill code.
    if (Ins)
      StaticCost += Ins * SpillPlacer->getBlockFrequency(BC.Number);
  }
  Cost = StaticCost;

  // Add constraints for use-blocks. Note that these are the only constraints
  // that may add a positive bias, it is downhill from here.
  SpillPlacer->addConstraints(SplitConstraints);
  return SpillPlacer->scanActiveBundles();
}


/// addThroughConstraints - Add constraints and links to SpillPlacer from the
/// live-through blocks in Blocks.
void RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf,
                                     ArrayRef<unsigned> Blocks) {
  const unsigned GroupSize = 8;
  SpillPlacement::BlockConstraint BCS[GroupSize];
  unsigned TBS[GroupSize];
  unsigned B = 0, T = 0;

  for (unsigned i = 0; i != Blocks.size(); ++i) {
    unsigned Number = Blocks[i];
    Intf.moveToBlock(Number);

    if (!Intf.hasInterference()) {
      assert(T < GroupSize && "Array overflow");
      TBS[T] = Number;
      if (++T == GroupSize) {
        SpillPlacer->addLinks(ArrayRef<unsigned>(TBS, T));
        T = 0;
      }
      continue;
    }

    assert(B < GroupSize && "Array overflow");
    BCS[B].Number = Number;

    // Interference for the live-in value.
    if (Intf.first() <= Indexes->getMBBStartIdx(Number))
      BCS[B].Entry = SpillPlacement::MustSpill;
    else
      BCS[B].Entry = SpillPlacement::PrefSpill;

    // Interference for the live-out value.
    if (Intf.last() >= SA->getLastSplitPoint(Number))
      BCS[B].Exit = SpillPlacement::MustSpill;
    else
      BCS[B].Exit = SpillPlacement::PrefSpill;

    if (++B == GroupSize) {
      ArrayRef<SpillPlacement::BlockConstraint> Array(BCS, B);
      SpillPlacer->addConstraints(Array);
      B = 0;
    }
  }

  ArrayRef<SpillPlacement::BlockConstraint> Array(BCS, B);
  SpillPlacer->addConstraints(Array);
  SpillPlacer->addLinks(ArrayRef<unsigned>(TBS, T));
}

void RAGreedy::growRegion(GlobalSplitCandidate &Cand) {
  // Keep track of through blocks that have not been added to SpillPlacer.
  BitVector Todo = SA->getThroughBlocks();
  SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks;
  unsigned AddedTo = 0;
#ifndef NDEBUG
  unsigned Visited = 0;
#endif

  for (;;) {
    ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive();
    // Find new through blocks in the periphery of PrefRegBundles.
    for (int i = 0, e = NewBundles.size(); i != e; ++i) {
      unsigned Bundle = NewBundles[i];
      // Look at all blocks connected to Bundle in the full graph.
      ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle);
      for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end();
           I != E; ++I) {
        unsigned Block = *I;
        if (!Todo.test(Block))
          continue;
        Todo.reset(Block);
        // This is a new through block. Add it to SpillPlacer later.
        ActiveBlocks.push_back(Block);
#ifndef NDEBUG
        ++Visited;
#endif
      }
    }
    // Any new blocks to add?
    if (ActiveBlocks.size() == AddedTo)
      break;
    addThroughConstraints(Cand.Intf,
                          ArrayRef<unsigned>(ActiveBlocks).slice(AddedTo));
    AddedTo = ActiveBlocks.size();

    // Perhaps iterating can enable more bundles?
    SpillPlacer->iterate();
  }
  DEBUG(dbgs() << ", v=" << Visited);
}

/// calcSpillCost - Compute how expensive it would be to split the live range in
/// SA around all use blocks instead of forming bundle regions.
float RAGreedy::calcSpillCost() {
  float Cost = 0;
  const LiveInterval &LI = SA->getParent();
  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
    unsigned Number = BI.MBB->getNumber();
    // We normally only need one spill instruction - a load or a store.
    Cost += SpillPlacer->getBlockFrequency(Number);

    // Unless the value is redefined in the block.
    if (BI.LiveIn && BI.LiveOut) {
      SlotIndex Start, Stop;
      tie(Start, Stop) = Indexes->getMBBRange(Number);
      LiveInterval::const_iterator I = LI.find(Start);
      assert(I != LI.end() && "Expected live-in value");
      // Is there a different live-out value? If so, we need an extra spill
      // instruction.
      if (I->end < Stop)
        Cost += SpillPlacer->getBlockFrequency(Number);
    }
  }
  return Cost;
}

/// calcGlobalSplitCost - Return the global split cost of following the split
/// pattern in LiveBundles. This cost should be added to the local cost of the
/// interference pattern in SplitConstraints.
///
float RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand) {
  float GlobalCost = 0;
  const BitVector &LiveBundles = Cand.LiveBundles;
  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
    SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
    bool RegIn  = LiveBundles[Bundles->getBundle(BC.Number, 0)];
    bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, 1)];
    unsigned Ins = 0;

    if (BI.LiveIn)
      Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
    if (BI.LiveOut)
      Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
    if (Ins)
      GlobalCost += Ins * SpillPlacer->getBlockFrequency(BC.Number);
  }

  for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) {
    unsigned Number = Cand.ActiveBlocks[i];
    bool RegIn  = LiveBundles[Bundles->getBundle(Number, 0)];
    bool RegOut = LiveBundles[Bundles->getBundle(Number, 1)];
    if (!RegIn && !RegOut)
      continue;
    if (RegIn && RegOut) {
      // We need double spill code if this block has interference.
      Cand.Intf.moveToBlock(Number);
      if (Cand.Intf.hasInterference())
        GlobalCost += 2*SpillPlacer->getBlockFrequency(Number);
      continue;
    }
    // live-in / stack-out or stack-in live-out.
    GlobalCost += SpillPlacer->getBlockFrequency(Number);
  }
  return GlobalCost;
}

/// splitAroundRegion - Split VirtReg around the region determined by
/// LiveBundles. Make an effort to avoid interference from PhysReg.
///
/// The 'register' interval is going to contain as many uses as possible while
/// avoiding interference. The 'stack' interval is the complement constructed by
/// SplitEditor. It will contain the rest.
///
void RAGreedy::splitAroundRegion(LiveInterval &VirtReg,
                                 GlobalSplitCandidate &Cand,
                                 SmallVectorImpl<LiveInterval*> &NewVRegs) {
  const BitVector &LiveBundles = Cand.LiveBundles;

  DEBUG({
    dbgs() << "Splitting around region for " << PrintReg(Cand.PhysReg, TRI)
           << " with bundles";
    for (int i = LiveBundles.find_first(); i>=0; i = LiveBundles.find_next(i))
      dbgs() << " EB#" << i;
    dbgs() << ".\n";
  });

  InterferenceCache::Cursor &Intf = Cand.Intf;
  LiveRangeEdit LREdit(VirtReg, NewVRegs, this);
  SE->reset(LREdit);

  // Create the main cross-block interval.
  const unsigned MainIntv = SE->openIntv();

  // First handle all the blocks with uses.
  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
    bool RegIn  = BI.LiveIn &&
                  LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 0)];
    bool RegOut = BI.LiveOut &&
                  LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 1)];

    // Create separate intervals for isolated blocks with multiple uses.
    //
    //     |---o---o---|    Enter and leave on the stack.
    //     ____-----____    Create local interval for uses.
    //
    //     |   o---o---|    Defined in block, leave on stack.
    //         -----____    Create local interval for uses.
    //
    //     |---o---x   |    Enter on stack, killed in block.
    //     ____-----        Create local interval for uses.
    //
    if (!RegIn && !RegOut) {
      DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " isolated.\n");
      if (!BI.isOneInstr()) {
        SE->splitSingleBlock(BI);
        SE->selectIntv(MainIntv);
      }
      continue;
    }

    SlotIndex Start, Stop;
    tie(Start, Stop) = Indexes->getMBBRange(BI.MBB);
    Intf.moveToBlock(BI.MBB->getNumber());
    DEBUG(dbgs() << "EB#" << Bundles->getBundle(BI.MBB->getNumber(), 0)
                 << (BI.LiveIn ? (RegIn ? " => " : " -> ") : "    ")
                 << "BB#" << BI.MBB->getNumber()
                 << (BI.LiveOut ? (RegOut ? " => " : " -> ") : "    ")
                 << " EB#" << Bundles->getBundle(BI.MBB->getNumber(), 1)
                 << " [" << Start << ';'
                 << SA->getLastSplitPoint(BI.MBB->getNumber()) << '-' << Stop
                 << ") uses [" << BI.FirstUse << ';' << BI.LastUse
                 << ") intf [" << Intf.first() << ';' << Intf.last() << ')');

    // The interference interval should either be invalid or overlap MBB.
    assert((!Intf.hasInterference() || Intf.first() < Stop)
           && "Bad interference");
    assert((!Intf.hasInterference() || Intf.last() > Start)
           && "Bad interference");

    // We are now ready to decide where to split in the current block.  There
    // are many variables guiding the decision:
    //
    // - RegIn / RegOut: The global splitting algorithm's decisions for our
    //   ingoing and outgoing bundles.
    //
    // - BI.BlockIn / BI.BlockOut: Is the live range live-in and/or live-out
    //   from this block.
    //
    // - Intf.hasInterference(): Is there interference in this block.
    //
    // - Intf.first() / Inft.last(): The range of interference.
    //
    // The live range should be split such that MainIntv is live-in when RegIn
    // is set, and live-out when RegOut is set.  MainIntv should never overlap
    // the interference, and the stack interval should never have more than one
    // use per block.

    // No splits can be inserted after LastSplitPoint, overlap instead.
    SlotIndex LastSplitPoint = Stop;
    if (BI.LiveOut)
      LastSplitPoint = SA->getLastSplitPoint(BI.MBB->getNumber());

    // At this point, we know that either RegIn or RegOut is set. We dealt with
    // the all-stack case above.

    // Blocks without interference are relatively easy.
    if (!Intf.hasInterference()) {
      DEBUG(dbgs() << ", no interference.\n");
      SE->selectIntv(MainIntv);
      // The easiest case has MainIntv live through.
      //
      //     |---o---o---|    Live-in, live-out.
      //     =============    Use MainIntv everywhere.
      //
      SlotIndex From = Start, To = Stop;

      // Block entry. Reload before the first use if MainIntv is not live-in.
      //
      //     |---o--    Enter on stack.
      //     ____===    Reload before first use.
      //
      //     |   o--    Defined in block.
      //         ===    Use MainIntv from def.
      //
      if (!RegIn)
        From = SE->enterIntvBefore(BI.FirstUse);

      // Block exit. Handle cases where MainIntv is not live-out.
      if (!BI.LiveOut)
        //
        //     --x   |    Killed in block.
        //     ===        Use MainIntv up to kill.
        //
        To = SE->leaveIntvAfter(BI.LastUse);
      else if (!RegOut) {
        //
        //     --o---|    Live-out on stack.
        //     ===____    Use MainIntv up to last use, switch to stack.
        //
        //     -----o|    Live-out on stack, last use after last split point.
        //     ======     Extend MainIntv to last use, overlapping.
        //       \____    Copy to stack interval before last split point.
        //
        if (BI.LastUse < LastSplitPoint)
          To = SE->leaveIntvAfter(BI.LastUse);
        else {
          // The last use is after the last split point, it is probably an
          // indirect branch.
          To = SE->leaveIntvBefore(LastSplitPoint);
          // Run a double interval from the split to the last use.  This makes
          // it possible to spill the complement without affecting the indirect
          // branch.
          SE->overlapIntv(To, BI.LastUse);
        }
      }

      // Paint in MainIntv liveness for this block.
      SE->useIntv(From, To);
      continue;
    }

    // We are now looking at a block with interference, and we know that either
    // RegIn or RegOut is set.
    assert(Intf.hasInterference() && (RegIn || RegOut) && "Bad invariant");

    // If the live range is not live through the block, it is possible that the
    // interference doesn't even overlap.  Deal with those cases first.  Since
    // no copy instructions are required, we can tolerate interference starting
    // or ending at the same instruction that kills or defines our live range.

    // Live-in, killed before interference.
    //
    //               ~~~    Interference after kill.
    //     |---o---x   |    Killed in block.
    //     =========        Use MainIntv everywhere.
    //
    if (RegIn && !BI.LiveOut && BI.LastUse <= Intf.first()) {
      DEBUG(dbgs() << ", live-in, killed before interference.\n");
      SE->selectIntv(MainIntv);
      SlotIndex To = SE->leaveIntvAfter(BI.LastUse);
      SE->useIntv(Start, To);
      continue;
    }

    // Live-out, defined after interference.
    //
    //     ~~~              Interference before def.
    //     |   o---o---|    Defined in block.
    //         =========    Use MainIntv everywhere.
    //
    if (RegOut && !BI.LiveIn && BI.FirstUse >= Intf.last()) {
      DEBUG(dbgs() << ", live-out, defined after interference.\n");
      SE->selectIntv(MainIntv);
      SlotIndex From = SE->enterIntvBefore(BI.FirstUse);
      SE->useIntv(From, Stop);
      continue;
    }

    // The interference is now known to overlap the live range, but it may
    // still be easy to avoid if all the interference is on one side of the
    // uses, and we enter or leave on the stack.

    // Live-out on stack, interference after last use.
    //
    //               ~~~    Interference after last use.
    //     |---o---o---|    Live-out on stack.
    //     =========____    Leave MainIntv after last use.
    //
    //                 ~    Interference after last use.
    //     |---o---o--o|    Live-out on stack, late last use.
    //     ============     Copy to stack after LSP, overlap MainIntv.
    //            \_____    Stack interval is live-out.
    //
    if (!RegOut && Intf.first() > BI.LastUse.getBoundaryIndex()) {
      assert(RegIn && "Stack-in, stack-out should already be handled");
      if (BI.LastUse < LastSplitPoint) {
        DEBUG(dbgs() << ", live-in, stack-out, interference after last use.\n");
        SE->selectIntv(MainIntv);
        SlotIndex To = SE->leaveIntvAfter(BI.LastUse);
        assert(To <= Intf.first() && "Expected to avoid interference");
        SE->useIntv(Start, To);
      } else {
        DEBUG(dbgs() << ", live-in, stack-out, avoid last split point\n");
        SE->selectIntv(MainIntv);
        SlotIndex To = SE->leaveIntvBefore(LastSplitPoint);
        assert(To <= Intf.first() && "Expected to avoid interference");
        SE->overlapIntv(To, BI.LastUse);
        SE->useIntv(Start, To);
      }
      continue;
    }

    // Live-in on stack, interference before first use.
    //
    //     ~~~              Interference before first use.
    //     |---o---o---|    Live-in on stack.
    //     ____=========    Enter MainIntv before first use.
    //
    if (!RegIn && Intf.last() < BI.FirstUse.getBaseIndex()) {
      assert(RegOut && "Stack-in, stack-out should already be handled");
      DEBUG(dbgs() << ", stack-in, interference before first use.\n");
      SE->selectIntv(MainIntv);
      SlotIndex From = SE->enterIntvBefore(BI.FirstUse);
      assert(From >= Intf.last() && "Expected to avoid interference");
      SE->useIntv(From, Stop);
      continue;
    }

    // The interference is overlapping somewhere we wanted to use MainIntv. That
    // means we need to create a local interval that can be allocated a
    // different register.
    unsigned LocalIntv = SE->openIntv();
    DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n");

    // We may be creating copies directly between MainIntv and LocalIntv,
    // bypassing the stack interval. When we do that, we should never use the
    // leaveIntv* methods as they define values in the stack interval. By
    // starting from the end of the block and working our way backwards, we can
    // get by with only enterIntv* methods.
    //
    // When selecting split points, we generally try to maximize the stack
    // interval as long at it contains no uses, maximize the main interval as
    // long as it doesn't overlap interference, and minimize the local interval
    // that we don't know how to allocate yet.

    // Handle the block exit, set Pos to the first handled slot.
    SlotIndex Pos = BI.LastUse;
    if (RegOut) {
      assert(Intf.last() < LastSplitPoint && "Cannot be live-out in register");
      // Create a snippet of MainIntv that is live-out.
      //
      //     ~~~        Interference overlapping uses.
      //     --o---|    Live-out in MainIntv.
      //     ----===    Switch from LocalIntv to MainIntv after interference.
      //
      SE->selectIntv(MainIntv);
      Pos = SE->enterIntvAfter(Intf.last());
      assert(Pos >= Intf.last() && "Expected to avoid interference");
      SE->useIntv(Pos, Stop);
      SE->selectIntv(LocalIntv);
    } else if (BI.LiveOut) {
      if (BI.LastUse < LastSplitPoint) {
        // Live-out on the stack.
        //
        //     ~~~        Interference overlapping uses.
        //     --o---|    Live-out on stack.
        //     ---____    Switch from LocalIntv to stack after last use.
        //
        Pos = SE->leaveIntvAfter(BI.LastUse);
      } else {
        // Live-out on the stack, last use after last split point.
        //
        //     ~~~        Interference overlapping uses.
        //     --o--o|    Live-out on stack, late use.
        //     ------     Copy to stack before LSP, overlap LocalIntv.
        //         \__
        //
        Pos = SE->leaveIntvBefore(LastSplitPoint);
        // We need to overlap LocalIntv so it can reach LastUse.
        SE->overlapIntv(Pos, BI.LastUse);
      }
    }

    // When not live-out, leave Pos at LastUse. We have handled everything from
    // Pos to Stop. Find the starting point for LocalIntv.
    assert(SE->currentIntv() == LocalIntv && "Expecting local interval");

    if (RegIn) {
      assert(Start < Intf.first() && "Cannot be live-in with interference");
      // Live-in in MainIntv, only use LocalIntv for interference.
      //
      //         ~~~    Interference overlapping uses.
      //     |---o--    Live-in in MainIntv.
      //     ====---    Switch to LocalIntv before interference.
      //
      SlotIndex Switch = SE->enterIntvBefore(std::min(Pos, Intf.first()));
      assert(Switch <= Intf.first() && "Expected to avoid interference");
      SE->useIntv(Switch, Pos);
      SE->selectIntv(MainIntv);
      SE->useIntv(Start, Switch);
    } else {
      // Live-in on stack, enter LocalIntv before first use.
      //
      //         ~~~    Interference overlapping uses.
      //     |---o--    Live-in in MainIntv.
      //     ____---    Reload to LocalIntv before interference.
      //
      // Defined in block.
      //
      //         ~~~    Interference overlapping uses.
      //     |   o--    Defined in block.
      //         ---    Begin LocalIntv at first use.
      //
      SlotIndex Switch = SE->enterIntvBefore(std::min(Pos, BI.FirstUse));
      SE->useIntv(Switch, Pos);
    }
  }

  // Handle live-through blocks.
  SE->selectIntv(MainIntv);
  for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) {
    unsigned Number = Cand.ActiveBlocks[i];
    bool RegIn  = LiveBundles[Bundles->getBundle(Number, 0)];
    bool RegOut = LiveBundles[Bundles->getBundle(Number, 1)];
    DEBUG(dbgs() << "Live through BB#" << Number << '\n');
    if (RegIn && RegOut) {
      Intf.moveToBlock(Number);
      if (!Intf.hasInterference()) {
        SE->useIntv(Indexes->getMBBStartIdx(Number),
                    Indexes->getMBBEndIdx(Number));
        continue;
      }
    }
    MachineBasicBlock *MBB = MF->getBlockNumbered(Number);
    if (RegIn)
      SE->leaveIntvAtTop(*MBB);
    if (RegOut)
      SE->enterIntvAtEnd(*MBB);
  }

  ++NumGlobalSplits;

  SmallVector<unsigned, 8> IntvMap;
  SE->finish(&IntvMap);
  DebugVars->splitRegister(VirtReg.reg, LREdit.regs());

  ExtraRegInfo.resize(MRI->getNumVirtRegs());
  unsigned OrigBlocks = SA->getNumLiveBlocks();

  // Sort out the new intervals created by splitting. We get four kinds:
  // - Remainder intervals should not be split again.
  // - Candidate intervals can be assigned to Cand.PhysReg.
  // - Block-local splits are candidates for local splitting.
  // - DCE leftovers should go back on the queue.
  for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
    LiveInterval &Reg = *LREdit.get(i);

    // Ignore old intervals from DCE.
    if (getStage(Reg) != RS_New)
      continue;

    // Remainder interval. Don't try splitting again, spill if it doesn't
    // allocate.
    if (IntvMap[i] == 0) {
      setStage(Reg, RS_Global);
      continue;
    }

    // Main interval. Allow repeated splitting as long as the number of live
    // blocks is strictly decreasing.
    if (IntvMap[i] == MainIntv) {
      if (SA->countLiveBlocks(&Reg) >= OrigBlocks) {
        DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
                     << " blocks as original.\n");
        // Don't allow repeated splitting as a safe guard against looping.
        setStage(Reg, RS_Global);
      }
      continue;
    }

    // Other intervals are treated as new. This includes local intervals created
    // for blocks with multiple uses, and anything created by DCE.
  }

  if (VerifyEnabled)
    MF->verify(this, "After splitting live range around region");
}

unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
                                  SmallVectorImpl<LiveInterval*> &NewVRegs) {
  float BestCost = Hysteresis * calcSpillCost();
  DEBUG(dbgs() << "Cost of isolating all blocks = " << BestCost << '\n');
  const unsigned NoCand = ~0u;
  unsigned BestCand = NoCand;
  unsigned NumCands = 0;

  Order.rewind();
  while (unsigned PhysReg = Order.next()) {
    // Discard bad candidates before we run out of interference cache cursors.
    // This will only affect register classes with a lot of registers (>32).
    if (NumCands == IntfCache.getMaxCursors()) {
      unsigned WorstCount = ~0u;
      unsigned Worst = 0;
      for (unsigned i = 0; i != NumCands; ++i) {
        if (i == BestCand)
          continue;
        unsigned Count = GlobalCand[i].LiveBundles.count();
        if (Count < WorstCount)
          Worst = i, WorstCount = Count;
      }
      --NumCands;
      GlobalCand[Worst] = GlobalCand[NumCands];
    }

    if (GlobalCand.size() <= NumCands)
      GlobalCand.resize(NumCands+1);
    GlobalSplitCandidate &Cand = GlobalCand[NumCands];
    Cand.reset(IntfCache, PhysReg);

    SpillPlacer->prepare(Cand.LiveBundles);
    float Cost;
    if (!addSplitConstraints(Cand.Intf, Cost)) {
      DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tno positive bundles\n");
      continue;
    }
    DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tstatic = " << Cost);
    if (Cost >= BestCost) {
      DEBUG({
        if (BestCand == NoCand)
          dbgs() << " worse than no bundles\n";
        else
          dbgs() << " worse than "
                 << PrintReg(GlobalCand[BestCand].PhysReg, TRI) << '\n';
      });
      continue;
    }
    growRegion(Cand);

    SpillPlacer->finish();

    // No live bundles, defer to splitSingleBlocks().
    if (!Cand.LiveBundles.any()) {
      DEBUG(dbgs() << " no bundles.\n");
      continue;
    }

    Cost += calcGlobalSplitCost(Cand);
    DEBUG({
      dbgs() << ", total = " << Cost << " with bundles";
      for (int i = Cand.LiveBundles.find_first(); i>=0;
           i = Cand.LiveBundles.find_next(i))
        dbgs() << " EB#" << i;
      dbgs() << ".\n";
    });
    if (Cost < BestCost) {
      BestCand = NumCands;
      BestCost = Hysteresis * Cost; // Prevent rounding effects.
    }
    ++NumCands;
  }

  if (BestCand == NoCand)
    return 0;

  splitAroundRegion(VirtReg, GlobalCand[BestCand], NewVRegs);
  return 0;
}


//===----------------------------------------------------------------------===//
//                             Local Splitting
//===----------------------------------------------------------------------===//


/// calcGapWeights - Compute the maximum spill weight that needs to be evicted
/// in order to use PhysReg between two entries in SA->UseSlots.
///
/// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1].
///
void RAGreedy::calcGapWeights(unsigned PhysReg,
                              SmallVectorImpl<float> &GapWeight) {
  assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
  const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
  const SmallVectorImpl<SlotIndex> &Uses = SA->UseSlots;
  const unsigned NumGaps = Uses.size()-1;

  // Start and end points for the interference check.
  SlotIndex StartIdx = BI.LiveIn ? BI.FirstUse.getBaseIndex() : BI.FirstUse;
  SlotIndex StopIdx = BI.LiveOut ? BI.LastUse.getBoundaryIndex() : BI.LastUse;

  GapWeight.assign(NumGaps, 0.0f);

  // Add interference from each overlapping register.
  for (const unsigned *AI = TRI->getOverlaps(PhysReg); *AI; ++AI) {
    if (!query(const_cast<LiveInterval&>(SA->getParent()), *AI)
           .checkInterference())
      continue;

    // We know that VirtReg is a continuous interval from FirstUse to LastUse,
    // so we don't need InterferenceQuery.
    //
    // Interference that overlaps an instruction is counted in both gaps
    // surrounding the instruction. The exception is interference before
    // StartIdx and after StopIdx.
    //
    LiveIntervalUnion::SegmentIter IntI = PhysReg2LiveUnion[*AI].find(StartIdx);
    for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
      // Skip the gaps before IntI.
      while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
        if (++Gap == NumGaps)
          break;
      if (Gap == NumGaps)
        break;

      // Update the gaps covered by IntI.
      const float weight = IntI.value()->weight;
      for (; Gap != NumGaps; ++Gap) {
        GapWeight[Gap] = std::max(GapWeight[Gap], weight);
        if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
          break;
      }
      if (Gap == NumGaps)
        break;
    }
  }
}

/// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
/// basic block.
///
unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order,
                                 SmallVectorImpl<LiveInterval*> &NewVRegs) {
  assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
  const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();

  // Note that it is possible to have an interval that is live-in or live-out
  // while only covering a single block - A phi-def can use undef values from
  // predecessors, and the block could be a single-block loop.
  // We don't bother doing anything clever about such a case, we simply assume
  // that the interval is continuous from FirstUse to LastUse. We should make
  // sure that we don't do anything illegal to such an interval, though.

  const SmallVectorImpl<SlotIndex> &Uses = SA->UseSlots;
  if (Uses.size() <= 2)
    return 0;
  const unsigned NumGaps = Uses.size()-1;

  DEBUG({
    dbgs() << "tryLocalSplit: ";
    for (unsigned i = 0, e = Uses.size(); i != e; ++i)
      dbgs() << ' ' << SA->UseSlots[i];
    dbgs() << '\n';
  });

  // Since we allow local split results to be split again, there is a risk of
  // creating infinite loops. It is tempting to require that the new live
  // ranges have less instructions than the original. That would guarantee
  // convergence, but it is too strict. A live range with 3 instructions can be
  // split 2+3 (including the COPY), and we want to allow that.
  //
  // Instead we use these rules:
  //
  // 1. Allow any split for ranges with getStage() < RS_Local. (Except for the
  //    noop split, of course).
  // 2. Require progress be made for ranges with getStage() >= RS_Local. All
  //    the new ranges must have fewer instructions than before the split.
  // 3. New ranges with the same number of instructions are marked RS_Local,
  //    smaller ranges are marked RS_New.
  //
  // These rules allow a 3 -> 2+3 split once, which we need. They also prevent
  // excessive splitting and infinite loops.
  //
  bool ProgressRequired = getStage(VirtReg) >= RS_Local;

  // Best split candidate.
  unsigned BestBefore = NumGaps;
  unsigned BestAfter = 0;
  float BestDiff = 0;

  const float blockFreq = SpillPlacer->getBlockFrequency(BI.MBB->getNumber());
  SmallVector<float, 8> GapWeight;

  Order.rewind();
  while (unsigned PhysReg = Order.next()) {
    // Keep track of the largest spill weight that would need to be evicted in
    // order to make use of PhysReg between UseSlots[i] and UseSlots[i+1].
    calcGapWeights(PhysReg, GapWeight);

    // Try to find the best sequence of gaps to close.
    // The new spill weight must be larger than any gap interference.

    // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
    unsigned SplitBefore = 0, SplitAfter = 1;

    // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
    // It is the spill weight that needs to be evicted.
    float MaxGap = GapWeight[0];

    for (;;) {
      // Live before/after split?
      const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
      const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;

      DEBUG(dbgs() << PrintReg(PhysReg, TRI) << ' '
                   << Uses[SplitBefore] << '-' << Uses[SplitAfter]
                   << " i=" << MaxGap);

      // Stop before the interval gets so big we wouldn't be making progress.
      if (!LiveBefore && !LiveAfter) {
        DEBUG(dbgs() << " all\n");
        break;
      }
      // Should the interval be extended or shrunk?
      bool Shrink = true;

      // How many gaps would the new range have?
      unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter;

      // Legally, without causing looping?
      bool Legal = !ProgressRequired || NewGaps < NumGaps;

      if (Legal && MaxGap < HUGE_VALF) {
        // Estimate the new spill weight. Each instruction reads or writes the
        // register. Conservatively assume there are no read-modify-write
        // instructions.
        //
        // Try to guess the size of the new interval.
        const float EstWeight = normalizeSpillWeight(blockFreq * (NewGaps + 1),
                                 Uses[SplitBefore].distance(Uses[SplitAfter]) +
                                 (LiveBefore + LiveAfter)*SlotIndex::InstrDist);
        // Would this split be possible to allocate?
        // Never allocate all gaps, we wouldn't be making progress.
        DEBUG(dbgs() << " w=" << EstWeight);
        if (EstWeight * Hysteresis >= MaxGap) {
          Shrink = false;
          float Diff = EstWeight - MaxGap;
          if (Diff > BestDiff) {
            DEBUG(dbgs() << " (best)");
            BestDiff = Hysteresis * Diff;
            BestBefore = SplitBefore;
            BestAfter = SplitAfter;
          }
        }
      }

      // Try to shrink.
      if (Shrink) {
        if (++SplitBefore < SplitAfter) {
          DEBUG(dbgs() << " shrink\n");
          // Recompute the max when necessary.
          if (GapWeight[SplitBefore - 1] >= MaxGap) {
            MaxGap = GapWeight[SplitBefore];
            for (unsigned i = SplitBefore + 1; i != SplitAfter; ++i)
              MaxGap = std::max(MaxGap, GapWeight[i]);
          }
          continue;
        }
        MaxGap = 0;
      }

      // Try to extend the interval.
      if (SplitAfter >= NumGaps) {
        DEBUG(dbgs() << " end\n");
        break;
      }

      DEBUG(dbgs() << " extend\n");
      MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]);
    }
  }

  // Didn't find any candidates?
  if (BestBefore == NumGaps)
    return 0;

  DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore]
               << '-' << Uses[BestAfter] << ", " << BestDiff
               << ", " << (BestAfter - BestBefore + 1) << " instrs\n");

  LiveRangeEdit LREdit(VirtReg, NewVRegs, this);
  SE->reset(LREdit);

  SE->openIntv();
  SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
  SlotIndex SegStop  = SE->leaveIntvAfter(Uses[BestAfter]);
  SE->useIntv(SegStart, SegStop);
  SmallVector<unsigned, 8> IntvMap;
  SE->finish(&IntvMap);
  DebugVars->splitRegister(VirtReg.reg, LREdit.regs());

  // If the new range has the same number of instructions as before, mark it as
  // RS_Local so the next split will be forced to make progress. Otherwise,
  // leave the new intervals as RS_New so they can compete.
  bool LiveBefore = BestBefore != 0 || BI.LiveIn;
  bool LiveAfter = BestAfter != NumGaps || BI.LiveOut;
  unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter;
  if (NewGaps >= NumGaps) {
    DEBUG(dbgs() << "Tagging non-progress ranges: ");
    assert(!ProgressRequired && "Didn't make progress when it was required.");
    for (unsigned i = 0, e = IntvMap.size(); i != e; ++i)
      if (IntvMap[i] == 1) {
        setStage(*LREdit.get(i), RS_Local);
        DEBUG(dbgs() << PrintReg(LREdit.get(i)->reg));
      }
    DEBUG(dbgs() << '\n');
  }
  ++NumLocalSplits;

  return 0;
}

//===----------------------------------------------------------------------===//
//                          Live Range Splitting
//===----------------------------------------------------------------------===//

/// trySplit - Try to split VirtReg or one of its interferences, making it
/// assignable.
/// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order,
                            SmallVectorImpl<LiveInterval*>&NewVRegs) {
  // Local intervals are handled separately.
  if (LIS->intervalIsInOneMBB(VirtReg)) {
    NamedRegionTimer T("Local Splitting", TimerGroupName, TimePassesIsEnabled);
    SA->analyze(&VirtReg);
    return tryLocalSplit(VirtReg, Order, NewVRegs);
  }

  NamedRegionTimer T("Global Splitting", TimerGroupName, TimePassesIsEnabled);

  // Don't iterate global splitting.
  // Move straight to spilling if this range was produced by a global split.
  if (getStage(VirtReg) >= RS_Global)
    return 0;

  SA->analyze(&VirtReg);

  // FIXME: SplitAnalysis may repair broken live ranges coming from the
  // coalescer. That may cause the range to become allocatable which means that
  // tryRegionSplit won't be making progress. This check should be replaced with
  // an assertion when the coalescer is fixed.
  if (SA->didRepairRange()) {
    // VirtReg has changed, so all cached queries are invalid.
    invalidateVirtRegs();
    if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs))
      return PhysReg;
  }

  // First try to split around a region spanning multiple blocks.
  unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
  if (PhysReg || !NewVRegs.empty())
    return PhysReg;

  // Then isolate blocks with multiple uses.
  SplitAnalysis::BlockPtrSet Blocks;
  if (SA->getMultiUseBlocks(Blocks)) {
    LiveRangeEdit LREdit(VirtReg, NewVRegs, this);
    SE->reset(LREdit);
    SE->splitSingleBlocks(Blocks);
    setStage(NewVRegs.begin(), NewVRegs.end(), RS_Global);
    if (VerifyEnabled)
      MF->verify(this, "After splitting live range around basic blocks");
  }

  // Don't assign any physregs.
  return 0;
}


//===----------------------------------------------------------------------===//
//                            Main Entry Point
//===----------------------------------------------------------------------===//

unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg,
                                 SmallVectorImpl<LiveInterval*> &NewVRegs) {
  // First try assigning a free register.
  AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo);
  if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs))
    return PhysReg;

  LiveRangeStage Stage = getStage(VirtReg);
  DEBUG(dbgs() << StageName[Stage]
               << " Cascade " << ExtraRegInfo[VirtReg.reg].Cascade << '\n');

  // Try to evict a less worthy live range, but only for ranges from the primary
  // queue. The RS_Second ranges already failed to do this, and they should not
  // get a second chance until they have been split.
  if (Stage != RS_Second)
    if (unsigned PhysReg = tryEvict(VirtReg, Order, NewVRegs))
      return PhysReg;

  assert(NewVRegs.empty() && "Cannot append to existing NewVRegs");

  // The first time we see a live range, don't try to split or spill.
  // Wait until the second time, when all smaller ranges have been allocated.
  // This gives a better picture of the interference to split around.
  if (Stage == RS_First) {
    setStage(VirtReg, RS_Second);
    DEBUG(dbgs() << "wait for second round\n");
    NewVRegs.push_back(&VirtReg);
    return 0;
  }

  // If we couldn't allocate a register from spilling, there is probably some
  // invalid inline assembly. The base class wil report it.
  if (Stage >= RS_Spill || !VirtReg.isSpillable())
    return ~0u;

  // Try splitting VirtReg or interferences.
  unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs);
  if (PhysReg || !NewVRegs.empty())
    return PhysReg;

  // Finally spill VirtReg itself.
  NamedRegionTimer T("Spiller", TimerGroupName, TimePassesIsEnabled);
  LiveRangeEdit LRE(VirtReg, NewVRegs, this);
  spiller().spill(LRE);
  setStage(NewVRegs.begin(), NewVRegs.end(), RS_Spill);

  if (VerifyEnabled)
    MF->verify(this, "After spilling");

  // The live virtual register requesting allocation was spilled, so tell
  // the caller not to allocate anything during this round.
  return 0;
}

bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
  DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
               << "********** Function: "
               << ((Value*)mf.getFunction())->getName() << '\n');

  MF = &mf;
  if (VerifyEnabled)
    MF->verify(this, "Before greedy register allocator");

  RegAllocBase::init(getAnalysis<VirtRegMap>(), getAnalysis<LiveIntervals>());
  Indexes = &getAnalysis<SlotIndexes>();
  DomTree = &getAnalysis<MachineDominatorTree>();
  SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));
  Loops = &getAnalysis<MachineLoopInfo>();
  LoopRanges = &getAnalysis<MachineLoopRanges>();
  Bundles = &getAnalysis<EdgeBundles>();
  SpillPlacer = &getAnalysis<SpillPlacement>();
  DebugVars = &getAnalysis<LiveDebugVariables>();

  SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
  SE.reset(new SplitEditor(*SA, *LIS, *VRM, *DomTree));
  ExtraRegInfo.clear();
  ExtraRegInfo.resize(MRI->getNumVirtRegs());
  NextCascade = 1;
  IntfCache.init(MF, &PhysReg2LiveUnion[0], Indexes, TRI);

  allocatePhysRegs();
  addMBBLiveIns(MF);
  LIS->addKillFlags();

  // Run rewriter
  {
    NamedRegionTimer T("Rewriter", TimerGroupName, TimePassesIsEnabled);
    VRM->rewrite(Indexes);
  }

  // Write out new DBG_VALUE instructions.
  DebugVars->emitDebugValues(VRM);

  // The pass output is in VirtRegMap. Release all the transient data.
  releaseMemory();

  return true;
}