summaryrefslogtreecommitdiff
path: root/lib/CodeGen/SelectionDAG/FastISel.cpp
blob: 4c60b29e91b762964c2694261d06c95d90a2d7d2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
///===-- FastISel.cpp - Implementation of the FastISel class --------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the implementation of the FastISel class.
//
// "Fast" instruction selection is designed to emit very poor code quickly.
// Also, it is not designed to be able to do much lowering, so most illegal
// types (e.g. i64 on 32-bit targets) and operations are not supported.  It is
// also not intended to be able to do much optimization, except in a few cases
// where doing optimizations reduces overall compile time.  For example, folding
// constants into immediate fields is often done, because it's cheap and it
// reduces the number of instructions later phases have to examine.
//
// "Fast" instruction selection is able to fail gracefully and transfer
// control to the SelectionDAG selector for operations that it doesn't
// support.  In many cases, this allows us to avoid duplicating a lot of
// the complicated lowering logic that SelectionDAG currently has.
//
// The intended use for "fast" instruction selection is "-O0" mode
// compilation, where the quality of the generated code is irrelevant when
// weighed against the speed at which the code can be generated.  Also,
// at -O0, the LLVM optimizers are not running, and this makes the
// compile time of codegen a much higher portion of the overall compile
// time.  Despite its limitations, "fast" instruction selection is able to
// handle enough code on its own to provide noticeable overall speedups
// in -O0 compiles.
//
// Basic operations are supported in a target-independent way, by reading
// the same instruction descriptions that the SelectionDAG selector reads,
// and identifying simple arithmetic operations that can be directly selected
// from simple operators.  More complicated operations currently require
// target-specific code.
//
//===----------------------------------------------------------------------===//

#include "llvm/Function.h"
#include "llvm/GlobalVariable.h"
#include "llvm/Instructions.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/CodeGen/FastISel.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/DwarfWriter.h"
#include "llvm/Analysis/DebugInfo.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetMachine.h"
#include "SelectionDAGBuild.h"
using namespace llvm;

unsigned FastISel::getRegForValue(Value *V) {
  EVT RealVT = TLI.getValueType(V->getType(), /*AllowUnknown=*/true);
  // Don't handle non-simple values in FastISel.
  if (!RealVT.isSimple())
    return 0;

  // Ignore illegal types. We must do this before looking up the value
  // in ValueMap because Arguments are given virtual registers regardless
  // of whether FastISel can handle them.
  MVT VT = RealVT.getSimpleVT();
  if (!TLI.isTypeLegal(VT)) {
    // Promote MVT::i1 to a legal type though, because it's common and easy.
    if (VT == MVT::i1)
      VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT();
    else
      return 0;
  }

  // Look up the value to see if we already have a register for it. We
  // cache values defined by Instructions across blocks, and other values
  // only locally. This is because Instructions already have the SSA
  // def-dominatess-use requirement enforced.
  if (ValueMap.count(V))
    return ValueMap[V];
  unsigned Reg = LocalValueMap[V];
  if (Reg != 0)
    return Reg;

  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
    if (CI->getValue().getActiveBits() <= 64)
      Reg = FastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
  } else if (isa<AllocaInst>(V)) {
    Reg = TargetMaterializeAlloca(cast<AllocaInst>(V));
  } else if (isa<ConstantPointerNull>(V)) {
    // Translate this as an integer zero so that it can be
    // local-CSE'd with actual integer zeros.
    Reg =
      getRegForValue(Constant::getNullValue(TD.getIntPtrType(V->getContext())));
  } else if (ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
    Reg = FastEmit_f(VT, VT, ISD::ConstantFP, CF);

    if (!Reg) {
      const APFloat &Flt = CF->getValueAPF();
      EVT IntVT = TLI.getPointerTy();

      uint64_t x[2];
      uint32_t IntBitWidth = IntVT.getSizeInBits();
      bool isExact;
      (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
                                APFloat::rmTowardZero, &isExact);
      if (isExact) {
        APInt IntVal(IntBitWidth, 2, x);

        unsigned IntegerReg =
          getRegForValue(ConstantInt::get(V->getContext(), IntVal));
        if (IntegerReg != 0)
          Reg = FastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, IntegerReg);
      }
    }
  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
    if (!SelectOperator(CE, CE->getOpcode())) return 0;
    Reg = LocalValueMap[CE];
  } else if (isa<UndefValue>(V)) {
    Reg = createResultReg(TLI.getRegClassFor(VT));
    BuildMI(MBB, DL, TII.get(TargetInstrInfo::IMPLICIT_DEF), Reg);
  }
  
  // If target-independent code couldn't handle the value, give target-specific
  // code a try.
  if (!Reg && isa<Constant>(V))
    Reg = TargetMaterializeConstant(cast<Constant>(V));
  
  // Don't cache constant materializations in the general ValueMap.
  // To do so would require tracking what uses they dominate.
  if (Reg != 0)
    LocalValueMap[V] = Reg;
  return Reg;
}

unsigned FastISel::lookUpRegForValue(Value *V) {
  // Look up the value to see if we already have a register for it. We
  // cache values defined by Instructions across blocks, and other values
  // only locally. This is because Instructions already have the SSA
  // def-dominatess-use requirement enforced.
  if (ValueMap.count(V))
    return ValueMap[V];
  return LocalValueMap[V];
}

/// UpdateValueMap - Update the value map to include the new mapping for this
/// instruction, or insert an extra copy to get the result in a previous
/// determined register.
/// NOTE: This is only necessary because we might select a block that uses
/// a value before we select the block that defines the value.  It might be
/// possible to fix this by selecting blocks in reverse postorder.
unsigned FastISel::UpdateValueMap(Value* I, unsigned Reg) {
  if (!isa<Instruction>(I)) {
    LocalValueMap[I] = Reg;
    return Reg;
  }
  
  unsigned &AssignedReg = ValueMap[I];
  if (AssignedReg == 0)
    AssignedReg = Reg;
  else if (Reg != AssignedReg) {
    const TargetRegisterClass *RegClass = MRI.getRegClass(Reg);
    TII.copyRegToReg(*MBB, MBB->end(), AssignedReg,
                     Reg, RegClass, RegClass);
  }
  return AssignedReg;
}

unsigned FastISel::getRegForGEPIndex(Value *Idx) {
  unsigned IdxN = getRegForValue(Idx);
  if (IdxN == 0)
    // Unhandled operand. Halt "fast" selection and bail.
    return 0;

  // If the index is smaller or larger than intptr_t, truncate or extend it.
  MVT PtrVT = TLI.getPointerTy();
  EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false);
  if (IdxVT.bitsLT(PtrVT))
    IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, IdxN);
  else if (IdxVT.bitsGT(PtrVT))
    IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, IdxN);
  return IdxN;
}

/// SelectBinaryOp - Select and emit code for a binary operator instruction,
/// which has an opcode which directly corresponds to the given ISD opcode.
///
bool FastISel::SelectBinaryOp(User *I, ISD::NodeType ISDOpcode) {
  EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true);
  if (VT == MVT::Other || !VT.isSimple())
    // Unhandled type. Halt "fast" selection and bail.
    return false;

  // We only handle legal types. For example, on x86-32 the instruction
  // selector contains all of the 64-bit instructions from x86-64,
  // under the assumption that i64 won't be used if the target doesn't
  // support it.
  if (!TLI.isTypeLegal(VT)) {
    // MVT::i1 is special. Allow AND, OR, or XOR because they
    // don't require additional zeroing, which makes them easy.
    if (VT == MVT::i1 &&
        (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR ||
         ISDOpcode == ISD::XOR))
      VT = TLI.getTypeToTransformTo(I->getContext(), VT);
    else
      return false;
  }

  unsigned Op0 = getRegForValue(I->getOperand(0));
  if (Op0 == 0)
    // Unhandled operand. Halt "fast" selection and bail.
    return false;

  // Check if the second operand is a constant and handle it appropriately.
  if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
    unsigned ResultReg = FastEmit_ri(VT.getSimpleVT(), VT.getSimpleVT(),
                                     ISDOpcode, Op0, CI->getZExtValue());
    if (ResultReg != 0) {
      // We successfully emitted code for the given LLVM Instruction.
      UpdateValueMap(I, ResultReg);
      return true;
    }
  }

  // Check if the second operand is a constant float.
  if (ConstantFP *CF = dyn_cast<ConstantFP>(I->getOperand(1))) {
    unsigned ResultReg = FastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(),
                                     ISDOpcode, Op0, CF);
    if (ResultReg != 0) {
      // We successfully emitted code for the given LLVM Instruction.
      UpdateValueMap(I, ResultReg);
      return true;
    }
  }

  unsigned Op1 = getRegForValue(I->getOperand(1));
  if (Op1 == 0)
    // Unhandled operand. Halt "fast" selection and bail.
    return false;

  // Now we have both operands in registers. Emit the instruction.
  unsigned ResultReg = FastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
                                   ISDOpcode, Op0, Op1);
  if (ResultReg == 0)
    // Target-specific code wasn't able to find a machine opcode for
    // the given ISD opcode and type. Halt "fast" selection and bail.
    return false;

  // We successfully emitted code for the given LLVM Instruction.
  UpdateValueMap(I, ResultReg);
  return true;
}

bool FastISel::SelectGetElementPtr(User *I) {
  unsigned N = getRegForValue(I->getOperand(0));
  if (N == 0)
    // Unhandled operand. Halt "fast" selection and bail.
    return false;

  const Type *Ty = I->getOperand(0)->getType();
  MVT VT = TLI.getPointerTy();
  for (GetElementPtrInst::op_iterator OI = I->op_begin()+1, E = I->op_end();
       OI != E; ++OI) {
    Value *Idx = *OI;
    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
      if (Field) {
        // N = N + Offset
        uint64_t Offs = TD.getStructLayout(StTy)->getElementOffset(Field);
        // FIXME: This can be optimized by combining the add with a
        // subsequent one.
        N = FastEmit_ri_(VT, ISD::ADD, N, Offs, VT);
        if (N == 0)
          // Unhandled operand. Halt "fast" selection and bail.
          return false;
      }
      Ty = StTy->getElementType(Field);
    } else {
      Ty = cast<SequentialType>(Ty)->getElementType();

      // If this is a constant subscript, handle it quickly.
      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
        if (CI->getZExtValue() == 0) continue;
        uint64_t Offs = 
          TD.getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
        N = FastEmit_ri_(VT, ISD::ADD, N, Offs, VT);
        if (N == 0)
          // Unhandled operand. Halt "fast" selection and bail.
          return false;
        continue;
      }
      
      // N = N + Idx * ElementSize;
      uint64_t ElementSize = TD.getTypeAllocSize(Ty);
      unsigned IdxN = getRegForGEPIndex(Idx);
      if (IdxN == 0)
        // Unhandled operand. Halt "fast" selection and bail.
        return false;

      if (ElementSize != 1) {
        IdxN = FastEmit_ri_(VT, ISD::MUL, IdxN, ElementSize, VT);
        if (IdxN == 0)
          // Unhandled operand. Halt "fast" selection and bail.
          return false;
      }
      N = FastEmit_rr(VT, VT, ISD::ADD, N, IdxN);
      if (N == 0)
        // Unhandled operand. Halt "fast" selection and bail.
        return false;
    }
  }

  // We successfully emitted code for the given LLVM Instruction.
  UpdateValueMap(I, N);
  return true;
}

bool FastISel::SelectCall(User *I) {
  Function *F = cast<CallInst>(I)->getCalledFunction();
  if (!F) return false;

  unsigned IID = F->getIntrinsicID();
  switch (IID) {
  default: break;
  case Intrinsic::dbg_stoppoint: {
    DbgStopPointInst *SPI = cast<DbgStopPointInst>(I);
    if (isValidDebugInfoIntrinsic(*SPI, CodeGenOpt::None))
      setCurDebugLoc(ExtractDebugLocation(*SPI, MF.getDebugLocInfo()));
    return true;
  }
  case Intrinsic::dbg_region_start: {
    DbgRegionStartInst *RSI = cast<DbgRegionStartInst>(I);
    if (isValidDebugInfoIntrinsic(*RSI, CodeGenOpt::None) && DW
        && DW->ShouldEmitDwarfDebug()) {
      unsigned ID = 
        DW->RecordRegionStart(cast<GlobalVariable>(RSI->getContext()));
      const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL);
      BuildMI(MBB, DL, II).addImm(ID);
    }
    return true;
  }
  case Intrinsic::dbg_region_end: {
    DbgRegionEndInst *REI = cast<DbgRegionEndInst>(I);
    if (isValidDebugInfoIntrinsic(*REI, CodeGenOpt::None) && DW
        && DW->ShouldEmitDwarfDebug()) {
     unsigned ID = 0;
     DISubprogram Subprogram(cast<GlobalVariable>(REI->getContext()));
     if (isInlinedFnEnd(*REI, MF.getFunction())) {
        // This is end of an inlined function.
        const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL);
        ID = DW->RecordInlinedFnEnd(Subprogram);
        if (ID)
          // Returned ID is 0 if this is unbalanced "end of inlined
          // scope". This could happen if optimizer eats dbg intrinsics
          // or "beginning of inlined scope" is not recoginized due to
          // missing location info. In such cases, ignore this region.end.
          BuildMI(MBB, DL, II).addImm(ID);
      } else {
        const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL);
        ID =  DW->RecordRegionEnd(cast<GlobalVariable>(REI->getContext()));
        BuildMI(MBB, DL, II).addImm(ID);
      }
    }
    return true;
  }
  case Intrinsic::dbg_func_start: {
    DbgFuncStartInst *FSI = cast<DbgFuncStartInst>(I);
    if (!isValidDebugInfoIntrinsic(*FSI, CodeGenOpt::None) || !DW
        || !DW->ShouldEmitDwarfDebug()) 
      return true;

    if (isInlinedFnStart(*FSI, MF.getFunction())) {
      // This is a beginning of an inlined function.
      
      // If llvm.dbg.func.start is seen in a new block before any
      // llvm.dbg.stoppoint intrinsic then the location info is unknown.
      // FIXME : Why DebugLoc is reset at the beginning of each block ?
      DebugLoc PrevLoc = DL;
      if (PrevLoc.isUnknown())
        return true;
      // Record the source line.
      setCurDebugLoc(ExtractDebugLocation(*FSI, MF.getDebugLocInfo()));
      
      DebugLocTuple PrevLocTpl = MF.getDebugLocTuple(PrevLoc);
      DISubprogram SP(cast<GlobalVariable>(FSI->getSubprogram()));
      unsigned LabelID = DW->RecordInlinedFnStart(SP,
                                                  DICompileUnit(PrevLocTpl.CompileUnit),
                                                  PrevLocTpl.Line,
                                                  PrevLocTpl.Col);
      const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL);
      BuildMI(MBB, DL, II).addImm(LabelID);
      return true;
    }
    
    // This is a beginning of a new function.
    MF.setDefaultDebugLoc(ExtractDebugLocation(*FSI, MF.getDebugLocInfo()));
    
    // llvm.dbg.func_start also defines beginning of function scope.
    DW->RecordRegionStart(cast<GlobalVariable>(FSI->getSubprogram()));
    return true;
  }
  case Intrinsic::dbg_declare: {
    DbgDeclareInst *DI = cast<DbgDeclareInst>(I);
    if (!isValidDebugInfoIntrinsic(*DI, CodeGenOpt::None) || !DW
        || !DW->ShouldEmitDwarfDebug())
      return true;

    Value *Variable = DI->getVariable();
    Value *Address = DI->getAddress();
    if (BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
      Address = BCI->getOperand(0);
    AllocaInst *AI = dyn_cast<AllocaInst>(Address);
    // Don't handle byval struct arguments or VLAs, for example.
    if (!AI) break;
    DenseMap<const AllocaInst*, int>::iterator SI =
      StaticAllocaMap.find(AI);
    if (SI == StaticAllocaMap.end()) break; // VLAs.
    int FI = SI->second;
    
    // Determine the debug globalvariable.
    GlobalValue *GV = cast<GlobalVariable>(Variable);
    
    DW->RecordVariable(cast<GlobalVariable>(GV), FI);
    return true;
  }
  case Intrinsic::eh_exception: {
    EVT VT = TLI.getValueType(I->getType());
    switch (TLI.getOperationAction(ISD::EXCEPTIONADDR, VT)) {
    default: break;
    case TargetLowering::Expand: {
      assert(MBB->isLandingPad() && "Call to eh.exception not in landing pad!");
      unsigned Reg = TLI.getExceptionAddressRegister();
      const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
      unsigned ResultReg = createResultReg(RC);
      bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
                                           Reg, RC, RC);
      assert(InsertedCopy && "Can't copy address registers!");
      InsertedCopy = InsertedCopy;
      UpdateValueMap(I, ResultReg);
      return true;
    }
    }
    break;
  }
  case Intrinsic::eh_selector_i32:
  case Intrinsic::eh_selector_i64: {
    EVT VT = TLI.getValueType(I->getType());
    switch (TLI.getOperationAction(ISD::EHSELECTION, VT)) {
    default: break;
    case TargetLowering::Expand: {
      EVT VT = (IID == Intrinsic::eh_selector_i32 ?
                           MVT::i32 : MVT::i64);

      if (MMI) {
        if (MBB->isLandingPad())
          AddCatchInfo(*cast<CallInst>(I), MMI, MBB);
        else {
#ifndef NDEBUG
          CatchInfoLost.insert(cast<CallInst>(I));
#endif
          // FIXME: Mark exception selector register as live in.  Hack for PR1508.
          unsigned Reg = TLI.getExceptionSelectorRegister();
          if (Reg) MBB->addLiveIn(Reg);
        }

        unsigned Reg = TLI.getExceptionSelectorRegister();
        const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
        unsigned ResultReg = createResultReg(RC);
        bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
                                             Reg, RC, RC);
        assert(InsertedCopy && "Can't copy address registers!");
        InsertedCopy = InsertedCopy;
        UpdateValueMap(I, ResultReg);
      } else {
        unsigned ResultReg =
          getRegForValue(Constant::getNullValue(I->getType()));
        UpdateValueMap(I, ResultReg);
      }
      return true;
    }
    }
    break;
  }
  }
  return false;
}

bool FastISel::SelectCast(User *I, ISD::NodeType Opcode) {
  EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
  EVT DstVT = TLI.getValueType(I->getType());
    
  if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
      DstVT == MVT::Other || !DstVT.isSimple())
    // Unhandled type. Halt "fast" selection and bail.
    return false;
    
  // Check if the destination type is legal. Or as a special case,
  // it may be i1 if we're doing a truncate because that's
  // easy and somewhat common.
  if (!TLI.isTypeLegal(DstVT))
    if (DstVT != MVT::i1 || Opcode != ISD::TRUNCATE)
      // Unhandled type. Halt "fast" selection and bail.
      return false;

  // Check if the source operand is legal. Or as a special case,
  // it may be i1 if we're doing zero-extension because that's
  // easy and somewhat common.
  if (!TLI.isTypeLegal(SrcVT))
    if (SrcVT != MVT::i1 || Opcode != ISD::ZERO_EXTEND)
      // Unhandled type. Halt "fast" selection and bail.
      return false;

  unsigned InputReg = getRegForValue(I->getOperand(0));
  if (!InputReg)
    // Unhandled operand.  Halt "fast" selection and bail.
    return false;

  // If the operand is i1, arrange for the high bits in the register to be zero.
  if (SrcVT == MVT::i1) {
   SrcVT = TLI.getTypeToTransformTo(I->getContext(), SrcVT);
   InputReg = FastEmitZExtFromI1(SrcVT.getSimpleVT(), InputReg);
   if (!InputReg)
     return false;
  }
  // If the result is i1, truncate to the target's type for i1 first.
  if (DstVT == MVT::i1)
    DstVT = TLI.getTypeToTransformTo(I->getContext(), DstVT);

  unsigned ResultReg = FastEmit_r(SrcVT.getSimpleVT(),
                                  DstVT.getSimpleVT(),
                                  Opcode,
                                  InputReg);
  if (!ResultReg)
    return false;
    
  UpdateValueMap(I, ResultReg);
  return true;
}

bool FastISel::SelectBitCast(User *I) {
  // If the bitcast doesn't change the type, just use the operand value.
  if (I->getType() == I->getOperand(0)->getType()) {
    unsigned Reg = getRegForValue(I->getOperand(0));
    if (Reg == 0)
      return false;
    UpdateValueMap(I, Reg);
    return true;
  }

  // Bitcasts of other values become reg-reg copies or BIT_CONVERT operators.
  EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
  EVT DstVT = TLI.getValueType(I->getType());
  
  if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
      DstVT == MVT::Other || !DstVT.isSimple() ||
      !TLI.isTypeLegal(SrcVT) || !TLI.isTypeLegal(DstVT))
    // Unhandled type. Halt "fast" selection and bail.
    return false;
  
  unsigned Op0 = getRegForValue(I->getOperand(0));
  if (Op0 == 0)
    // Unhandled operand. Halt "fast" selection and bail.
    return false;
  
  // First, try to perform the bitcast by inserting a reg-reg copy.
  unsigned ResultReg = 0;
  if (SrcVT.getSimpleVT() == DstVT.getSimpleVT()) {
    TargetRegisterClass* SrcClass = TLI.getRegClassFor(SrcVT);
    TargetRegisterClass* DstClass = TLI.getRegClassFor(DstVT);
    ResultReg = createResultReg(DstClass);
    
    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
                                         Op0, DstClass, SrcClass);
    if (!InsertedCopy)
      ResultReg = 0;
  }
  
  // If the reg-reg copy failed, select a BIT_CONVERT opcode.
  if (!ResultReg)
    ResultReg = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(),
                           ISD::BIT_CONVERT, Op0);
  
  if (!ResultReg)
    return false;
  
  UpdateValueMap(I, ResultReg);
  return true;
}

bool
FastISel::SelectInstruction(Instruction *I) {
  return SelectOperator(I, I->getOpcode());
}

/// FastEmitBranch - Emit an unconditional branch to the given block,
/// unless it is the immediate (fall-through) successor, and update
/// the CFG.
void
FastISel::FastEmitBranch(MachineBasicBlock *MSucc) {
  MachineFunction::iterator NextMBB =
     next(MachineFunction::iterator(MBB));

  if (MBB->isLayoutSuccessor(MSucc)) {
    // The unconditional fall-through case, which needs no instructions.
  } else {
    // The unconditional branch case.
    TII.InsertBranch(*MBB, MSucc, NULL, SmallVector<MachineOperand, 0>());
  }
  MBB->addSuccessor(MSucc);
}

bool
FastISel::SelectOperator(User *I, unsigned Opcode) {
  switch (Opcode) {
  case Instruction::Add:
    return SelectBinaryOp(I, ISD::ADD);
  case Instruction::FAdd:
    return SelectBinaryOp(I, ISD::FADD);
  case Instruction::Sub:
    return SelectBinaryOp(I, ISD::SUB);
  case Instruction::FSub:
    return SelectBinaryOp(I, ISD::FSUB);
  case Instruction::Mul:
    return SelectBinaryOp(I, ISD::MUL);
  case Instruction::FMul:
    return SelectBinaryOp(I, ISD::FMUL);
  case Instruction::SDiv:
    return SelectBinaryOp(I, ISD::SDIV);
  case Instruction::UDiv:
    return SelectBinaryOp(I, ISD::UDIV);
  case Instruction::FDiv:
    return SelectBinaryOp(I, ISD::FDIV);
  case Instruction::SRem:
    return SelectBinaryOp(I, ISD::SREM);
  case Instruction::URem:
    return SelectBinaryOp(I, ISD::UREM);
  case Instruction::FRem:
    return SelectBinaryOp(I, ISD::FREM);
  case Instruction::Shl:
    return SelectBinaryOp(I, ISD::SHL);
  case Instruction::LShr:
    return SelectBinaryOp(I, ISD::SRL);
  case Instruction::AShr:
    return SelectBinaryOp(I, ISD::SRA);
  case Instruction::And:
    return SelectBinaryOp(I, ISD::AND);
  case Instruction::Or:
    return SelectBinaryOp(I, ISD::OR);
  case Instruction::Xor:
    return SelectBinaryOp(I, ISD::XOR);

  case Instruction::GetElementPtr:
    return SelectGetElementPtr(I);

  case Instruction::Br: {
    BranchInst *BI = cast<BranchInst>(I);

    if (BI->isUnconditional()) {
      BasicBlock *LLVMSucc = BI->getSuccessor(0);
      MachineBasicBlock *MSucc = MBBMap[LLVMSucc];
      FastEmitBranch(MSucc);
      return true;
    }

    // Conditional branches are not handed yet.
    // Halt "fast" selection and bail.
    return false;
  }

  case Instruction::Unreachable:
    // Nothing to emit.
    return true;

  case Instruction::PHI:
    // PHI nodes are already emitted.
    return true;

  case Instruction::Alloca:
    // FunctionLowering has the static-sized case covered.
    if (StaticAllocaMap.count(cast<AllocaInst>(I)))
      return true;

    // Dynamic-sized alloca is not handled yet.
    return false;
    
  case Instruction::Call:
    return SelectCall(I);
  
  case Instruction::BitCast:
    return SelectBitCast(I);

  case Instruction::FPToSI:
    return SelectCast(I, ISD::FP_TO_SINT);
  case Instruction::ZExt:
    return SelectCast(I, ISD::ZERO_EXTEND);
  case Instruction::SExt:
    return SelectCast(I, ISD::SIGN_EXTEND);
  case Instruction::Trunc:
    return SelectCast(I, ISD::TRUNCATE);
  case Instruction::SIToFP:
    return SelectCast(I, ISD::SINT_TO_FP);

  case Instruction::IntToPtr: // Deliberate fall-through.
  case Instruction::PtrToInt: {
    EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
    EVT DstVT = TLI.getValueType(I->getType());
    if (DstVT.bitsGT(SrcVT))
      return SelectCast(I, ISD::ZERO_EXTEND);
    if (DstVT.bitsLT(SrcVT))
      return SelectCast(I, ISD::TRUNCATE);
    unsigned Reg = getRegForValue(I->getOperand(0));
    if (Reg == 0) return false;
    UpdateValueMap(I, Reg);
    return true;
  }

  default:
    // Unhandled instruction. Halt "fast" selection and bail.
    return false;
  }
}

FastISel::FastISel(MachineFunction &mf,
                   MachineModuleInfo *mmi,
                   DwarfWriter *dw,
                   DenseMap<const Value *, unsigned> &vm,
                   DenseMap<const BasicBlock *, MachineBasicBlock *> &bm,
                   DenseMap<const AllocaInst *, int> &am
#ifndef NDEBUG
                   , SmallSet<Instruction*, 8> &cil
#endif
                   )
  : MBB(0),
    ValueMap(vm),
    MBBMap(bm),
    StaticAllocaMap(am),
#ifndef NDEBUG
    CatchInfoLost(cil),
#endif
    MF(mf),
    MMI(mmi),
    DW(dw),
    MRI(MF.getRegInfo()),
    MFI(*MF.getFrameInfo()),
    MCP(*MF.getConstantPool()),
    TM(MF.getTarget()),
    TD(*TM.getTargetData()),
    TII(*TM.getInstrInfo()),
    TLI(*TM.getTargetLowering()) {
}

FastISel::~FastISel() {}

unsigned FastISel::FastEmit_(MVT, MVT,
                             ISD::NodeType) {
  return 0;
}

unsigned FastISel::FastEmit_r(MVT, MVT,
                              ISD::NodeType, unsigned /*Op0*/) {
  return 0;
}

unsigned FastISel::FastEmit_rr(MVT, MVT, 
                               ISD::NodeType, unsigned /*Op0*/,
                               unsigned /*Op0*/) {
  return 0;
}

unsigned FastISel::FastEmit_i(MVT, MVT, ISD::NodeType, uint64_t /*Imm*/) {
  return 0;
}

unsigned FastISel::FastEmit_f(MVT, MVT,
                              ISD::NodeType, ConstantFP * /*FPImm*/) {
  return 0;
}

unsigned FastISel::FastEmit_ri(MVT, MVT,
                               ISD::NodeType, unsigned /*Op0*/,
                               uint64_t /*Imm*/) {
  return 0;
}

unsigned FastISel::FastEmit_rf(MVT, MVT,
                               ISD::NodeType, unsigned /*Op0*/,
                               ConstantFP * /*FPImm*/) {
  return 0;
}

unsigned FastISel::FastEmit_rri(MVT, MVT,
                                ISD::NodeType,
                                unsigned /*Op0*/, unsigned /*Op1*/,
                                uint64_t /*Imm*/) {
  return 0;
}

/// FastEmit_ri_ - This method is a wrapper of FastEmit_ri. It first tries
/// to emit an instruction with an immediate operand using FastEmit_ri.
/// If that fails, it materializes the immediate into a register and try
/// FastEmit_rr instead.
unsigned FastISel::FastEmit_ri_(MVT VT, ISD::NodeType Opcode,
                                unsigned Op0, uint64_t Imm,
                                MVT ImmType) {
  // First check if immediate type is legal. If not, we can't use the ri form.
  unsigned ResultReg = FastEmit_ri(VT, VT, Opcode, Op0, Imm);
  if (ResultReg != 0)
    return ResultReg;
  unsigned MaterialReg = FastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
  if (MaterialReg == 0)
    return 0;
  return FastEmit_rr(VT, VT, Opcode, Op0, MaterialReg);
}

/// FastEmit_rf_ - This method is a wrapper of FastEmit_ri. It first tries
/// to emit an instruction with a floating-point immediate operand using
/// FastEmit_rf. If that fails, it materializes the immediate into a register
/// and try FastEmit_rr instead.
unsigned FastISel::FastEmit_rf_(MVT VT, ISD::NodeType Opcode,
                                unsigned Op0, ConstantFP *FPImm,
                                MVT ImmType) {
  // First check if immediate type is legal. If not, we can't use the rf form.
  unsigned ResultReg = FastEmit_rf(VT, VT, Opcode, Op0, FPImm);
  if (ResultReg != 0)
    return ResultReg;

  // Materialize the constant in a register.
  unsigned MaterialReg = FastEmit_f(ImmType, ImmType, ISD::ConstantFP, FPImm);
  if (MaterialReg == 0) {
    // If the target doesn't have a way to directly enter a floating-point
    // value into a register, use an alternate approach.
    // TODO: The current approach only supports floating-point constants
    // that can be constructed by conversion from integer values. This should
    // be replaced by code that creates a load from a constant-pool entry,
    // which will require some target-specific work.
    const APFloat &Flt = FPImm->getValueAPF();
    EVT IntVT = TLI.getPointerTy();

    uint64_t x[2];
    uint32_t IntBitWidth = IntVT.getSizeInBits();
    bool isExact;
    (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
                             APFloat::rmTowardZero, &isExact);
    if (!isExact)
      return 0;
    APInt IntVal(IntBitWidth, 2, x);

    unsigned IntegerReg = FastEmit_i(IntVT.getSimpleVT(), IntVT.getSimpleVT(),
                                     ISD::Constant, IntVal.getZExtValue());
    if (IntegerReg == 0)
      return 0;
    MaterialReg = FastEmit_r(IntVT.getSimpleVT(), VT,
                             ISD::SINT_TO_FP, IntegerReg);
    if (MaterialReg == 0)
      return 0;
  }
  return FastEmit_rr(VT, VT, Opcode, Op0, MaterialReg);
}

unsigned FastISel::createResultReg(const TargetRegisterClass* RC) {
  return MRI.createVirtualRegister(RC);
}

unsigned FastISel::FastEmitInst_(unsigned MachineInstOpcode,
                                 const TargetRegisterClass* RC) {
  unsigned ResultReg = createResultReg(RC);
  const TargetInstrDesc &II = TII.get(MachineInstOpcode);

  BuildMI(MBB, DL, II, ResultReg);
  return ResultReg;
}

unsigned FastISel::FastEmitInst_r(unsigned MachineInstOpcode,
                                  const TargetRegisterClass *RC,
                                  unsigned Op0) {
  unsigned ResultReg = createResultReg(RC);
  const TargetInstrDesc &II = TII.get(MachineInstOpcode);

  if (II.getNumDefs() >= 1)
    BuildMI(MBB, DL, II, ResultReg).addReg(Op0);
  else {
    BuildMI(MBB, DL, II).addReg(Op0);
    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
                                         II.ImplicitDefs[0], RC, RC);
    if (!InsertedCopy)
      ResultReg = 0;
  }

  return ResultReg;
}

unsigned FastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
                                   const TargetRegisterClass *RC,
                                   unsigned Op0, unsigned Op1) {
  unsigned ResultReg = createResultReg(RC);
  const TargetInstrDesc &II = TII.get(MachineInstOpcode);

  if (II.getNumDefs() >= 1)
    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addReg(Op1);
  else {
    BuildMI(MBB, DL, II).addReg(Op0).addReg(Op1);
    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
                                         II.ImplicitDefs[0], RC, RC);
    if (!InsertedCopy)
      ResultReg = 0;
  }
  return ResultReg;
}

unsigned FastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
                                   const TargetRegisterClass *RC,
                                   unsigned Op0, uint64_t Imm) {
  unsigned ResultReg = createResultReg(RC);
  const TargetInstrDesc &II = TII.get(MachineInstOpcode);

  if (II.getNumDefs() >= 1)
    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addImm(Imm);
  else {
    BuildMI(MBB, DL, II).addReg(Op0).addImm(Imm);
    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
                                         II.ImplicitDefs[0], RC, RC);
    if (!InsertedCopy)
      ResultReg = 0;
  }
  return ResultReg;
}

unsigned FastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
                                   const TargetRegisterClass *RC,
                                   unsigned Op0, ConstantFP *FPImm) {
  unsigned ResultReg = createResultReg(RC);
  const TargetInstrDesc &II = TII.get(MachineInstOpcode);

  if (II.getNumDefs() >= 1)
    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addFPImm(FPImm);
  else {
    BuildMI(MBB, DL, II).addReg(Op0).addFPImm(FPImm);
    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
                                         II.ImplicitDefs[0], RC, RC);
    if (!InsertedCopy)
      ResultReg = 0;
  }
  return ResultReg;
}

unsigned FastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
                                    const TargetRegisterClass *RC,
                                    unsigned Op0, unsigned Op1, uint64_t Imm) {
  unsigned ResultReg = createResultReg(RC);
  const TargetInstrDesc &II = TII.get(MachineInstOpcode);

  if (II.getNumDefs() >= 1)
    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addReg(Op1).addImm(Imm);
  else {
    BuildMI(MBB, DL, II).addReg(Op0).addReg(Op1).addImm(Imm);
    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
                                         II.ImplicitDefs[0], RC, RC);
    if (!InsertedCopy)
      ResultReg = 0;
  }
  return ResultReg;
}

unsigned FastISel::FastEmitInst_i(unsigned MachineInstOpcode,
                                  const TargetRegisterClass *RC,
                                  uint64_t Imm) {
  unsigned ResultReg = createResultReg(RC);
  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
  
  if (II.getNumDefs() >= 1)
    BuildMI(MBB, DL, II, ResultReg).addImm(Imm);
  else {
    BuildMI(MBB, DL, II).addImm(Imm);
    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
                                         II.ImplicitDefs[0], RC, RC);
    if (!InsertedCopy)
      ResultReg = 0;
  }
  return ResultReg;
}

unsigned FastISel::FastEmitInst_extractsubreg(MVT RetVT,
                                              unsigned Op0, uint32_t Idx) {
  const TargetRegisterClass* RC = MRI.getRegClass(Op0);
  
  unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
  const TargetInstrDesc &II = TII.get(TargetInstrInfo::EXTRACT_SUBREG);
  
  if (II.getNumDefs() >= 1)
    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addImm(Idx);
  else {
    BuildMI(MBB, DL, II).addReg(Op0).addImm(Idx);
    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
                                         II.ImplicitDefs[0], RC, RC);
    if (!InsertedCopy)
      ResultReg = 0;
  }
  return ResultReg;
}

/// FastEmitZExtFromI1 - Emit MachineInstrs to compute the value of Op
/// with all but the least significant bit set to zero.
unsigned FastISel::FastEmitZExtFromI1(MVT VT, unsigned Op) {
  return FastEmit_ri(VT, VT, ISD::AND, Op, 1);
}