summaryrefslogtreecommitdiff
path: root/lib/CodeGen/RegAllocLinearScan.cpp
blob: d10b5d630682a9205c4146455f74098b16e74ebe (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
//===-- RegAllocLinearScan.cpp - Linear Scan register allocator -----------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements a linear scan register allocator.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "regalloc"
#include "VirtRegMap.h"
#include "VirtRegRewriter.h"
#include "Spiller.h"
#include "llvm/Function.h"
#include "llvm/CodeGen/CalcSpillWeights.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/LiveStackAnalysis.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/RegAllocRegistry.h"
#include "llvm/CodeGen/RegisterCoalescer.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/ADT/EquivalenceClasses.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <set>
#include <queue>
#include <memory>
#include <cmath>

using namespace llvm;

STATISTIC(NumIters     , "Number of iterations performed");
STATISTIC(NumBacktracks, "Number of times we had to backtrack");
STATISTIC(NumCoalesce,   "Number of copies coalesced");
STATISTIC(NumDowngrade,  "Number of registers downgraded");

static cl::opt<bool>
NewHeuristic("new-spilling-heuristic",
             cl::desc("Use new spilling heuristic"),
             cl::init(false), cl::Hidden);

static cl::opt<bool>
PreSplitIntervals("pre-alloc-split",
                  cl::desc("Pre-register allocation live interval splitting"),
                  cl::init(false), cl::Hidden);

static cl::opt<bool>
TrivCoalesceEnds("trivial-coalesce-ends",
                  cl::desc("Attempt trivial coalescing of interval ends"),
                  cl::init(false), cl::Hidden);

static RegisterRegAlloc
linearscanRegAlloc("linearscan", "linear scan register allocator",
                   createLinearScanRegisterAllocator);

namespace {
  // When we allocate a register, add it to a fixed-size queue of
  // registers to skip in subsequent allocations. This trades a small
  // amount of register pressure and increased spills for flexibility in
  // the post-pass scheduler.
  //
  // Note that in a the number of registers used for reloading spills
  // will be one greater than the value of this option.
  //
  // One big limitation of this is that it doesn't differentiate between
  // different register classes. So on x86-64, if there is xmm register
  // pressure, it can caused fewer GPRs to be held in the queue.
  static cl::opt<unsigned>
  NumRecentlyUsedRegs("linearscan-skip-count",
                      cl::desc("Number of registers for linearscan to remember"
                               "to skip."),
                      cl::init(0),
                      cl::Hidden);
 
  struct RALinScan : public MachineFunctionPass {
    static char ID;
    RALinScan() : MachineFunctionPass(&ID) {
      // Initialize the queue to record recently-used registers.
      if (NumRecentlyUsedRegs > 0)
        RecentRegs.resize(NumRecentlyUsedRegs, 0);
      RecentNext = RecentRegs.begin();
    }

    typedef std::pair<LiveInterval*, LiveInterval::iterator> IntervalPtr;
    typedef SmallVector<IntervalPtr, 32> IntervalPtrs;
  private:
    /// RelatedRegClasses - This structure is built the first time a function is
    /// compiled, and keeps track of which register classes have registers that
    /// belong to multiple classes or have aliases that are in other classes.
    EquivalenceClasses<const TargetRegisterClass*> RelatedRegClasses;
    DenseMap<unsigned, const TargetRegisterClass*> OneClassForEachPhysReg;

    // NextReloadMap - For each register in the map, it maps to the another
    // register which is defined by a reload from the same stack slot and
    // both reloads are in the same basic block.
    DenseMap<unsigned, unsigned> NextReloadMap;

    // DowngradedRegs - A set of registers which are being "downgraded", i.e.
    // un-favored for allocation.
    SmallSet<unsigned, 8> DowngradedRegs;

    // DowngradeMap - A map from virtual registers to physical registers being
    // downgraded for the virtual registers.
    DenseMap<unsigned, unsigned> DowngradeMap;

    MachineFunction* mf_;
    MachineRegisterInfo* mri_;
    const TargetMachine* tm_;
    const TargetRegisterInfo* tri_;
    const TargetInstrInfo* tii_;
    BitVector allocatableRegs_;
    LiveIntervals* li_;
    LiveStacks* ls_;
    MachineLoopInfo *loopInfo;

    /// handled_ - Intervals are added to the handled_ set in the order of their
    /// start value.  This is uses for backtracking.
    std::vector<LiveInterval*> handled_;

    /// fixed_ - Intervals that correspond to machine registers.
    ///
    IntervalPtrs fixed_;

    /// active_ - Intervals that are currently being processed, and which have a
    /// live range active for the current point.
    IntervalPtrs active_;

    /// inactive_ - Intervals that are currently being processed, but which have
    /// a hold at the current point.
    IntervalPtrs inactive_;

    typedef std::priority_queue<LiveInterval*,
                                SmallVector<LiveInterval*, 64>,
                                greater_ptr<LiveInterval> > IntervalHeap;
    IntervalHeap unhandled_;

    /// regUse_ - Tracks register usage.
    SmallVector<unsigned, 32> regUse_;
    SmallVector<unsigned, 32> regUseBackUp_;

    /// vrm_ - Tracks register assignments.
    VirtRegMap* vrm_;

    std::auto_ptr<VirtRegRewriter> rewriter_;

    std::auto_ptr<Spiller> spiller_;

    // The queue of recently-used registers.
    SmallVector<unsigned, 4> RecentRegs;
    SmallVector<unsigned, 4>::iterator RecentNext;

    // Record that we just picked this register.
    void recordRecentlyUsed(unsigned reg) {
      assert(reg != 0 && "Recently used register is NOREG!");
      if (!RecentRegs.empty()) {
        *RecentNext++ = reg;
        if (RecentNext == RecentRegs.end())
          RecentNext = RecentRegs.begin();
      }
    }

  public:
    virtual const char* getPassName() const {
      return "Linear Scan Register Allocator";
    }

    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.setPreservesCFG();
      AU.addRequired<LiveIntervals>();
      AU.addPreserved<SlotIndexes>();
      if (StrongPHIElim)
        AU.addRequiredID(StrongPHIEliminationID);
      // Make sure PassManager knows which analyses to make available
      // to coalescing and which analyses coalescing invalidates.
      AU.addRequiredTransitive<RegisterCoalescer>();
      AU.addRequired<CalculateSpillWeights>();
      if (PreSplitIntervals)
        AU.addRequiredID(PreAllocSplittingID);
      AU.addRequired<LiveStacks>();
      AU.addPreserved<LiveStacks>();
      AU.addRequired<MachineLoopInfo>();
      AU.addPreserved<MachineLoopInfo>();
      AU.addRequired<VirtRegMap>();
      AU.addPreserved<VirtRegMap>();
      AU.addPreservedID(MachineDominatorsID);
      MachineFunctionPass::getAnalysisUsage(AU);
    }

    /// runOnMachineFunction - register allocate the whole function
    bool runOnMachineFunction(MachineFunction&);

    // Determine if we skip this register due to its being recently used.
    bool isRecentlyUsed(unsigned reg) const {
      return std::find(RecentRegs.begin(), RecentRegs.end(), reg) !=
             RecentRegs.end();
    }

  private:
    /// linearScan - the linear scan algorithm
    void linearScan();

    /// initIntervalSets - initialize the interval sets.
    ///
    void initIntervalSets();

    /// processActiveIntervals - expire old intervals and move non-overlapping
    /// ones to the inactive list.
    void processActiveIntervals(SlotIndex CurPoint);

    /// processInactiveIntervals - expire old intervals and move overlapping
    /// ones to the active list.
    void processInactiveIntervals(SlotIndex CurPoint);

    /// hasNextReloadInterval - Return the next liveinterval that's being
    /// defined by a reload from the same SS as the specified one.
    LiveInterval *hasNextReloadInterval(LiveInterval *cur);

    /// DowngradeRegister - Downgrade a register for allocation.
    void DowngradeRegister(LiveInterval *li, unsigned Reg);

    /// UpgradeRegister - Upgrade a register for allocation.
    void UpgradeRegister(unsigned Reg);

    /// assignRegOrStackSlotAtInterval - assign a register if one
    /// is available, or spill.
    void assignRegOrStackSlotAtInterval(LiveInterval* cur);

    void updateSpillWeights(std::vector<float> &Weights,
                            unsigned reg, float weight,
                            const TargetRegisterClass *RC);

    /// findIntervalsToSpill - Determine the intervals to spill for the
    /// specified interval. It's passed the physical registers whose spill
    /// weight is the lowest among all the registers whose live intervals
    /// conflict with the interval.
    void findIntervalsToSpill(LiveInterval *cur,
                            std::vector<std::pair<unsigned,float> > &Candidates,
                            unsigned NumCands,
                            SmallVector<LiveInterval*, 8> &SpillIntervals);

    /// attemptTrivialCoalescing - If a simple interval is defined by a copy,
    /// try to allocate the definition to the same register as the source,
    /// if the register is not defined during the life time of the interval.
    /// This eliminates a copy, and is used to coalesce copies which were not
    /// coalesced away before allocation either due to dest and src being in
    /// different register classes or because the coalescer was overly
    /// conservative.
    unsigned attemptTrivialCoalescing(LiveInterval &cur, unsigned Reg);

    ///
    /// Register usage / availability tracking helpers.
    ///

    void initRegUses() {
      regUse_.resize(tri_->getNumRegs(), 0);
      regUseBackUp_.resize(tri_->getNumRegs(), 0);
    }

    void finalizeRegUses() {
#ifndef NDEBUG
      // Verify all the registers are "freed".
      bool Error = false;
      for (unsigned i = 0, e = tri_->getNumRegs(); i != e; ++i) {
        if (regUse_[i] != 0) {
          dbgs() << tri_->getName(i) << " is still in use!\n";
          Error = true;
        }
      }
      if (Error)
        llvm_unreachable(0);
#endif
      regUse_.clear();
      regUseBackUp_.clear();
    }

    void addRegUse(unsigned physReg) {
      assert(TargetRegisterInfo::isPhysicalRegister(physReg) &&
             "should be physical register!");
      ++regUse_[physReg];
      for (const unsigned* as = tri_->getAliasSet(physReg); *as; ++as)
        ++regUse_[*as];
    }

    void delRegUse(unsigned physReg) {
      assert(TargetRegisterInfo::isPhysicalRegister(physReg) &&
             "should be physical register!");
      assert(regUse_[physReg] != 0);
      --regUse_[physReg];
      for (const unsigned* as = tri_->getAliasSet(physReg); *as; ++as) {
        assert(regUse_[*as] != 0);
        --regUse_[*as];
      }
    }

    bool isRegAvail(unsigned physReg) const {
      assert(TargetRegisterInfo::isPhysicalRegister(physReg) &&
             "should be physical register!");
      return regUse_[physReg] == 0;
    }

    void backUpRegUses() {
      regUseBackUp_ = regUse_;
    }

    void restoreRegUses() {
      regUse_ = regUseBackUp_;
    }

    ///
    /// Register handling helpers.
    ///

    /// getFreePhysReg - return a free physical register for this virtual
    /// register interval if we have one, otherwise return 0.
    unsigned getFreePhysReg(LiveInterval* cur);
    unsigned getFreePhysReg(LiveInterval* cur,
                            const TargetRegisterClass *RC,
                            unsigned MaxInactiveCount,
                            SmallVector<unsigned, 256> &inactiveCounts,
                            bool SkipDGRegs);

    void ComputeRelatedRegClasses();

    template <typename ItTy>
    void printIntervals(const char* const str, ItTy i, ItTy e) const {
      DEBUG({
          if (str)
            dbgs() << str << " intervals:\n";

          for (; i != e; ++i) {
            dbgs() << "\t" << *i->first << " -> ";

            unsigned reg = i->first->reg;
            if (TargetRegisterInfo::isVirtualRegister(reg))
              reg = vrm_->getPhys(reg);

            dbgs() << tri_->getName(reg) << '\n';
          }
        });
    }
  };
  char RALinScan::ID = 0;
}

INITIALIZE_PASS(RALinScan, "linearscan-regalloc",
                "Linear Scan Register Allocator", false, false);

void RALinScan::ComputeRelatedRegClasses() {
  // First pass, add all reg classes to the union, and determine at least one
  // reg class that each register is in.
  bool HasAliases = false;
  for (TargetRegisterInfo::regclass_iterator RCI = tri_->regclass_begin(),
       E = tri_->regclass_end(); RCI != E; ++RCI) {
    RelatedRegClasses.insert(*RCI);
    for (TargetRegisterClass::iterator I = (*RCI)->begin(), E = (*RCI)->end();
         I != E; ++I) {
      HasAliases = HasAliases || *tri_->getAliasSet(*I) != 0;
      
      const TargetRegisterClass *&PRC = OneClassForEachPhysReg[*I];
      if (PRC) {
        // Already processed this register.  Just make sure we know that
        // multiple register classes share a register.
        RelatedRegClasses.unionSets(PRC, *RCI);
      } else {
        PRC = *RCI;
      }
    }
  }
  
  // Second pass, now that we know conservatively what register classes each reg
  // belongs to, add info about aliases.  We don't need to do this for targets
  // without register aliases.
  if (HasAliases)
    for (DenseMap<unsigned, const TargetRegisterClass*>::iterator
         I = OneClassForEachPhysReg.begin(), E = OneClassForEachPhysReg.end();
         I != E; ++I)
      for (const unsigned *AS = tri_->getAliasSet(I->first); *AS; ++AS)
        RelatedRegClasses.unionSets(I->second, OneClassForEachPhysReg[*AS]);
}

/// attemptTrivialCoalescing - If a simple interval is defined by a copy, try
/// allocate the definition the same register as the source register if the
/// register is not defined during live time of the interval. If the interval is
/// killed by a copy, try to use the destination register. This eliminates a
/// copy. This is used to coalesce copies which were not coalesced away before
/// allocation either due to dest and src being in different register classes or
/// because the coalescer was overly conservative.
unsigned RALinScan::attemptTrivialCoalescing(LiveInterval &cur, unsigned Reg) {
  unsigned Preference = vrm_->getRegAllocPref(cur.reg);
  if ((Preference && Preference == Reg) || !cur.containsOneValue())
    return Reg;

  // We cannot handle complicated live ranges. Simple linear stuff only.
  if (cur.ranges.size() != 1)
    return Reg;

  const LiveRange &range = cur.ranges.front();

  VNInfo *vni = range.valno;
  if (vni->isUnused())
    return Reg;

  unsigned CandReg;
  {
    MachineInstr *CopyMI;
    if (vni->def != SlotIndex() && vni->isDefAccurate() &&
        (CopyMI = li_->getInstructionFromIndex(vni->def)) && CopyMI->isCopy())
      // Defined by a copy, try to extend SrcReg forward
      CandReg = CopyMI->getOperand(1).getReg();
    else if (TrivCoalesceEnds &&
            (CopyMI = li_->getInstructionFromIndex(range.end.getBaseIndex())) &&
             CopyMI->isCopy() && cur.reg == CopyMI->getOperand(1).getReg())
      // Only used by a copy, try to extend DstReg backwards
      CandReg = CopyMI->getOperand(0).getReg();
    else
      return Reg;
  }

  if (TargetRegisterInfo::isVirtualRegister(CandReg)) {
    if (!vrm_->isAssignedReg(CandReg))
      return Reg;
    CandReg = vrm_->getPhys(CandReg);
  }
  if (Reg == CandReg)
    return Reg;

  const TargetRegisterClass *RC = mri_->getRegClass(cur.reg);
  if (!RC->contains(CandReg))
    return Reg;

  if (li_->conflictsWithPhysReg(cur, *vrm_, CandReg))
    return Reg;

  // Try to coalesce.
  DEBUG(dbgs() << "Coalescing: " << cur << " -> " << tri_->getName(CandReg)
        << '\n');
  vrm_->clearVirt(cur.reg);
  vrm_->assignVirt2Phys(cur.reg, CandReg);

  ++NumCoalesce;
  return CandReg;
}

bool RALinScan::runOnMachineFunction(MachineFunction &fn) {
  mf_ = &fn;
  mri_ = &fn.getRegInfo();
  tm_ = &fn.getTarget();
  tri_ = tm_->getRegisterInfo();
  tii_ = tm_->getInstrInfo();
  allocatableRegs_ = tri_->getAllocatableSet(fn);
  li_ = &getAnalysis<LiveIntervals>();
  ls_ = &getAnalysis<LiveStacks>();
  loopInfo = &getAnalysis<MachineLoopInfo>();

  // We don't run the coalescer here because we have no reason to
  // interact with it.  If the coalescer requires interaction, it
  // won't do anything.  If it doesn't require interaction, we assume
  // it was run as a separate pass.

  // If this is the first function compiled, compute the related reg classes.
  if (RelatedRegClasses.empty())
    ComputeRelatedRegClasses();

  // Also resize register usage trackers.
  initRegUses();

  vrm_ = &getAnalysis<VirtRegMap>();
  if (!rewriter_.get()) rewriter_.reset(createVirtRegRewriter());
  
  spiller_.reset(createSpiller(*this, *mf_, *vrm_));
  
  initIntervalSets();

  linearScan();

  // Rewrite spill code and update the PhysRegsUsed set.
  rewriter_->runOnMachineFunction(*mf_, *vrm_, li_);

  assert(unhandled_.empty() && "Unhandled live intervals remain!");

  finalizeRegUses();

  fixed_.clear();
  active_.clear();
  inactive_.clear();
  handled_.clear();
  NextReloadMap.clear();
  DowngradedRegs.clear();
  DowngradeMap.clear();
  spiller_.reset(0);

  return true;
}

/// initIntervalSets - initialize the interval sets.
///
void RALinScan::initIntervalSets()
{
  assert(unhandled_.empty() && fixed_.empty() &&
         active_.empty() && inactive_.empty() &&
         "interval sets should be empty on initialization");

  handled_.reserve(li_->getNumIntervals());

  for (LiveIntervals::iterator i = li_->begin(), e = li_->end(); i != e; ++i) {
    if (TargetRegisterInfo::isPhysicalRegister(i->second->reg)) {
      if (!i->second->empty()) {
        mri_->setPhysRegUsed(i->second->reg);
        fixed_.push_back(std::make_pair(i->second, i->second->begin()));
      }
    } else {
      if (i->second->empty()) {
        assignRegOrStackSlotAtInterval(i->second);
      }
      else
        unhandled_.push(i->second);
    }
  }
}

void RALinScan::linearScan() {
  // linear scan algorithm
  DEBUG({
      dbgs() << "********** LINEAR SCAN **********\n"
             << "********** Function: " 
             << mf_->getFunction()->getName() << '\n';
      printIntervals("fixed", fixed_.begin(), fixed_.end());
    });

  while (!unhandled_.empty()) {
    // pick the interval with the earliest start point
    LiveInterval* cur = unhandled_.top();
    unhandled_.pop();
    ++NumIters;
    DEBUG(dbgs() << "\n*** CURRENT ***: " << *cur << '\n');

    assert(!cur->empty() && "Empty interval in unhandled set.");

    processActiveIntervals(cur->beginIndex());
    processInactiveIntervals(cur->beginIndex());

    assert(TargetRegisterInfo::isVirtualRegister(cur->reg) &&
           "Can only allocate virtual registers!");

    // Allocating a virtual register. try to find a free
    // physical register or spill an interval (possibly this one) in order to
    // assign it one.
    assignRegOrStackSlotAtInterval(cur);

    DEBUG({
        printIntervals("active", active_.begin(), active_.end());
        printIntervals("inactive", inactive_.begin(), inactive_.end());
      });
  }

  // Expire any remaining active intervals
  while (!active_.empty()) {
    IntervalPtr &IP = active_.back();
    unsigned reg = IP.first->reg;
    DEBUG(dbgs() << "\tinterval " << *IP.first << " expired\n");
    assert(TargetRegisterInfo::isVirtualRegister(reg) &&
           "Can only allocate virtual registers!");
    reg = vrm_->getPhys(reg);
    delRegUse(reg);
    active_.pop_back();
  }

  // Expire any remaining inactive intervals
  DEBUG({
      for (IntervalPtrs::reverse_iterator
             i = inactive_.rbegin(); i != inactive_.rend(); ++i)
        dbgs() << "\tinterval " << *i->first << " expired\n";
    });
  inactive_.clear();

  // Add live-ins to every BB except for entry. Also perform trivial coalescing.
  MachineFunction::iterator EntryMBB = mf_->begin();
  SmallVector<MachineBasicBlock*, 8> LiveInMBBs;
  for (LiveIntervals::iterator i = li_->begin(), e = li_->end(); i != e; ++i) {
    LiveInterval &cur = *i->second;
    unsigned Reg = 0;
    bool isPhys = TargetRegisterInfo::isPhysicalRegister(cur.reg);
    if (isPhys)
      Reg = cur.reg;
    else if (vrm_->isAssignedReg(cur.reg))
      Reg = attemptTrivialCoalescing(cur, vrm_->getPhys(cur.reg));
    if (!Reg)
      continue;
    // Ignore splited live intervals.
    if (!isPhys && vrm_->getPreSplitReg(cur.reg))
      continue;

    for (LiveInterval::Ranges::const_iterator I = cur.begin(), E = cur.end();
         I != E; ++I) {
      const LiveRange &LR = *I;
      if (li_->findLiveInMBBs(LR.start, LR.end, LiveInMBBs)) {
        for (unsigned i = 0, e = LiveInMBBs.size(); i != e; ++i)
          if (LiveInMBBs[i] != EntryMBB) {
            assert(TargetRegisterInfo::isPhysicalRegister(Reg) &&
                   "Adding a virtual register to livein set?");
            LiveInMBBs[i]->addLiveIn(Reg);
          }
        LiveInMBBs.clear();
      }
    }
  }

  DEBUG(dbgs() << *vrm_);

  // Look for physical registers that end up not being allocated even though
  // register allocator had to spill other registers in its register class.
  if (ls_->getNumIntervals() == 0)
    return;
  if (!vrm_->FindUnusedRegisters(li_))
    return;
}

/// processActiveIntervals - expire old intervals and move non-overlapping ones
/// to the inactive list.
void RALinScan::processActiveIntervals(SlotIndex CurPoint)
{
  DEBUG(dbgs() << "\tprocessing active intervals:\n");

  for (unsigned i = 0, e = active_.size(); i != e; ++i) {
    LiveInterval *Interval = active_[i].first;
    LiveInterval::iterator IntervalPos = active_[i].second;
    unsigned reg = Interval->reg;

    IntervalPos = Interval->advanceTo(IntervalPos, CurPoint);

    if (IntervalPos == Interval->end()) {     // Remove expired intervals.
      DEBUG(dbgs() << "\t\tinterval " << *Interval << " expired\n");
      assert(TargetRegisterInfo::isVirtualRegister(reg) &&
             "Can only allocate virtual registers!");
      reg = vrm_->getPhys(reg);
      delRegUse(reg);

      // Pop off the end of the list.
      active_[i] = active_.back();
      active_.pop_back();
      --i; --e;

    } else if (IntervalPos->start > CurPoint) {
      // Move inactive intervals to inactive list.
      DEBUG(dbgs() << "\t\tinterval " << *Interval << " inactive\n");
      assert(TargetRegisterInfo::isVirtualRegister(reg) &&
             "Can only allocate virtual registers!");
      reg = vrm_->getPhys(reg);
      delRegUse(reg);
      // add to inactive.
      inactive_.push_back(std::make_pair(Interval, IntervalPos));

      // Pop off the end of the list.
      active_[i] = active_.back();
      active_.pop_back();
      --i; --e;
    } else {
      // Otherwise, just update the iterator position.
      active_[i].second = IntervalPos;
    }
  }
}

/// processInactiveIntervals - expire old intervals and move overlapping
/// ones to the active list.
void RALinScan::processInactiveIntervals(SlotIndex CurPoint)
{
  DEBUG(dbgs() << "\tprocessing inactive intervals:\n");

  for (unsigned i = 0, e = inactive_.size(); i != e; ++i) {
    LiveInterval *Interval = inactive_[i].first;
    LiveInterval::iterator IntervalPos = inactive_[i].second;
    unsigned reg = Interval->reg;

    IntervalPos = Interval->advanceTo(IntervalPos, CurPoint);

    if (IntervalPos == Interval->end()) {       // remove expired intervals.
      DEBUG(dbgs() << "\t\tinterval " << *Interval << " expired\n");

      // Pop off the end of the list.
      inactive_[i] = inactive_.back();
      inactive_.pop_back();
      --i; --e;
    } else if (IntervalPos->start <= CurPoint) {
      // move re-activated intervals in active list
      DEBUG(dbgs() << "\t\tinterval " << *Interval << " active\n");
      assert(TargetRegisterInfo::isVirtualRegister(reg) &&
             "Can only allocate virtual registers!");
      reg = vrm_->getPhys(reg);
      addRegUse(reg);
      // add to active
      active_.push_back(std::make_pair(Interval, IntervalPos));

      // Pop off the end of the list.
      inactive_[i] = inactive_.back();
      inactive_.pop_back();
      --i; --e;
    } else {
      // Otherwise, just update the iterator position.
      inactive_[i].second = IntervalPos;
    }
  }
}

/// updateSpillWeights - updates the spill weights of the specifed physical
/// register and its weight.
void RALinScan::updateSpillWeights(std::vector<float> &Weights,
                                   unsigned reg, float weight,
                                   const TargetRegisterClass *RC) {
  SmallSet<unsigned, 4> Processed;
  SmallSet<unsigned, 4> SuperAdded;
  SmallVector<unsigned, 4> Supers;
  Weights[reg] += weight;
  Processed.insert(reg);
  for (const unsigned* as = tri_->getAliasSet(reg); *as; ++as) {
    Weights[*as] += weight;
    Processed.insert(*as);
    if (tri_->isSubRegister(*as, reg) &&
        SuperAdded.insert(*as) &&
        RC->contains(*as)) {
      Supers.push_back(*as);
    }
  }

  // If the alias is a super-register, and the super-register is in the
  // register class we are trying to allocate. Then add the weight to all
  // sub-registers of the super-register even if they are not aliases.
  // e.g. allocating for GR32, bh is not used, updating bl spill weight.
  //      bl should get the same spill weight otherwise it will be choosen
  //      as a spill candidate since spilling bh doesn't make ebx available.
  for (unsigned i = 0, e = Supers.size(); i != e; ++i) {
    for (const unsigned *sr = tri_->getSubRegisters(Supers[i]); *sr; ++sr)
      if (!Processed.count(*sr))
        Weights[*sr] += weight;
  }
}

static
RALinScan::IntervalPtrs::iterator
FindIntervalInVector(RALinScan::IntervalPtrs &IP, LiveInterval *LI) {
  for (RALinScan::IntervalPtrs::iterator I = IP.begin(), E = IP.end();
       I != E; ++I)
    if (I->first == LI) return I;
  return IP.end();
}

static void RevertVectorIteratorsTo(RALinScan::IntervalPtrs &V, SlotIndex Point){
  for (unsigned i = 0, e = V.size(); i != e; ++i) {
    RALinScan::IntervalPtr &IP = V[i];
    LiveInterval::iterator I = std::upper_bound(IP.first->begin(),
                                                IP.second, Point);
    if (I != IP.first->begin()) --I;
    IP.second = I;
  }
}

/// addStackInterval - Create a LiveInterval for stack if the specified live
/// interval has been spilled.
static void addStackInterval(LiveInterval *cur, LiveStacks *ls_,
                             LiveIntervals *li_,
                             MachineRegisterInfo* mri_, VirtRegMap &vrm_) {
  int SS = vrm_.getStackSlot(cur->reg);
  if (SS == VirtRegMap::NO_STACK_SLOT)
    return;

  const TargetRegisterClass *RC = mri_->getRegClass(cur->reg);
  LiveInterval &SI = ls_->getOrCreateInterval(SS, RC);

  VNInfo *VNI;
  if (SI.hasAtLeastOneValue())
    VNI = SI.getValNumInfo(0);
  else
    VNI = SI.getNextValue(SlotIndex(), 0, false,
                          ls_->getVNInfoAllocator());

  LiveInterval &RI = li_->getInterval(cur->reg);
  // FIXME: This may be overly conservative.
  SI.MergeRangesInAsValue(RI, VNI);
}

/// getConflictWeight - Return the number of conflicts between cur
/// live interval and defs and uses of Reg weighted by loop depthes.
static
float getConflictWeight(LiveInterval *cur, unsigned Reg, LiveIntervals *li_,
                        MachineRegisterInfo *mri_,
                        MachineLoopInfo *loopInfo) {
  float Conflicts = 0;
  for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(Reg),
         E = mri_->reg_end(); I != E; ++I) {
    MachineInstr *MI = &*I;
    if (cur->liveAt(li_->getInstructionIndex(MI))) {
      unsigned loopDepth = loopInfo->getLoopDepth(MI->getParent());
      Conflicts += std::pow(10.0f, (float)loopDepth);
    }
  }
  return Conflicts;
}

/// findIntervalsToSpill - Determine the intervals to spill for the
/// specified interval. It's passed the physical registers whose spill
/// weight is the lowest among all the registers whose live intervals
/// conflict with the interval.
void RALinScan::findIntervalsToSpill(LiveInterval *cur,
                            std::vector<std::pair<unsigned,float> > &Candidates,
                            unsigned NumCands,
                            SmallVector<LiveInterval*, 8> &SpillIntervals) {
  // We have figured out the *best* register to spill. But there are other
  // registers that are pretty good as well (spill weight within 3%). Spill
  // the one that has fewest defs and uses that conflict with cur.
  float Conflicts[3] = { 0.0f, 0.0f, 0.0f };
  SmallVector<LiveInterval*, 8> SLIs[3];

  DEBUG({
      dbgs() << "\tConsidering " << NumCands << " candidates: ";
      for (unsigned i = 0; i != NumCands; ++i)
        dbgs() << tri_->getName(Candidates[i].first) << " ";
      dbgs() << "\n";
    });
  
  // Calculate the number of conflicts of each candidate.
  for (IntervalPtrs::iterator i = active_.begin(); i != active_.end(); ++i) {
    unsigned Reg = i->first->reg;
    unsigned PhysReg = vrm_->getPhys(Reg);
    if (!cur->overlapsFrom(*i->first, i->second))
      continue;
    for (unsigned j = 0; j < NumCands; ++j) {
      unsigned Candidate = Candidates[j].first;
      if (tri_->regsOverlap(PhysReg, Candidate)) {
        if (NumCands > 1)
          Conflicts[j] += getConflictWeight(cur, Reg, li_, mri_, loopInfo);
        SLIs[j].push_back(i->first);
      }
    }
  }

  for (IntervalPtrs::iterator i = inactive_.begin(); i != inactive_.end(); ++i){
    unsigned Reg = i->first->reg;
    unsigned PhysReg = vrm_->getPhys(Reg);
    if (!cur->overlapsFrom(*i->first, i->second-1))
      continue;
    for (unsigned j = 0; j < NumCands; ++j) {
      unsigned Candidate = Candidates[j].first;
      if (tri_->regsOverlap(PhysReg, Candidate)) {
        if (NumCands > 1)
          Conflicts[j] += getConflictWeight(cur, Reg, li_, mri_, loopInfo);
        SLIs[j].push_back(i->first);
      }
    }
  }

  // Which is the best candidate?
  unsigned BestCandidate = 0;
  float MinConflicts = Conflicts[0];
  for (unsigned i = 1; i != NumCands; ++i) {
    if (Conflicts[i] < MinConflicts) {
      BestCandidate = i;
      MinConflicts = Conflicts[i];
    }
  }

  std::copy(SLIs[BestCandidate].begin(), SLIs[BestCandidate].end(),
            std::back_inserter(SpillIntervals));
}

namespace {
  struct WeightCompare {
  private:
    const RALinScan &Allocator;

  public:
    WeightCompare(const RALinScan &Alloc) : Allocator(Alloc) {}

    typedef std::pair<unsigned, float> RegWeightPair;
    bool operator()(const RegWeightPair &LHS, const RegWeightPair &RHS) const {
      return LHS.second < RHS.second && !Allocator.isRecentlyUsed(LHS.first);
    }
  };
}

static bool weightsAreClose(float w1, float w2) {
  if (!NewHeuristic)
    return false;

  float diff = w1 - w2;
  if (diff <= 0.02f)  // Within 0.02f
    return true;
  return (diff / w2) <= 0.05f;  // Within 5%.
}

LiveInterval *RALinScan::hasNextReloadInterval(LiveInterval *cur) {
  DenseMap<unsigned, unsigned>::iterator I = NextReloadMap.find(cur->reg);
  if (I == NextReloadMap.end())
    return 0;
  return &li_->getInterval(I->second);
}

void RALinScan::DowngradeRegister(LiveInterval *li, unsigned Reg) {
  bool isNew = DowngradedRegs.insert(Reg);
  isNew = isNew; // Silence compiler warning.
  assert(isNew && "Multiple reloads holding the same register?");
  DowngradeMap.insert(std::make_pair(li->reg, Reg));
  for (const unsigned *AS = tri_->getAliasSet(Reg); *AS; ++AS) {
    isNew = DowngradedRegs.insert(*AS);
    isNew = isNew; // Silence compiler warning.
    assert(isNew && "Multiple reloads holding the same register?");
    DowngradeMap.insert(std::make_pair(li->reg, *AS));
  }
  ++NumDowngrade;
}

void RALinScan::UpgradeRegister(unsigned Reg) {
  if (Reg) {
    DowngradedRegs.erase(Reg);
    for (const unsigned *AS = tri_->getAliasSet(Reg); *AS; ++AS)
      DowngradedRegs.erase(*AS);
  }
}

namespace {
  struct LISorter {
    bool operator()(LiveInterval* A, LiveInterval* B) {
      return A->beginIndex() < B->beginIndex();
    }
  };
}

/// assignRegOrStackSlotAtInterval - assign a register if one is available, or
/// spill.
void RALinScan::assignRegOrStackSlotAtInterval(LiveInterval* cur) {
  DEBUG(dbgs() << "\tallocating current interval: ");

  // This is an implicitly defined live interval, just assign any register.
  const TargetRegisterClass *RC = mri_->getRegClass(cur->reg);
  if (cur->empty()) {
    unsigned physReg = vrm_->getRegAllocPref(cur->reg);
    if (!physReg)
      physReg = *RC->allocation_order_begin(*mf_);
    DEBUG(dbgs() <<  tri_->getName(physReg) << '\n');
    // Note the register is not really in use.
    vrm_->assignVirt2Phys(cur->reg, physReg);
    return;
  }

  backUpRegUses();

  std::vector<std::pair<unsigned, float> > SpillWeightsToAdd;
  SlotIndex StartPosition = cur->beginIndex();
  const TargetRegisterClass *RCLeader = RelatedRegClasses.getLeaderValue(RC);

  // If start of this live interval is defined by a move instruction and its
  // source is assigned a physical register that is compatible with the target
  // register class, then we should try to assign it the same register.
  // This can happen when the move is from a larger register class to a smaller
  // one, e.g. X86::mov32to32_. These move instructions are not coalescable.
  if (!vrm_->getRegAllocPref(cur->reg) && cur->hasAtLeastOneValue()) {
    VNInfo *vni = cur->begin()->valno;
    if ((vni->def != SlotIndex()) && !vni->isUnused() &&
         vni->isDefAccurate()) {
      MachineInstr *CopyMI = li_->getInstructionFromIndex(vni->def);
      if (CopyMI && CopyMI->isCopy()) {
        unsigned DstSubReg = CopyMI->getOperand(0).getSubReg();
        unsigned SrcReg = CopyMI->getOperand(1).getReg();
        unsigned SrcSubReg = CopyMI->getOperand(1).getSubReg();
        unsigned Reg = 0;
        if (TargetRegisterInfo::isPhysicalRegister(SrcReg))
          Reg = SrcReg;
        else if (vrm_->isAssignedReg(SrcReg))
          Reg = vrm_->getPhys(SrcReg);
        if (Reg) {
          if (SrcSubReg)
            Reg = tri_->getSubReg(Reg, SrcSubReg);
          if (DstSubReg)
            Reg = tri_->getMatchingSuperReg(Reg, DstSubReg, RC);
          if (Reg && allocatableRegs_[Reg] && RC->contains(Reg))
            mri_->setRegAllocationHint(cur->reg, 0, Reg);
        }
      }
    }
  }

  // For every interval in inactive we overlap with, mark the
  // register as not free and update spill weights.
  for (IntervalPtrs::const_iterator i = inactive_.begin(),
         e = inactive_.end(); i != e; ++i) {
    unsigned Reg = i->first->reg;
    assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
           "Can only allocate virtual registers!");
    const TargetRegisterClass *RegRC = mri_->getRegClass(Reg);
    // If this is not in a related reg class to the register we're allocating, 
    // don't check it.
    if (RelatedRegClasses.getLeaderValue(RegRC) == RCLeader &&
        cur->overlapsFrom(*i->first, i->second-1)) {
      Reg = vrm_->getPhys(Reg);
      addRegUse(Reg);
      SpillWeightsToAdd.push_back(std::make_pair(Reg, i->first->weight));
    }
  }
  
  // Speculatively check to see if we can get a register right now.  If not,
  // we know we won't be able to by adding more constraints.  If so, we can
  // check to see if it is valid.  Doing an exhaustive search of the fixed_ list
  // is very bad (it contains all callee clobbered registers for any functions
  // with a call), so we want to avoid doing that if possible.
  unsigned physReg = getFreePhysReg(cur);
  unsigned BestPhysReg = physReg;
  if (physReg) {
    // We got a register.  However, if it's in the fixed_ list, we might
    // conflict with it.  Check to see if we conflict with it or any of its
    // aliases.
    SmallSet<unsigned, 8> RegAliases;
    for (const unsigned *AS = tri_->getAliasSet(physReg); *AS; ++AS)
      RegAliases.insert(*AS);
    
    bool ConflictsWithFixed = false;
    for (unsigned i = 0, e = fixed_.size(); i != e; ++i) {
      IntervalPtr &IP = fixed_[i];
      if (physReg == IP.first->reg || RegAliases.count(IP.first->reg)) {
        // Okay, this reg is on the fixed list.  Check to see if we actually
        // conflict.
        LiveInterval *I = IP.first;
        if (I->endIndex() > StartPosition) {
          LiveInterval::iterator II = I->advanceTo(IP.second, StartPosition);
          IP.second = II;
          if (II != I->begin() && II->start > StartPosition)
            --II;
          if (cur->overlapsFrom(*I, II)) {
            ConflictsWithFixed = true;
            break;
          }
        }
      }
    }
    
    // Okay, the register picked by our speculative getFreePhysReg call turned
    // out to be in use.  Actually add all of the conflicting fixed registers to
    // regUse_ so we can do an accurate query.
    if (ConflictsWithFixed) {
      // For every interval in fixed we overlap with, mark the register as not
      // free and update spill weights.
      for (unsigned i = 0, e = fixed_.size(); i != e; ++i) {
        IntervalPtr &IP = fixed_[i];
        LiveInterval *I = IP.first;

        const TargetRegisterClass *RegRC = OneClassForEachPhysReg[I->reg];
        if (RelatedRegClasses.getLeaderValue(RegRC) == RCLeader &&       
            I->endIndex() > StartPosition) {
          LiveInterval::iterator II = I->advanceTo(IP.second, StartPosition);
          IP.second = II;
          if (II != I->begin() && II->start > StartPosition)
            --II;
          if (cur->overlapsFrom(*I, II)) {
            unsigned reg = I->reg;
            addRegUse(reg);
            SpillWeightsToAdd.push_back(std::make_pair(reg, I->weight));
          }
        }
      }

      // Using the newly updated regUse_ object, which includes conflicts in the
      // future, see if there are any registers available.
      physReg = getFreePhysReg(cur);
    }
  }
    
  // Restore the physical register tracker, removing information about the
  // future.
  restoreRegUses();
  
  // If we find a free register, we are done: assign this virtual to
  // the free physical register and add this interval to the active
  // list.
  if (physReg) {
    DEBUG(dbgs() <<  tri_->getName(physReg) << '\n');
    vrm_->assignVirt2Phys(cur->reg, physReg);
    addRegUse(physReg);
    active_.push_back(std::make_pair(cur, cur->begin()));
    handled_.push_back(cur);

    // "Upgrade" the physical register since it has been allocated.
    UpgradeRegister(physReg);
    if (LiveInterval *NextReloadLI = hasNextReloadInterval(cur)) {
      // "Downgrade" physReg to try to keep physReg from being allocated until
      // the next reload from the same SS is allocated. 
      mri_->setRegAllocationHint(NextReloadLI->reg, 0, physReg);
      DowngradeRegister(cur, physReg);
    }
    return;
  }
  DEBUG(dbgs() << "no free registers\n");

  // Compile the spill weights into an array that is better for scanning.
  std::vector<float> SpillWeights(tri_->getNumRegs(), 0.0f);
  for (std::vector<std::pair<unsigned, float> >::iterator
       I = SpillWeightsToAdd.begin(), E = SpillWeightsToAdd.end(); I != E; ++I)
    updateSpillWeights(SpillWeights, I->first, I->second, RC);
  
  // for each interval in active, update spill weights.
  for (IntervalPtrs::const_iterator i = active_.begin(), e = active_.end();
       i != e; ++i) {
    unsigned reg = i->first->reg;
    assert(TargetRegisterInfo::isVirtualRegister(reg) &&
           "Can only allocate virtual registers!");
    reg = vrm_->getPhys(reg);
    updateSpillWeights(SpillWeights, reg, i->first->weight, RC);
  }
 
  DEBUG(dbgs() << "\tassigning stack slot at interval "<< *cur << ":\n");

  // Find a register to spill.
  float minWeight = HUGE_VALF;
  unsigned minReg = 0;

  bool Found = false;
  std::vector<std::pair<unsigned,float> > RegsWeights;
  if (!minReg || SpillWeights[minReg] == HUGE_VALF)
    for (TargetRegisterClass::iterator i = RC->allocation_order_begin(*mf_),
           e = RC->allocation_order_end(*mf_); i != e; ++i) {
      unsigned reg = *i;
      float regWeight = SpillWeights[reg];
      // Skip recently allocated registers.
      if (minWeight > regWeight && !isRecentlyUsed(reg))
        Found = true;
      RegsWeights.push_back(std::make_pair(reg, regWeight));
    }
  
  // If we didn't find a register that is spillable, try aliases?
  if (!Found) {
    for (TargetRegisterClass::iterator i = RC->allocation_order_begin(*mf_),
           e = RC->allocation_order_end(*mf_); i != e; ++i) {
      unsigned reg = *i;
      // No need to worry about if the alias register size < regsize of RC.
      // We are going to spill all registers that alias it anyway.
      for (const unsigned* as = tri_->getAliasSet(reg); *as; ++as)
        RegsWeights.push_back(std::make_pair(*as, SpillWeights[*as]));
    }
  }

  // Sort all potential spill candidates by weight.
  std::sort(RegsWeights.begin(), RegsWeights.end(), WeightCompare(*this));
  minReg = RegsWeights[0].first;
  minWeight = RegsWeights[0].second;
  if (minWeight == HUGE_VALF) {
    // All registers must have inf weight. Just grab one!
    minReg = BestPhysReg ? BestPhysReg : *RC->allocation_order_begin(*mf_);
    if (cur->weight == HUGE_VALF ||
        li_->getApproximateInstructionCount(*cur) == 0) {
      // Spill a physical register around defs and uses.
      if (li_->spillPhysRegAroundRegDefsUses(*cur, minReg, *vrm_)) {
        // spillPhysRegAroundRegDefsUses may have invalidated iterator stored
        // in fixed_. Reset them.
        for (unsigned i = 0, e = fixed_.size(); i != e; ++i) {
          IntervalPtr &IP = fixed_[i];
          LiveInterval *I = IP.first;
          if (I->reg == minReg || tri_->isSubRegister(minReg, I->reg))
            IP.second = I->advanceTo(I->begin(), StartPosition);
        }

        DowngradedRegs.clear();
        assignRegOrStackSlotAtInterval(cur);
      } else {
        assert(false && "Ran out of registers during register allocation!");
        report_fatal_error("Ran out of registers during register allocation!");
      }
      return;
    }
  }

  // Find up to 3 registers to consider as spill candidates.
  unsigned LastCandidate = RegsWeights.size() >= 3 ? 3 : 1;
  while (LastCandidate > 1) {
    if (weightsAreClose(RegsWeights[LastCandidate-1].second, minWeight))
      break;
    --LastCandidate;
  }

  DEBUG({
      dbgs() << "\t\tregister(s) with min weight(s): ";

      for (unsigned i = 0; i != LastCandidate; ++i)
        dbgs() << tri_->getName(RegsWeights[i].first)
               << " (" << RegsWeights[i].second << ")\n";
    });

  // If the current has the minimum weight, we need to spill it and
  // add any added intervals back to unhandled, and restart
  // linearscan.
  if (cur->weight != HUGE_VALF && cur->weight <= minWeight) {
    DEBUG(dbgs() << "\t\t\tspilling(c): " << *cur << '\n');
    SmallVector<LiveInterval*, 8> spillIs;
    std::vector<LiveInterval*> added;
    spiller_->spill(cur, added, spillIs);

    std::sort(added.begin(), added.end(), LISorter());
    addStackInterval(cur, ls_, li_, mri_, *vrm_);
    if (added.empty())
      return;  // Early exit if all spills were folded.

    // Merge added with unhandled.  Note that we have already sorted
    // intervals returned by addIntervalsForSpills by their starting
    // point.
    // This also update the NextReloadMap. That is, it adds mapping from a
    // register defined by a reload from SS to the next reload from SS in the
    // same basic block.
    MachineBasicBlock *LastReloadMBB = 0;
    LiveInterval *LastReload = 0;
    int LastReloadSS = VirtRegMap::NO_STACK_SLOT;
    for (unsigned i = 0, e = added.size(); i != e; ++i) {
      LiveInterval *ReloadLi = added[i];
      if (ReloadLi->weight == HUGE_VALF &&
          li_->getApproximateInstructionCount(*ReloadLi) == 0) {
        SlotIndex ReloadIdx = ReloadLi->beginIndex();
        MachineBasicBlock *ReloadMBB = li_->getMBBFromIndex(ReloadIdx);
        int ReloadSS = vrm_->getStackSlot(ReloadLi->reg);
        if (LastReloadMBB == ReloadMBB && LastReloadSS == ReloadSS) {
          // Last reload of same SS is in the same MBB. We want to try to
          // allocate both reloads the same register and make sure the reg
          // isn't clobbered in between if at all possible.
          assert(LastReload->beginIndex() < ReloadIdx);
          NextReloadMap.insert(std::make_pair(LastReload->reg, ReloadLi->reg));
        }
        LastReloadMBB = ReloadMBB;
        LastReload = ReloadLi;
        LastReloadSS = ReloadSS;
      }
      unhandled_.push(ReloadLi);
    }
    return;
  }

  ++NumBacktracks;

  // Push the current interval back to unhandled since we are going
  // to re-run at least this iteration. Since we didn't modify it it
  // should go back right in the front of the list
  unhandled_.push(cur);

  assert(TargetRegisterInfo::isPhysicalRegister(minReg) &&
         "did not choose a register to spill?");

  // We spill all intervals aliasing the register with
  // minimum weight, rollback to the interval with the earliest
  // start point and let the linear scan algorithm run again
  SmallVector<LiveInterval*, 8> spillIs;

  // Determine which intervals have to be spilled.
  findIntervalsToSpill(cur, RegsWeights, LastCandidate, spillIs);

  // Set of spilled vregs (used later to rollback properly)
  SmallSet<unsigned, 8> spilled;

  // The earliest start of a Spilled interval indicates up to where
  // in handled we need to roll back
  assert(!spillIs.empty() && "No spill intervals?"); 
  SlotIndex earliestStart = spillIs[0]->beginIndex();
  
  // Spill live intervals of virtual regs mapped to the physical register we
  // want to clear (and its aliases).  We only spill those that overlap with the
  // current interval as the rest do not affect its allocation. we also keep
  // track of the earliest start of all spilled live intervals since this will
  // mark our rollback point.
  std::vector<LiveInterval*> added;
  while (!spillIs.empty()) {
    LiveInterval *sli = spillIs.back();
    spillIs.pop_back();
    DEBUG(dbgs() << "\t\t\tspilling(a): " << *sli << '\n');
    if (sli->beginIndex() < earliestStart)
      earliestStart = sli->beginIndex();
       
    spiller_->spill(sli, added, spillIs, &earliestStart);
    addStackInterval(sli, ls_, li_, mri_, *vrm_);
    spilled.insert(sli->reg);
  }

  DEBUG(dbgs() << "\t\trolling back to: " << earliestStart << '\n');

  // Scan handled in reverse order up to the earliest start of a
  // spilled live interval and undo each one, restoring the state of
  // unhandled.
  while (!handled_.empty()) {
    LiveInterval* i = handled_.back();
    // If this interval starts before t we are done.
    if (!i->empty() && i->beginIndex() < earliestStart)
      break;
    DEBUG(dbgs() << "\t\t\tundo changes for: " << *i << '\n');
    handled_.pop_back();

    // When undoing a live interval allocation we must know if it is active or
    // inactive to properly update regUse_ and the VirtRegMap.
    IntervalPtrs::iterator it;
    if ((it = FindIntervalInVector(active_, i)) != active_.end()) {
      active_.erase(it);
      assert(!TargetRegisterInfo::isPhysicalRegister(i->reg));
      if (!spilled.count(i->reg))
        unhandled_.push(i);
      delRegUse(vrm_->getPhys(i->reg));
      vrm_->clearVirt(i->reg);
    } else if ((it = FindIntervalInVector(inactive_, i)) != inactive_.end()) {
      inactive_.erase(it);
      assert(!TargetRegisterInfo::isPhysicalRegister(i->reg));
      if (!spilled.count(i->reg))
        unhandled_.push(i);
      vrm_->clearVirt(i->reg);
    } else {
      assert(TargetRegisterInfo::isVirtualRegister(i->reg) &&
             "Can only allocate virtual registers!");
      vrm_->clearVirt(i->reg);
      unhandled_.push(i);
    }

    DenseMap<unsigned, unsigned>::iterator ii = DowngradeMap.find(i->reg);
    if (ii == DowngradeMap.end())
      // It interval has a preference, it must be defined by a copy. Clear the
      // preference now since the source interval allocation may have been
      // undone as well.
      mri_->setRegAllocationHint(i->reg, 0, 0);
    else {
      UpgradeRegister(ii->second);
    }
  }

  // Rewind the iterators in the active, inactive, and fixed lists back to the
  // point we reverted to.
  RevertVectorIteratorsTo(active_, earliestStart);
  RevertVectorIteratorsTo(inactive_, earliestStart);
  RevertVectorIteratorsTo(fixed_, earliestStart);

  // Scan the rest and undo each interval that expired after t and
  // insert it in active (the next iteration of the algorithm will
  // put it in inactive if required)
  for (unsigned i = 0, e = handled_.size(); i != e; ++i) {
    LiveInterval *HI = handled_[i];
    if (!HI->expiredAt(earliestStart) &&
        HI->expiredAt(cur->beginIndex())) {
      DEBUG(dbgs() << "\t\t\tundo changes for: " << *HI << '\n');
      active_.push_back(std::make_pair(HI, HI->begin()));
      assert(!TargetRegisterInfo::isPhysicalRegister(HI->reg));
      addRegUse(vrm_->getPhys(HI->reg));
    }
  }

  // Merge added with unhandled.
  // This also update the NextReloadMap. That is, it adds mapping from a
  // register defined by a reload from SS to the next reload from SS in the
  // same basic block.
  MachineBasicBlock *LastReloadMBB = 0;
  LiveInterval *LastReload = 0;
  int LastReloadSS = VirtRegMap::NO_STACK_SLOT;
  std::sort(added.begin(), added.end(), LISorter());
  for (unsigned i = 0, e = added.size(); i != e; ++i) {
    LiveInterval *ReloadLi = added[i];
    if (ReloadLi->weight == HUGE_VALF &&
        li_->getApproximateInstructionCount(*ReloadLi) == 0) {
      SlotIndex ReloadIdx = ReloadLi->beginIndex();
      MachineBasicBlock *ReloadMBB = li_->getMBBFromIndex(ReloadIdx);
      int ReloadSS = vrm_->getStackSlot(ReloadLi->reg);
      if (LastReloadMBB == ReloadMBB && LastReloadSS == ReloadSS) {
        // Last reload of same SS is in the same MBB. We want to try to
        // allocate both reloads the same register and make sure the reg
        // isn't clobbered in between if at all possible.
        assert(LastReload->beginIndex() < ReloadIdx);
        NextReloadMap.insert(std::make_pair(LastReload->reg, ReloadLi->reg));
      }
      LastReloadMBB = ReloadMBB;
      LastReload = ReloadLi;
      LastReloadSS = ReloadSS;
    }
    unhandled_.push(ReloadLi);
  }
}

unsigned RALinScan::getFreePhysReg(LiveInterval* cur,
                                   const TargetRegisterClass *RC,
                                   unsigned MaxInactiveCount,
                                   SmallVector<unsigned, 256> &inactiveCounts,
                                   bool SkipDGRegs) {
  unsigned FreeReg = 0;
  unsigned FreeRegInactiveCount = 0;

  std::pair<unsigned, unsigned> Hint = mri_->getRegAllocationHint(cur->reg);
  // Resolve second part of the hint (if possible) given the current allocation.
  unsigned physReg = Hint.second;
  if (physReg &&
      TargetRegisterInfo::isVirtualRegister(physReg) && vrm_->hasPhys(physReg))
    physReg = vrm_->getPhys(physReg);

  TargetRegisterClass::iterator I, E;
  tie(I, E) = tri_->getAllocationOrder(RC, Hint.first, physReg, *mf_);
  assert(I != E && "No allocatable register in this register class!");

  // Scan for the first available register.
  for (; I != E; ++I) {
    unsigned Reg = *I;
    // Ignore "downgraded" registers.
    if (SkipDGRegs && DowngradedRegs.count(Reg))
      continue;
    // Skip recently allocated registers.
    if (isRegAvail(Reg) && !isRecentlyUsed(Reg)) {
      FreeReg = Reg;
      if (FreeReg < inactiveCounts.size())
        FreeRegInactiveCount = inactiveCounts[FreeReg];
      else
        FreeRegInactiveCount = 0;
      break;
    }
  }

  // If there are no free regs, or if this reg has the max inactive count,
  // return this register.
  if (FreeReg == 0 || FreeRegInactiveCount == MaxInactiveCount) {
    // Remember what register we picked so we can skip it next time.
    if (FreeReg != 0) recordRecentlyUsed(FreeReg);
    return FreeReg;
  }

  // Continue scanning the registers, looking for the one with the highest
  // inactive count.  Alkis found that this reduced register pressure very
  // slightly on X86 (in rev 1.94 of this file), though this should probably be
  // reevaluated now.
  for (; I != E; ++I) {
    unsigned Reg = *I;
    // Ignore "downgraded" registers.
    if (SkipDGRegs && DowngradedRegs.count(Reg))
      continue;
    if (isRegAvail(Reg) && Reg < inactiveCounts.size() &&
        FreeRegInactiveCount < inactiveCounts[Reg] && !isRecentlyUsed(Reg)) {
      FreeReg = Reg;
      FreeRegInactiveCount = inactiveCounts[Reg];
      if (FreeRegInactiveCount == MaxInactiveCount)
        break;    // We found the one with the max inactive count.
    }
  }

  // Remember what register we picked so we can skip it next time.
  recordRecentlyUsed(FreeReg);

  return FreeReg;
}

/// getFreePhysReg - return a free physical register for this virtual register
/// interval if we have one, otherwise return 0.
unsigned RALinScan::getFreePhysReg(LiveInterval *cur) {
  SmallVector<unsigned, 256> inactiveCounts;
  unsigned MaxInactiveCount = 0;
  
  const TargetRegisterClass *RC = mri_->getRegClass(cur->reg);
  const TargetRegisterClass *RCLeader = RelatedRegClasses.getLeaderValue(RC);
 
  for (IntervalPtrs::iterator i = inactive_.begin(), e = inactive_.end();
       i != e; ++i) {
    unsigned reg = i->first->reg;
    assert(TargetRegisterInfo::isVirtualRegister(reg) &&
           "Can only allocate virtual registers!");

    // If this is not in a related reg class to the register we're allocating, 
    // don't check it.
    const TargetRegisterClass *RegRC = mri_->getRegClass(reg);
    if (RelatedRegClasses.getLeaderValue(RegRC) == RCLeader) {
      reg = vrm_->getPhys(reg);
      if (inactiveCounts.size() <= reg)
        inactiveCounts.resize(reg+1);
      ++inactiveCounts[reg];
      MaxInactiveCount = std::max(MaxInactiveCount, inactiveCounts[reg]);
    }
  }

  // If copy coalescer has assigned a "preferred" register, check if it's
  // available first.
  unsigned Preference = vrm_->getRegAllocPref(cur->reg);
  if (Preference) {
    DEBUG(dbgs() << "(preferred: " << tri_->getName(Preference) << ") ");
    if (isRegAvail(Preference) && 
        RC->contains(Preference))
      return Preference;
  }

  if (!DowngradedRegs.empty()) {
    unsigned FreeReg = getFreePhysReg(cur, RC, MaxInactiveCount, inactiveCounts,
                                      true);
    if (FreeReg)
      return FreeReg;
  }
  return getFreePhysReg(cur, RC, MaxInactiveCount, inactiveCounts, false);
}

FunctionPass* llvm::createLinearScanRegisterAllocator() {
  return new RALinScan();
}