summaryrefslogtreecommitdiff
path: root/lib/CodeGen/SelectionDAG/SelectionDAG.cpp
blob: f05f4445a8f6d6128546dbf3773aa236e8ce7e5f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This implements the SelectionDAG class.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/Constants.h"
#include "llvm/GlobalAlias.h"
#include "llvm/GlobalVariable.h"
#include "llvm/Intrinsics.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/CallingConv.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include <algorithm>
#include <cmath>
using namespace llvm;

/// makeVTList - Return an instance of the SDVTList struct initialized with the
/// specified members.
static SDVTList makeVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
  SDVTList Res = {VTs, NumVTs};
  return Res;
}

static const fltSemantics *MVTToAPFloatSemantics(MVT::ValueType VT) {
  switch (VT) {
  default: assert(0 && "Unknown FP format");
  case MVT::f32:     return &APFloat::IEEEsingle;
  case MVT::f64:     return &APFloat::IEEEdouble;
  case MVT::f80:     return &APFloat::x87DoubleExtended;
  case MVT::f128:    return &APFloat::IEEEquad;
  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
  }
}

SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}

//===----------------------------------------------------------------------===//
//                              ConstantFPSDNode Class
//===----------------------------------------------------------------------===//

/// isExactlyValue - We don't rely on operator== working on double values, as
/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
/// As such, this method can be used to do an exact bit-for-bit comparison of
/// two floating point values.
bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
  return Value.bitwiseIsEqual(V);
}

bool ConstantFPSDNode::isValueValidForType(MVT::ValueType VT, 
                                           const APFloat& Val) {
  assert(MVT::isFloatingPoint(VT) && "Can only convert between FP types");
  
  // PPC long double cannot be converted to any other type.
  if (VT == MVT::ppcf128 ||
      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
    return false;
  
  // convert modifies in place, so make a copy.
  APFloat Val2 = APFloat(Val);
  return Val2.convert(*MVTToAPFloatSemantics(VT),
                      APFloat::rmNearestTiesToEven) == APFloat::opOK;
}

//===----------------------------------------------------------------------===//
//                              ISD Namespace
//===----------------------------------------------------------------------===//

/// isBuildVectorAllOnes - Return true if the specified node is a
/// BUILD_VECTOR where all of the elements are ~0 or undef.
bool ISD::isBuildVectorAllOnes(const SDNode *N) {
  // Look through a bit convert.
  if (N->getOpcode() == ISD::BIT_CONVERT)
    N = N->getOperand(0).Val;
  
  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
  
  unsigned i = 0, e = N->getNumOperands();
  
  // Skip over all of the undef values.
  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
    ++i;
  
  // Do not accept an all-undef vector.
  if (i == e) return false;
  
  // Do not accept build_vectors that aren't all constants or which have non-~0
  // elements.
  SDOperand NotZero = N->getOperand(i);
  if (isa<ConstantSDNode>(NotZero)) {
    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
      return false;
  } else if (isa<ConstantFPSDNode>(NotZero)) {
    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
                convertToAPInt().isAllOnesValue())
      return false;
  } else
    return false;
  
  // Okay, we have at least one ~0 value, check to see if the rest match or are
  // undefs.
  for (++i; i != e; ++i)
    if (N->getOperand(i) != NotZero &&
        N->getOperand(i).getOpcode() != ISD::UNDEF)
      return false;
  return true;
}


/// isBuildVectorAllZeros - Return true if the specified node is a
/// BUILD_VECTOR where all of the elements are 0 or undef.
bool ISD::isBuildVectorAllZeros(const SDNode *N) {
  // Look through a bit convert.
  if (N->getOpcode() == ISD::BIT_CONVERT)
    N = N->getOperand(0).Val;
  
  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
  
  unsigned i = 0, e = N->getNumOperands();
  
  // Skip over all of the undef values.
  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
    ++i;
  
  // Do not accept an all-undef vector.
  if (i == e) return false;
  
  // Do not accept build_vectors that aren't all constants or which have non-~0
  // elements.
  SDOperand Zero = N->getOperand(i);
  if (isa<ConstantSDNode>(Zero)) {
    if (!cast<ConstantSDNode>(Zero)->isNullValue())
      return false;
  } else if (isa<ConstantFPSDNode>(Zero)) {
    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
      return false;
  } else
    return false;
  
  // Okay, we have at least one ~0 value, check to see if the rest match or are
  // undefs.
  for (++i; i != e; ++i)
    if (N->getOperand(i) != Zero &&
        N->getOperand(i).getOpcode() != ISD::UNDEF)
      return false;
  return true;
}

/// isScalarToVector - Return true if the specified node is a
/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
/// element is not an undef.
bool ISD::isScalarToVector(const SDNode *N) {
  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
    return true;

  if (N->getOpcode() != ISD::BUILD_VECTOR)
    return false;
  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
    return false;
  unsigned NumElems = N->getNumOperands();
  for (unsigned i = 1; i < NumElems; ++i) {
    SDOperand V = N->getOperand(i);
    if (V.getOpcode() != ISD::UNDEF)
      return false;
  }
  return true;
}


/// isDebugLabel - Return true if the specified node represents a debug
/// label (i.e. ISD::LABEL or TargetInstrInfo::LABEL node and third operand
/// is 0).
bool ISD::isDebugLabel(const SDNode *N) {
  SDOperand Zero;
  if (N->getOpcode() == ISD::LABEL)
    Zero = N->getOperand(2);
  else if (N->isTargetOpcode() &&
           N->getTargetOpcode() == TargetInstrInfo::LABEL)
    // Chain moved to last operand.
    Zero = N->getOperand(1);
  else
    return false;
  return isa<ConstantSDNode>(Zero) && cast<ConstantSDNode>(Zero)->isNullValue();
}

/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
/// when given the operation for (X op Y).
ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
  // To perform this operation, we just need to swap the L and G bits of the
  // operation.
  unsigned OldL = (Operation >> 2) & 1;
  unsigned OldG = (Operation >> 1) & 1;
  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
                       (OldL << 1) |       // New G bit
                       (OldG << 2));        // New L bit.
}

/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
/// 'op' is a valid SetCC operation.
ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
  unsigned Operation = Op;
  if (isInteger)
    Operation ^= 7;   // Flip L, G, E bits, but not U.
  else
    Operation ^= 15;  // Flip all of the condition bits.
  if (Operation > ISD::SETTRUE2)
    Operation &= ~8;     // Don't let N and U bits get set.
  return ISD::CondCode(Operation);
}


/// isSignedOp - For an integer comparison, return 1 if the comparison is a
/// signed operation and 2 if the result is an unsigned comparison.  Return zero
/// if the operation does not depend on the sign of the input (setne and seteq).
static int isSignedOp(ISD::CondCode Opcode) {
  switch (Opcode) {
  default: assert(0 && "Illegal integer setcc operation!");
  case ISD::SETEQ:
  case ISD::SETNE: return 0;
  case ISD::SETLT:
  case ISD::SETLE:
  case ISD::SETGT:
  case ISD::SETGE: return 1;
  case ISD::SETULT:
  case ISD::SETULE:
  case ISD::SETUGT:
  case ISD::SETUGE: return 2;
  }
}

/// getSetCCOrOperation - Return the result of a logical OR between different
/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
/// returns SETCC_INVALID if it is not possible to represent the resultant
/// comparison.
ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
                                       bool isInteger) {
  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
    // Cannot fold a signed integer setcc with an unsigned integer setcc.
    return ISD::SETCC_INVALID;

  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.

  // If the N and U bits get set then the resultant comparison DOES suddenly
  // care about orderedness, and is true when ordered.
  if (Op > ISD::SETTRUE2)
    Op &= ~16;     // Clear the U bit if the N bit is set.
  
  // Canonicalize illegal integer setcc's.
  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
    Op = ISD::SETNE;
  
  return ISD::CondCode(Op);
}

/// getSetCCAndOperation - Return the result of a logical AND between different
/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
/// function returns zero if it is not possible to represent the resultant
/// comparison.
ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
                                        bool isInteger) {
  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
    // Cannot fold a signed setcc with an unsigned setcc.
    return ISD::SETCC_INVALID;

  // Combine all of the condition bits.
  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
  
  // Canonicalize illegal integer setcc's.
  if (isInteger) {
    switch (Result) {
    default: break;
    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
    }
  }
  
  return Result;
}

const TargetMachine &SelectionDAG::getTarget() const {
  return TLI.getTargetMachine();
}

//===----------------------------------------------------------------------===//
//                           SDNode Profile Support
//===----------------------------------------------------------------------===//

/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
///
static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
  ID.AddInteger(OpC);
}

/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
/// solely with their pointer.
static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
  ID.AddPointer(VTList.VTs);  
}

/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
///
static void AddNodeIDOperands(FoldingSetNodeID &ID,
                              SDOperandPtr Ops, unsigned NumOps) {
  for (; NumOps; --NumOps, ++Ops) {
    ID.AddPointer(Ops->Val);
    ID.AddInteger(Ops->ResNo);
  }
}

static void AddNodeIDNode(FoldingSetNodeID &ID,
                          unsigned short OpC, SDVTList VTList, 
                          SDOperandPtr OpList, unsigned N) {
  AddNodeIDOpcode(ID, OpC);
  AddNodeIDValueTypes(ID, VTList);
  AddNodeIDOperands(ID, OpList, N);
}


/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
/// data.
static void AddNodeIDNode(FoldingSetNodeID &ID, SDNode *N) {
  AddNodeIDOpcode(ID, N->getOpcode());
  // Add the return value info.
  AddNodeIDValueTypes(ID, N->getVTList());
  // Add the operand info.
  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());

  // Handle SDNode leafs with special info.
  switch (N->getOpcode()) {
  default: break;  // Normal nodes don't need extra info.
  case ISD::ARG_FLAGS:
    ID.AddInteger(cast<ARG_FLAGSSDNode>(N)->getArgFlags().getRawBits());
    break;
  case ISD::TargetConstant:
  case ISD::Constant:
    ID.Add(cast<ConstantSDNode>(N)->getAPIntValue());
    break;
  case ISD::TargetConstantFP:
  case ISD::ConstantFP: {
    ID.Add(cast<ConstantFPSDNode>(N)->getValueAPF());
    break;
  }
  case ISD::TargetGlobalAddress:
  case ISD::GlobalAddress:
  case ISD::TargetGlobalTLSAddress:
  case ISD::GlobalTLSAddress: {
    GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
    ID.AddPointer(GA->getGlobal());
    ID.AddInteger(GA->getOffset());
    break;
  }
  case ISD::BasicBlock:
    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
    break;
  case ISD::Register:
    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
    break;
  case ISD::SRCVALUE:
    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
    break;
  case ISD::MEMOPERAND: {
    const MachineMemOperand &MO = cast<MemOperandSDNode>(N)->MO;
    ID.AddPointer(MO.getValue());
    ID.AddInteger(MO.getFlags());
    ID.AddInteger(MO.getOffset());
    ID.AddInteger(MO.getSize());
    ID.AddInteger(MO.getAlignment());
    break;
  }
  case ISD::FrameIndex:
  case ISD::TargetFrameIndex:
    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
    break;
  case ISD::JumpTable:
  case ISD::TargetJumpTable:
    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
    break;
  case ISD::ConstantPool:
  case ISD::TargetConstantPool: {
    ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
    ID.AddInteger(CP->getAlignment());
    ID.AddInteger(CP->getOffset());
    if (CP->isMachineConstantPoolEntry())
      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
    else
      ID.AddPointer(CP->getConstVal());
    break;
  }
  case ISD::LOAD: {
    LoadSDNode *LD = cast<LoadSDNode>(N);
    ID.AddInteger(LD->getAddressingMode());
    ID.AddInteger(LD->getExtensionType());
    ID.AddInteger((unsigned int)(LD->getMemoryVT()));
    ID.AddInteger(LD->getAlignment());
    ID.AddInteger(LD->isVolatile());
    break;
  }
  case ISD::STORE: {
    StoreSDNode *ST = cast<StoreSDNode>(N);
    ID.AddInteger(ST->getAddressingMode());
    ID.AddInteger(ST->isTruncatingStore());
    ID.AddInteger((unsigned int)(ST->getMemoryVT()));
    ID.AddInteger(ST->getAlignment());
    ID.AddInteger(ST->isVolatile());
    break;
  }
  }
}

//===----------------------------------------------------------------------===//
//                              SelectionDAG Class
//===----------------------------------------------------------------------===//

/// RemoveDeadNodes - This method deletes all unreachable nodes in the
/// SelectionDAG.
void SelectionDAG::RemoveDeadNodes() {
  // Create a dummy node (which is not added to allnodes), that adds a reference
  // to the root node, preventing it from being deleted.
  HandleSDNode Dummy(getRoot());

  SmallVector<SDNode*, 128> DeadNodes;
  
  // Add all obviously-dead nodes to the DeadNodes worklist.
  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
    if (I->use_empty())
      DeadNodes.push_back(I);

  // Process the worklist, deleting the nodes and adding their uses to the
  // worklist.
  while (!DeadNodes.empty()) {
    SDNode *N = DeadNodes.back();
    DeadNodes.pop_back();
    
    // Take the node out of the appropriate CSE map.
    RemoveNodeFromCSEMaps(N);

    // Next, brutally remove the operand list.  This is safe to do, as there are
    // no cycles in the graph.
    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
      SDNode *Operand = I->getVal();
      Operand->removeUser(std::distance(N->op_begin(), I), N);
      
      // Now that we removed this operand, see if there are no uses of it left.
      if (Operand->use_empty())
        DeadNodes.push_back(Operand);
    }
    if (N->OperandsNeedDelete) {
      delete[] N->OperandList;
    }
    N->OperandList = 0;
    N->NumOperands = 0;
    
    // Finally, remove N itself.
    AllNodes.erase(N);
  }
  
  // If the root changed (e.g. it was a dead load, update the root).
  setRoot(Dummy.getValue());
}

void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
  SmallVector<SDNode*, 16> DeadNodes;
  DeadNodes.push_back(N);

  // Process the worklist, deleting the nodes and adding their uses to the
  // worklist.
  while (!DeadNodes.empty()) {
    SDNode *N = DeadNodes.back();
    DeadNodes.pop_back();
    
    if (UpdateListener)
      UpdateListener->NodeDeleted(N);
    
    // Take the node out of the appropriate CSE map.
    RemoveNodeFromCSEMaps(N);

    // Next, brutally remove the operand list.  This is safe to do, as there are
    // no cycles in the graph.
    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
      SDNode *Operand = I->getVal();
      Operand->removeUser(std::distance(N->op_begin(), I), N);
      
      // Now that we removed this operand, see if there are no uses of it left.
      if (Operand->use_empty())
        DeadNodes.push_back(Operand);
    }
    if (N->OperandsNeedDelete) {
      delete[] N->OperandList;
    }
    N->OperandList = 0;
    N->NumOperands = 0;
    
    // Finally, remove N itself.
    AllNodes.erase(N);
  }
}

void SelectionDAG::DeleteNode(SDNode *N) {
  assert(N->use_empty() && "Cannot delete a node that is not dead!");

  // First take this out of the appropriate CSE map.
  RemoveNodeFromCSEMaps(N);

  // Finally, remove uses due to operands of this node, remove from the 
  // AllNodes list, and delete the node.
  DeleteNodeNotInCSEMaps(N);
}

void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {

  // Remove it from the AllNodes list.
  AllNodes.remove(N);
    
  // Drop all of the operands and decrement used nodes use counts.
  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
    I->getVal()->removeUser(std::distance(N->op_begin(), I), N);
  if (N->OperandsNeedDelete) {
    delete[] N->OperandList;
  }
  N->OperandList = 0;
  N->NumOperands = 0;
  
  delete N;
}

/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
/// correspond to it.  This is useful when we're about to delete or repurpose
/// the node.  We don't want future request for structurally identical nodes
/// to return N anymore.
void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
  bool Erased = false;
  switch (N->getOpcode()) {
  case ISD::HANDLENODE: return;  // noop.
  case ISD::STRING:
    Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue());
    break;
  case ISD::CONDCODE:
    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
           "Cond code doesn't exist!");
    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
    break;
  case ISD::ExternalSymbol:
    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
    break;
  case ISD::TargetExternalSymbol:
    Erased =
      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
    break;
  case ISD::VALUETYPE: {
    MVT::ValueType VT = cast<VTSDNode>(N)->getVT();
    if (MVT::isExtendedVT(VT)) {
      Erased = ExtendedValueTypeNodes.erase(VT);
    } else {
      Erased = ValueTypeNodes[VT] != 0;
      ValueTypeNodes[VT] = 0;
    }
    break;
  }
  default:
    // Remove it from the CSE Map.
    Erased = CSEMap.RemoveNode(N);
    break;
  }
#ifndef NDEBUG
  // Verify that the node was actually in one of the CSE maps, unless it has a 
  // flag result (which cannot be CSE'd) or is one of the special cases that are
  // not subject to CSE.
  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
      !N->isTargetOpcode()) {
    N->dump(this);
    cerr << "\n";
    assert(0 && "Node is not in map!");
  }
#endif
}

/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
/// has been taken out and modified in some way.  If the specified node already
/// exists in the CSE maps, do not modify the maps, but return the existing node
/// instead.  If it doesn't exist, add it and return null.
///
SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
  assert(N->getNumOperands() && "This is a leaf node!");
  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
    return 0;    // Never add these nodes.
  
  // Check that remaining values produced are not flags.
  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
    if (N->getValueType(i) == MVT::Flag)
      return 0;   // Never CSE anything that produces a flag.
  
  SDNode *New = CSEMap.GetOrInsertNode(N);
  if (New != N) return New;  // Node already existed.
  return 0;
}

/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
/// were replaced with those specified.  If this node is never memoized, 
/// return null, otherwise return a pointer to the slot it would take.  If a
/// node already exists with these operands, the slot will be non-null.
SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op,
                                           void *&InsertPos) {
  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
    return 0;    // Never add these nodes.
  
  // Check that remaining values produced are not flags.
  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
    if (N->getValueType(i) == MVT::Flag)
      return 0;   // Never CSE anything that produces a flag.
  
  SDOperand Ops[] = { Op };
  FoldingSetNodeID ID;
  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
}

/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
/// were replaced with those specified.  If this node is never memoized, 
/// return null, otherwise return a pointer to the slot it would take.  If a
/// node already exists with these operands, the slot will be non-null.
SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 
                                           SDOperand Op1, SDOperand Op2,
                                           void *&InsertPos) {
  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
    return 0;    // Never add these nodes.
  
  // Check that remaining values produced are not flags.
  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
    if (N->getValueType(i) == MVT::Flag)
      return 0;   // Never CSE anything that produces a flag.
                                              
  SDOperand Ops[] = { Op1, Op2 };
  FoldingSetNodeID ID;
  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
}


/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
/// were replaced with those specified.  If this node is never memoized, 
/// return null, otherwise return a pointer to the slot it would take.  If a
/// node already exists with these operands, the slot will be non-null.
SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 
                                           SDOperandPtr Ops,unsigned NumOps,
                                           void *&InsertPos) {
  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
    return 0;    // Never add these nodes.
  
  // Check that remaining values produced are not flags.
  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
    if (N->getValueType(i) == MVT::Flag)
      return 0;   // Never CSE anything that produces a flag.
  
  FoldingSetNodeID ID;
  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
  
  if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
    ID.AddInteger(LD->getAddressingMode());
    ID.AddInteger(LD->getExtensionType());
    ID.AddInteger((unsigned int)(LD->getMemoryVT()));
    ID.AddInteger(LD->getAlignment());
    ID.AddInteger(LD->isVolatile());
  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
    ID.AddInteger(ST->getAddressingMode());
    ID.AddInteger(ST->isTruncatingStore());
    ID.AddInteger((unsigned int)(ST->getMemoryVT()));
    ID.AddInteger(ST->getAlignment());
    ID.AddInteger(ST->isVolatile());
  }
  
  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
}


SelectionDAG::~SelectionDAG() {
  while (!AllNodes.empty()) {
    SDNode *N = AllNodes.begin();
    N->SetNextInBucket(0);
    if (N->OperandsNeedDelete) {
      delete [] N->OperandList;
    }
    N->OperandList = 0;
    N->NumOperands = 0;
    AllNodes.pop_front();
  }
}

SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
  if (Op.getValueType() == VT) return Op;
  APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
                                   MVT::getSizeInBits(VT));
  return getNode(ISD::AND, Op.getValueType(), Op,
                 getConstant(Imm, Op.getValueType()));
}

SDOperand SelectionDAG::getString(const std::string &Val) {
  StringSDNode *&N = StringNodes[Val];
  if (!N) {
    N = new StringSDNode(Val);
    AllNodes.push_back(N);
  }
  return SDOperand(N, 0);
}

SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT, bool isT) {
  MVT::ValueType EltVT =
    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;

  return getConstant(APInt(MVT::getSizeInBits(EltVT), Val), VT, isT);
}

SDOperand SelectionDAG::getConstant(const APInt &Val, MVT::ValueType VT, bool isT) {
  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");

  MVT::ValueType EltVT =
    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
  
  assert(Val.getBitWidth() == MVT::getSizeInBits(EltVT) &&
         "APInt size does not match type size!");

  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
  FoldingSetNodeID ID;
  AddNodeIDNode(ID, Opc, getVTList(EltVT), (SDOperand*)0, 0);
  ID.Add(Val);
  void *IP = 0;
  SDNode *N = NULL;
  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
    if (!MVT::isVector(VT))
      return SDOperand(N, 0);
  if (!N) {
    N = new ConstantSDNode(isT, Val, EltVT);
    CSEMap.InsertNode(N, IP);
    AllNodes.push_back(N);
  }

  SDOperand Result(N, 0);
  if (MVT::isVector(VT)) {
    SmallVector<SDOperand, 8> Ops;
    Ops.assign(MVT::getVectorNumElements(VT), Result);
    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
  }
  return Result;
}

SDOperand SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
  return getConstant(Val, TLI.getPointerTy(), isTarget);
}


SDOperand SelectionDAG::getConstantFP(const APFloat& V, MVT::ValueType VT,
                                      bool isTarget) {
  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
                                
  MVT::ValueType EltVT =
    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;

  // Do the map lookup using the actual bit pattern for the floating point
  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
  // we don't have issues with SNANs.
  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
  FoldingSetNodeID ID;
  AddNodeIDNode(ID, Opc, getVTList(EltVT), (SDOperand*)0, 0);
  ID.Add(V);
  void *IP = 0;
  SDNode *N = NULL;
  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
    if (!MVT::isVector(VT))
      return SDOperand(N, 0);
  if (!N) {
    N = new ConstantFPSDNode(isTarget, V, EltVT);
    CSEMap.InsertNode(N, IP);
    AllNodes.push_back(N);
  }

  SDOperand Result(N, 0);
  if (MVT::isVector(VT)) {
    SmallVector<SDOperand, 8> Ops;
    Ops.assign(MVT::getVectorNumElements(VT), Result);
    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
  }
  return Result;
}

SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT,
                                      bool isTarget) {
  MVT::ValueType EltVT =
    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
  if (EltVT==MVT::f32)
    return getConstantFP(APFloat((float)Val), VT, isTarget);
  else
    return getConstantFP(APFloat(Val), VT, isTarget);
}

SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
                                         MVT::ValueType VT, int Offset,
                                         bool isTargetGA) {
  unsigned Opc;

  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
  if (!GVar) {
    // If GV is an alias then use the aliasee for determining thread-localness.
    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal());
  }

  if (GVar && GVar->isThreadLocal())
    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
  else
    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;

  FoldingSetNodeID ID;
  AddNodeIDNode(ID, Opc, getVTList(VT), (SDOperand*)0, 0);
  ID.AddPointer(GV);
  ID.AddInteger(Offset);
  void *IP = 0;
  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
   return SDOperand(E, 0);
  SDNode *N = new GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
  CSEMap.InsertNode(N, IP);
  AllNodes.push_back(N);
  return SDOperand(N, 0);
}

SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT,
                                      bool isTarget) {
  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
  FoldingSetNodeID ID;
  AddNodeIDNode(ID, Opc, getVTList(VT), (SDOperand*)0, 0);
  ID.AddInteger(FI);
  void *IP = 0;
  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
    return SDOperand(E, 0);
  SDNode *N = new FrameIndexSDNode(FI, VT, isTarget);
  CSEMap.InsertNode(N, IP);
  AllNodes.push_back(N);
  return SDOperand(N, 0);
}

SDOperand SelectionDAG::getJumpTable(int JTI, MVT::ValueType VT, bool isTarget){
  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
  FoldingSetNodeID ID;
  AddNodeIDNode(ID, Opc, getVTList(VT), (SDOperand*)0, 0);
  ID.AddInteger(JTI);
  void *IP = 0;
  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
    return SDOperand(E, 0);
  SDNode *N = new JumpTableSDNode(JTI, VT, isTarget);
  CSEMap.InsertNode(N, IP);
  AllNodes.push_back(N);
  return SDOperand(N, 0);
}

SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT,
                                        unsigned Alignment, int Offset,
                                        bool isTarget) {
  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
  FoldingSetNodeID ID;
  AddNodeIDNode(ID, Opc, getVTList(VT), (SDOperand*)0, 0);
  ID.AddInteger(Alignment);
  ID.AddInteger(Offset);
  ID.AddPointer(C);
  void *IP = 0;
  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
    return SDOperand(E, 0);
  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
  CSEMap.InsertNode(N, IP);
  AllNodes.push_back(N);
  return SDOperand(N, 0);
}


SDOperand SelectionDAG::getConstantPool(MachineConstantPoolValue *C,
                                        MVT::ValueType VT,
                                        unsigned Alignment, int Offset,
                                        bool isTarget) {
  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
  FoldingSetNodeID ID;
  AddNodeIDNode(ID, Opc, getVTList(VT), (SDOperand*)0, 0);
  ID.AddInteger(Alignment);
  ID.AddInteger(Offset);
  C->AddSelectionDAGCSEId(ID);
  void *IP = 0;
  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
    return SDOperand(E, 0);
  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
  CSEMap.InsertNode(N, IP);
  AllNodes.push_back(N);
  return SDOperand(N, 0);
}


SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
  FoldingSetNodeID ID;
  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), (SDOperand*)0, 0);
  ID.AddPointer(MBB);
  void *IP = 0;
  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
    return SDOperand(E, 0);
  SDNode *N = new BasicBlockSDNode(MBB);
  CSEMap.InsertNode(N, IP);
  AllNodes.push_back(N);
  return SDOperand(N, 0);
}

SDOperand SelectionDAG::getArgFlags(ISD::ArgFlagsTy Flags) {
  FoldingSetNodeID ID;
  AddNodeIDNode(ID, ISD::ARG_FLAGS, getVTList(MVT::Other), (SDOperand*)0, 0);
  ID.AddInteger(Flags.getRawBits());
  void *IP = 0;
  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
    return SDOperand(E, 0);
  SDNode *N = new ARG_FLAGSSDNode(Flags);
  CSEMap.InsertNode(N, IP);
  AllNodes.push_back(N);
  return SDOperand(N, 0);
}

SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
  if (!MVT::isExtendedVT(VT) && (unsigned)VT >= ValueTypeNodes.size())
    ValueTypeNodes.resize(VT+1);

  SDNode *&N = MVT::isExtendedVT(VT) ?
    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT];

  if (N) return SDOperand(N, 0);
  N = new VTSDNode(VT);
  AllNodes.push_back(N);
  return SDOperand(N, 0);
}

SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
  SDNode *&N = ExternalSymbols[Sym];
  if (N) return SDOperand(N, 0);
  N = new ExternalSymbolSDNode(false, Sym, VT);
  AllNodes.push_back(N);
  return SDOperand(N, 0);
}

SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym,
                                                MVT::ValueType VT) {
  SDNode *&N = TargetExternalSymbols[Sym];
  if (N) return SDOperand(N, 0);
  N = new ExternalSymbolSDNode(true, Sym, VT);
  AllNodes.push_back(N);
  return SDOperand(N, 0);
}

SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
  if ((unsigned)Cond >= CondCodeNodes.size())
    CondCodeNodes.resize(Cond+1);
  
  if (CondCodeNodes[Cond] == 0) {
    CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
    AllNodes.push_back(CondCodeNodes[Cond]);
  }
  return SDOperand(CondCodeNodes[Cond], 0);
}

SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
  FoldingSetNodeID ID;
  AddNodeIDNode(ID, ISD::Register, getVTList(VT), (SDOperand*)0, 0);
  ID.AddInteger(RegNo);
  void *IP = 0;
  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
    return SDOperand(E, 0);
  SDNode *N = new RegisterSDNode(RegNo, VT);
  CSEMap.InsertNode(N, IP);
  AllNodes.push_back(N);
  return SDOperand(N, 0);
}

SDOperand SelectionDAG::getSrcValue(const Value *V) {
  assert((!V || isa<PointerType>(V->getType())) &&
         "SrcValue is not a pointer?");

  FoldingSetNodeID ID;
  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), (SDOperand*)0, 0);
  ID.AddPointer(V);

  void *IP = 0;
  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
    return SDOperand(E, 0);

  SDNode *N = new SrcValueSDNode(V);
  CSEMap.InsertNode(N, IP);
  AllNodes.push_back(N);
  return SDOperand(N, 0);
}

SDOperand SelectionDAG::getMemOperand(const MachineMemOperand &MO) {
  const Value *v = MO.getValue();
  assert((!v || isa<PointerType>(v->getType())) &&
         "SrcValue is not a pointer?");

  FoldingSetNodeID ID;
  AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), (SDOperand*)0, 0);
  ID.AddPointer(v);
  ID.AddInteger(MO.getFlags());
  ID.AddInteger(MO.getOffset());
  ID.AddInteger(MO.getSize());
  ID.AddInteger(MO.getAlignment());

  void *IP = 0;
  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
    return SDOperand(E, 0);

  SDNode *N = new MemOperandSDNode(MO);
  CSEMap.InsertNode(N, IP);
  AllNodes.push_back(N);
  return SDOperand(N, 0);
}

/// CreateStackTemporary - Create a stack temporary, suitable for holding the
/// specified value type.
SDOperand SelectionDAG::CreateStackTemporary(MVT::ValueType VT) {
  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
  unsigned ByteSize = MVT::getSizeInBits(VT)/8;
  const Type *Ty = MVT::getTypeForValueType(VT);
  unsigned StackAlign = (unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty);
  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
  return getFrameIndex(FrameIdx, TLI.getPointerTy());
}


SDOperand SelectionDAG::FoldSetCC(MVT::ValueType VT, SDOperand N1,
                                  SDOperand N2, ISD::CondCode Cond) {
  // These setcc operations always fold.
  switch (Cond) {
  default: break;
  case ISD::SETFALSE:
  case ISD::SETFALSE2: return getConstant(0, VT);
  case ISD::SETTRUE:
  case ISD::SETTRUE2:  return getConstant(1, VT);
    
  case ISD::SETOEQ:
  case ISD::SETOGT:
  case ISD::SETOGE:
  case ISD::SETOLT:
  case ISD::SETOLE:
  case ISD::SETONE:
  case ISD::SETO:
  case ISD::SETUO:
  case ISD::SETUEQ:
  case ISD::SETUNE:
    assert(!MVT::isInteger(N1.getValueType()) && "Illegal setcc for integer!");
    break;
  }
  
  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
    const APInt &C2 = N2C->getAPIntValue();
    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
      const APInt &C1 = N1C->getAPIntValue();
      
      switch (Cond) {
      default: assert(0 && "Unknown integer setcc!");
      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
      case ISD::SETNE:  return getConstant(C1 != C2, VT);
      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
      }
    }
  }
  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val)) {
    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
      // No compile time operations on this type yet.
      if (N1C->getValueType(0) == MVT::ppcf128)
        return SDOperand();

      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
      switch (Cond) {
      default: break;
      case ISD::SETEQ:  if (R==APFloat::cmpUnordered) 
                          return getNode(ISD::UNDEF, VT);
                        // fall through
      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
      case ISD::SETNE:  if (R==APFloat::cmpUnordered) 
                          return getNode(ISD::UNDEF, VT);
                        // fall through
      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
                                           R==APFloat::cmpLessThan, VT);
      case ISD::SETLT:  if (R==APFloat::cmpUnordered) 
                          return getNode(ISD::UNDEF, VT);
                        // fall through
      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
      case ISD::SETGT:  if (R==APFloat::cmpUnordered) 
                          return getNode(ISD::UNDEF, VT);
                        // fall through
      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
      case ISD::SETLE:  if (R==APFloat::cmpUnordered) 
                          return getNode(ISD::UNDEF, VT);
                        // fall through
      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
                                           R==APFloat::cmpEqual, VT);
      case ISD::SETGE:  if (R==APFloat::cmpUnordered) 
                          return getNode(ISD::UNDEF, VT);
                        // fall through
      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
                                           R==APFloat::cmpEqual, VT);
      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
                                           R==APFloat::cmpEqual, VT);
      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
                                           R==APFloat::cmpLessThan, VT);
      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
                                           R==APFloat::cmpUnordered, VT);
      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
      }
    } else {
      // Ensure that the constant occurs on the RHS.
      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
    }
  }

  // Could not fold it.
  return SDOperand();
}

/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
/// use this predicate to simplify operations downstream.
bool SelectionDAG::SignBitIsZero(SDOperand Op, unsigned Depth) const {
  unsigned BitWidth = Op.getValueSizeInBits();
  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
}

/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
/// this predicate to simplify operations downstream.  Mask is known to be zero
/// for bits that V cannot have.
bool SelectionDAG::MaskedValueIsZero(SDOperand Op, const APInt &Mask, 
                                     unsigned Depth) const {
  APInt KnownZero, KnownOne;
  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
  return (KnownZero & Mask) == Mask;
}

/// ComputeMaskedBits - Determine which of the bits specified in Mask are
/// known to be either zero or one and return them in the KnownZero/KnownOne
/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
/// processing.
void SelectionDAG::ComputeMaskedBits(SDOperand Op, const APInt &Mask, 
                                     APInt &KnownZero, APInt &KnownOne,
                                     unsigned Depth) const {
  unsigned BitWidth = Mask.getBitWidth();
  assert(BitWidth == MVT::getSizeInBits(Op.getValueType()) &&
         "Mask size mismatches value type size!");

  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
  if (Depth == 6 || Mask == 0)
    return;  // Limit search depth.
  
  APInt KnownZero2, KnownOne2;

  switch (Op.getOpcode()) {
  case ISD::Constant:
    // We know all of the bits for a constant!
    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
    KnownZero = ~KnownOne & Mask;
    return;
  case ISD::AND:
    // If either the LHS or the RHS are Zero, the result is zero.
    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
                      KnownZero2, KnownOne2, Depth+1);
    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 

    // Output known-1 bits are only known if set in both the LHS & RHS.
    KnownOne &= KnownOne2;
    // Output known-0 are known to be clear if zero in either the LHS | RHS.
    KnownZero |= KnownZero2;
    return;
  case ISD::OR:
    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
                      KnownZero2, KnownOne2, Depth+1);
    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
    
    // Output known-0 bits are only known if clear in both the LHS & RHS.
    KnownZero &= KnownZero2;
    // Output known-1 are known to be set if set in either the LHS | RHS.
    KnownOne |= KnownOne2;
    return;
  case ISD::XOR: {
    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
    
    // Output known-0 bits are known if clear or set in both the LHS & RHS.
    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
    // Output known-1 are known to be set if set in only one of the LHS, RHS.
    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
    KnownZero = KnownZeroOut;
    return;
  }
  case ISD::MUL: {
    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");

    // If low bits are zero in either operand, output low known-0 bits.
    // Also compute a conserative estimate for high known-0 bits.
    // More trickiness is possible, but this is sufficient for the
    // interesting case of alignment computation.
    KnownOne.clear();
    unsigned TrailZ = KnownZero.countTrailingOnes() +
                      KnownZero2.countTrailingOnes();
    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
                               KnownZero2.countLeadingOnes(),
                               BitWidth) - BitWidth;

    TrailZ = std::min(TrailZ, BitWidth);
    LeadZ = std::min(LeadZ, BitWidth);
    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
                APInt::getHighBitsSet(BitWidth, LeadZ);
    KnownZero &= Mask;
    return;
  }
  case ISD::UDIV: {
    // For the purposes of computing leading zeros we can conservatively
    // treat a udiv as a logical right shift by the power of 2 known to
    // be less than the denominator.
    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
    ComputeMaskedBits(Op.getOperand(0),
                      AllOnes, KnownZero2, KnownOne2, Depth+1);
    unsigned LeadZ = KnownZero2.countLeadingOnes();

    KnownOne2.clear();
    KnownZero2.clear();
    ComputeMaskedBits(Op.getOperand(1),
                      AllOnes, KnownZero2, KnownOne2, Depth+1);
    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
    if (RHSUnknownLeadingOnes != BitWidth)
      LeadZ = std::min(BitWidth,
                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);

    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
    return;
  }
  case ISD::SELECT:
    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
    
    // Only known if known in both the LHS and RHS.
    KnownOne &= KnownOne2;
    KnownZero &= KnownZero2;
    return;
  case ISD::SELECT_CC:
    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
    
    // Only known if known in both the LHS and RHS.
    KnownOne &= KnownOne2;
    KnownZero &= KnownZero2;
    return;
  case ISD::SETCC:
    // If we know the result of a setcc has the top bits zero, use this info.
    if (TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult &&
        BitWidth > 1)
      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
    return;
  case ISD::SHL:
    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
      unsigned ShAmt = SA->getValue();

      // If the shift count is an invalid immediate, don't do anything.
      if (ShAmt >= BitWidth)
        return;

      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
                        KnownZero, KnownOne, Depth+1);
      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
      KnownZero <<= ShAmt;
      KnownOne  <<= ShAmt;
      // low bits known zero.
      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
    }
    return;
  case ISD::SRL:
    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
      unsigned ShAmt = SA->getValue();

      // If the shift count is an invalid immediate, don't do anything.
      if (ShAmt >= BitWidth)
        return;

      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
                        KnownZero, KnownOne, Depth+1);
      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
      KnownZero = KnownZero.lshr(ShAmt);
      KnownOne  = KnownOne.lshr(ShAmt);

      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
      KnownZero |= HighBits;  // High bits known zero.
    }
    return;
  case ISD::SRA:
    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
      unsigned ShAmt = SA->getValue();

      // If the shift count is an invalid immediate, don't do anything.
      if (ShAmt >= BitWidth)
        return;

      APInt InDemandedMask = (Mask << ShAmt);
      // If any of the demanded bits are produced by the sign extension, we also
      // demand the input sign bit.
      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
      if (HighBits.getBoolValue())
        InDemandedMask |= APInt::getSignBit(BitWidth);
      
      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
                        Depth+1);
      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
      KnownZero = KnownZero.lshr(ShAmt);
      KnownOne  = KnownOne.lshr(ShAmt);
      
      // Handle the sign bits.
      APInt SignBit = APInt::getSignBit(BitWidth);
      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
      
      if (KnownZero.intersects(SignBit)) {
        KnownZero |= HighBits;  // New bits are known zero.
      } else if (KnownOne.intersects(SignBit)) {
        KnownOne  |= HighBits;  // New bits are known one.
      }
    }
    return;
  case ISD::SIGN_EXTEND_INREG: {
    MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
    unsigned EBits = MVT::getSizeInBits(EVT);
    
    // Sign extension.  Compute the demanded bits in the result that are not 
    // present in the input.
    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;

    APInt InSignBit = APInt::getSignBit(EBits);
    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
    
    // If the sign extended bits are demanded, we know that the sign
    // bit is demanded.
    InSignBit.zext(BitWidth);
    if (NewBits.getBoolValue())
      InputDemandedBits |= InSignBit;
    
    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
                      KnownZero, KnownOne, Depth+1);
    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
    
    // If the sign bit of the input is known set or clear, then we know the
    // top bits of the result.
    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
      KnownZero |= NewBits;
      KnownOne  &= ~NewBits;
    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
      KnownOne  |= NewBits;
      KnownZero &= ~NewBits;
    } else {                              // Input sign bit unknown
      KnownZero &= ~NewBits;
      KnownOne  &= ~NewBits;
    }
    return;
  }
  case ISD::CTTZ:
  case ISD::CTLZ:
  case ISD::CTPOP: {
    unsigned LowBits = Log2_32(BitWidth)+1;
    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
    KnownOne  = APInt(BitWidth, 0);
    return;
  }
  case ISD::LOAD: {
    if (ISD::isZEXTLoad(Op.Val)) {
      LoadSDNode *LD = cast<LoadSDNode>(Op);
      MVT::ValueType VT = LD->getMemoryVT();
      unsigned MemBits = MVT::getSizeInBits(VT);
      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
    }
    return;
  }
  case ISD::ZERO_EXTEND: {
    MVT::ValueType InVT = Op.getOperand(0).getValueType();
    unsigned InBits = MVT::getSizeInBits(InVT);
    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
    APInt InMask    = Mask;
    InMask.trunc(InBits);
    KnownZero.trunc(InBits);
    KnownOne.trunc(InBits);
    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
    KnownZero.zext(BitWidth);
    KnownOne.zext(BitWidth);
    KnownZero |= NewBits;
    return;
  }
  case ISD::SIGN_EXTEND: {
    MVT::ValueType InVT = Op.getOperand(0).getValueType();
    unsigned InBits = MVT::getSizeInBits(InVT);
    APInt InSignBit = APInt::getSignBit(InBits);
    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
    APInt InMask = Mask;
    InMask.trunc(InBits);

    // If any of the sign extended bits are demanded, we know that the sign
    // bit is demanded. Temporarily set this bit in the mask for our callee.
    if (NewBits.getBoolValue())
      InMask |= InSignBit;

    KnownZero.trunc(InBits);
    KnownOne.trunc(InBits);
    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);

    // Note if the sign bit is known to be zero or one.
    bool SignBitKnownZero = KnownZero.isNegative();
    bool SignBitKnownOne  = KnownOne.isNegative();
    assert(!(SignBitKnownZero && SignBitKnownOne) &&
           "Sign bit can't be known to be both zero and one!");

    // If the sign bit wasn't actually demanded by our caller, we don't
    // want it set in the KnownZero and KnownOne result values. Reset the
    // mask and reapply it to the result values.
    InMask = Mask;
    InMask.trunc(InBits);
    KnownZero &= InMask;
    KnownOne  &= InMask;

    KnownZero.zext(BitWidth);
    KnownOne.zext(BitWidth);

    // If the sign bit is known zero or one, the top bits match.
    if (SignBitKnownZero)
      KnownZero |= NewBits;
    else if (SignBitKnownOne)
      KnownOne  |= NewBits;
    return;
  }
  case ISD::ANY_EXTEND: {
    MVT::ValueType InVT = Op.getOperand(0).getValueType();
    unsigned InBits = MVT::getSizeInBits(InVT);
    APInt InMask = Mask;
    InMask.trunc(InBits);
    KnownZero.trunc(InBits);
    KnownOne.trunc(InBits);
    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
    KnownZero.zext(BitWidth);
    KnownOne.zext(BitWidth);
    return;
  }
  case ISD::TRUNCATE: {
    MVT::ValueType InVT = Op.getOperand(0).getValueType();
    unsigned InBits = MVT::getSizeInBits(InVT);
    APInt InMask = Mask;
    InMask.zext(InBits);
    KnownZero.zext(InBits);
    KnownOne.zext(InBits);
    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
    KnownZero.trunc(BitWidth);
    KnownOne.trunc(BitWidth);
    break;
  }
  case ISD::AssertZext: {
    MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
    APInt InMask = APInt::getLowBitsSet(BitWidth, MVT::getSizeInBits(VT));
    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero, 
                      KnownOne, Depth+1);
    KnownZero |= (~InMask) & Mask;
    return;
  }
  case ISD::FGETSIGN:
    // All bits are zero except the low bit.
    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
    return;
  
  case ISD::SUB: {
    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
      // We know that the top bits of C-X are clear if X contains less bits
      // than C (i.e. no wrap-around can happen).  For example, 20-X is
      // positive if we can prove that X is >= 0 and < 16.
      if (CLHS->getAPIntValue().isNonNegative()) {
        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
        // NLZ can't be BitWidth with no sign bit
        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
                          Depth+1);

        // If all of the MaskV bits are known to be zero, then we know the
        // output top bits are zero, because we now know that the output is
        // from [0-C].
        if ((KnownZero2 & MaskV) == MaskV) {
          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
          // Top bits known zero.
          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
        }
      }
    }
  }
  // fall through
  case ISD::ADD: {
    // Output known-0 bits are known if clear or set in both the low clear bits
    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
    // low 3 bits clear.
    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();

    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
    KnownZeroOut = std::min(KnownZeroOut,
                            KnownZero2.countTrailingOnes());

    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
    return;
  }
  case ISD::SREM:
    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
      APInt RA = Rem->getAPIntValue();
      if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
        APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);

        // The sign of a remainder is equal to the sign of the first
        // operand (zero being positive).
        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
          KnownZero2 |= ~LowBits;
        else if (KnownOne2[BitWidth-1])
          KnownOne2 |= ~LowBits;

        KnownZero |= KnownZero2 & Mask;
        KnownOne |= KnownOne2 & Mask;

        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
      }
    }
    return;
  case ISD::UREM: {
    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
      APInt RA = Rem->getAPIntValue();
      if (RA.isPowerOf2()) {
        APInt LowBits = (RA - 1);
        APInt Mask2 = LowBits & Mask;
        KnownZero |= ~LowBits & Mask;
        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
        break;
      }
    }

    // Since the result is less than or equal to either operand, any leading
    // zero bits in either operand must also exist in the result.
    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
                      Depth+1);
    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
                      Depth+1);

    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
                                KnownZero2.countLeadingOnes());
    KnownOne.clear();
    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
    return;
  }
  default:
    // Allow the target to implement this method for its nodes.
    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
  case ISD::INTRINSIC_WO_CHAIN:
  case ISD::INTRINSIC_W_CHAIN:
  case ISD::INTRINSIC_VOID:
      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
    }
    return;
  }
}

/// ComputeNumSignBits - Return the number of times the sign bit of the
/// register is replicated into the other bits.  We know that at least 1 bit
/// is always equal to the sign bit (itself), but other cases can give us
/// information.  For example, immediately after an "SRA X, 2", we know that
/// the top 3 bits are all equal to each other, so we return 3.
unsigned SelectionDAG::ComputeNumSignBits(SDOperand Op, unsigned Depth) const{
  MVT::ValueType VT = Op.getValueType();
  assert(MVT::isInteger(VT) && "Invalid VT!");
  unsigned VTBits = MVT::getSizeInBits(VT);
  unsigned Tmp, Tmp2;
  
  if (Depth == 6)
    return 1;  // Limit search depth.

  switch (Op.getOpcode()) {
  default: break;
  case ISD::AssertSext:
    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
    return VTBits-Tmp+1;
  case ISD::AssertZext:
    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
    return VTBits-Tmp;
    
  case ISD::Constant: {
    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
    // If negative, return # leading ones.
    if (Val.isNegative())
      return Val.countLeadingOnes();
    
    // Return # leading zeros.
    return Val.countLeadingZeros();
  }
    
  case ISD::SIGN_EXTEND:
    Tmp = VTBits-MVT::getSizeInBits(Op.getOperand(0).getValueType());
    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
    
  case ISD::SIGN_EXTEND_INREG:
    // Max of the input and what this extends.
    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
    Tmp = VTBits-Tmp+1;
    
    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
    return std::max(Tmp, Tmp2);

  case ISD::SRA:
    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
    // SRA X, C   -> adds C sign bits.
    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
      Tmp += C->getValue();
      if (Tmp > VTBits) Tmp = VTBits;
    }
    return Tmp;
  case ISD::SHL:
    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
      // shl destroys sign bits.
      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
      if (C->getValue() >= VTBits ||      // Bad shift.
          C->getValue() >= Tmp) break;    // Shifted all sign bits out.
      return Tmp - C->getValue();
    }
    break;
  case ISD::AND:
  case ISD::OR:
  case ISD::XOR:    // NOT is handled here.
    // Logical binary ops preserve the number of sign bits.
    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
    if (Tmp == 1) return 1;  // Early out.
    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
    return std::min(Tmp, Tmp2);

  case ISD::SELECT:
    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
    if (Tmp == 1) return 1;  // Early out.
    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
    return std::min(Tmp, Tmp2);
    
  case ISD::SETCC:
    // If setcc returns 0/-1, all bits are sign bits.
    if (TLI.getSetCCResultContents() ==
        TargetLowering::ZeroOrNegativeOneSetCCResult)
      return VTBits;
    break;
  case ISD::ROTL:
  case ISD::ROTR:
    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
      unsigned RotAmt = C->getValue() & (VTBits-1);
      
      // Handle rotate right by N like a rotate left by 32-N.
      if (Op.getOpcode() == ISD::ROTR)
        RotAmt = (VTBits-RotAmt) & (VTBits-1);

      // If we aren't rotating out all of the known-in sign bits, return the
      // number that are left.  This handles rotl(sext(x), 1) for example.
      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
      if (Tmp > RotAmt+1) return Tmp-RotAmt;
    }
    break;
  case ISD::ADD:
    // Add can have at most one carry bit.  Thus we know that the output
    // is, at worst, one more bit than the inputs.
    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
    if (Tmp == 1) return 1;  // Early out.
      
    // Special case decrementing a value (ADD X, -1):
    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
      if (CRHS->isAllOnesValue()) {
        APInt KnownZero, KnownOne;
        APInt Mask = APInt::getAllOnesValue(VTBits);
        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
        
        // If the input is known to be 0 or 1, the output is 0/-1, which is all
        // sign bits set.
        if ((KnownZero | APInt(VTBits, 1)) == Mask)
          return VTBits;
        
        // If we are subtracting one from a positive number, there is no carry
        // out of the result.
        if (KnownZero.isNegative())
          return Tmp;
      }
      
    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
    if (Tmp2 == 1) return 1;
      return std::min(Tmp, Tmp2)-1;
    break;
    
  case ISD::SUB:
    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
    if (Tmp2 == 1) return 1;
      
    // Handle NEG.
    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
      if (CLHS->isNullValue()) {
        APInt KnownZero, KnownOne;
        APInt Mask = APInt::getAllOnesValue(VTBits);
        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
        // If the input is known to be 0 or 1, the output is 0/-1, which is all
        // sign bits set.
        if ((KnownZero | APInt(VTBits, 1)) == Mask)
          return VTBits;
        
        // If the input is known to be positive (the sign bit is known clear),
        // the output of the NEG has the same number of sign bits as the input.
        if (KnownZero.isNegative())
          return Tmp2;
        
        // Otherwise, we treat this like a SUB.
      }
    
    // Sub can have at most one carry bit.  Thus we know that the output
    // is, at worst, one more bit than the inputs.
    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
    if (Tmp == 1) return 1;  // Early out.
      return std::min(Tmp, Tmp2)-1;
    break;
  case ISD::TRUNCATE:
    // FIXME: it's tricky to do anything useful for this, but it is an important
    // case for targets like X86.
    break;
  }
  
  // Handle LOADX separately here. EXTLOAD case will fallthrough.
  if (Op.getOpcode() == ISD::LOAD) {
    LoadSDNode *LD = cast<LoadSDNode>(Op);
    unsigned ExtType = LD->getExtensionType();
    switch (ExtType) {
    default: break;
    case ISD::SEXTLOAD:    // '17' bits known
      Tmp = MVT::getSizeInBits(LD->getMemoryVT());
      return VTBits-Tmp+1;
    case ISD::ZEXTLOAD:    // '16' bits known
      Tmp = MVT::getSizeInBits(LD->getMemoryVT());
      return VTBits-Tmp;
    }
  }

  // Allow the target to implement this method for its nodes.
  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 
      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
      Op.getOpcode() == ISD::INTRINSIC_VOID) {
    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
    if (NumBits > 1) return NumBits;
  }
  
  // Finally, if we can prove that the top bits of the result are 0's or 1's,
  // use this information.
  APInt KnownZero, KnownOne;
  APInt Mask = APInt::getAllOnesValue(VTBits);
  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
  
  if (KnownZero.isNegative()) {        // sign bit is 0
    Mask = KnownZero;
  } else if (KnownOne.isNegative()) {  // sign bit is 1;
    Mask = KnownOne;
  } else {
    // Nothing known.
    return 1;
  }
  
  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
  // the number of identical bits in the top of the input value.
  Mask = ~Mask;
  Mask <<= Mask.getBitWidth()-VTBits;
  // Return # leading zeros.  We use 'min' here in case Val was zero before
  // shifting.  We don't want to return '64' as for an i32 "0".
  return std::min(VTBits, Mask.countLeadingZeros());
}


bool SelectionDAG::isVerifiedDebugInfoDesc(SDOperand Op) const {
  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
  if (!GA) return false;
  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
  if (!GV) return false;
  MachineModuleInfo *MMI = getMachineModuleInfo();
  return MMI && MMI->hasDebugInfo() && MMI->isVerified(GV);
}


/// getNode - Gets or creates the specified node.
///
SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
  FoldingSetNodeID ID;
  AddNodeIDNode(ID, Opcode, getVTList(VT), (SDOperand*)0, 0);
  void *IP = 0;
  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
    return SDOperand(E, 0);
  SDNode *N = new SDNode(Opcode, SDNode::getSDVTList(VT));
  CSEMap.InsertNode(N, IP);
  
  AllNodes.push_back(N);
  return SDOperand(N, 0);
}

SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
                                SDOperand Operand) {
  // Constant fold unary operations with an integer constant operand.
  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
    const APInt &Val = C->getAPIntValue();
    unsigned BitWidth = MVT::getSizeInBits(VT);
    switch (Opcode) {
    default: break;
    case ISD::SIGN_EXTEND:
      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
    case ISD::ANY_EXTEND:
    case ISD::ZERO_EXTEND:
    case ISD::TRUNCATE:
      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
    case ISD::UINT_TO_FP:
    case ISD::SINT_TO_FP: {
      const uint64_t zero[] = {0, 0};
      // No compile time operations on this type.
      if (VT==MVT::ppcf128)
        break;
      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
      (void)apf.convertFromAPInt(Val, 
                                 Opcode==ISD::SINT_TO_FP,
                                 APFloat::rmNearestTiesToEven);
      return getConstantFP(apf, VT);
    }
    case ISD::BIT_CONVERT:
      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
        return getConstantFP(Val.bitsToFloat(), VT);
      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
        return getConstantFP(Val.bitsToDouble(), VT);
      break;
    case ISD::BSWAP:
      return getConstant(Val.byteSwap(), VT);
    case ISD::CTPOP:
      return getConstant(Val.countPopulation(), VT);
    case ISD::CTLZ:
      return getConstant(Val.countLeadingZeros(), VT);
    case ISD::CTTZ:
      return getConstant(Val.countTrailingZeros(), VT);
    }
  }

  // Constant fold unary operations with a floating point constant operand.
  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val)) {
    APFloat V = C->getValueAPF();    // make copy
    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
      switch (Opcode) {
      case ISD::FNEG:
        V.changeSign();
        return getConstantFP(V, VT);
      case ISD::FABS:
        V.clearSign();
        return getConstantFP(V, VT);
      case ISD::FP_ROUND:
      case ISD::FP_EXTEND:
        // This can return overflow, underflow, or inexact; we don't care.
        // FIXME need to be more flexible about rounding mode.
        (void)V.convert(*MVTToAPFloatSemantics(VT),
                        APFloat::rmNearestTiesToEven);
        return getConstantFP(V, VT);
      case ISD::FP_TO_SINT:
      case ISD::FP_TO_UINT: {
        integerPart x;
        assert(integerPartWidth >= 64);
        // FIXME need to be more flexible about rounding mode.
        APFloat::opStatus s = V.convertToInteger(&x, 64U,
                              Opcode==ISD::FP_TO_SINT,
                              APFloat::rmTowardZero);
        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
          break;
        return getConstant(x, VT);
      }
      case ISD::BIT_CONVERT:
        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
          return getConstant((uint32_t)V.convertToAPInt().getZExtValue(), VT);
        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
          return getConstant(V.convertToAPInt().getZExtValue(), VT);
        break;
      }
    }
  }

  unsigned OpOpcode = Operand.Val->getOpcode();
  switch (Opcode) {
  case ISD::TokenFactor:
  case ISD::MERGE_VALUES:
    return Operand;         // Factor or merge of one node?  No need.
  case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
  case ISD::FP_EXTEND:
    assert(MVT::isFloatingPoint(VT) &&
           MVT::isFloatingPoint(Operand.getValueType()) && "Invalid FP cast!");
    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
    if (Operand.getOpcode() == ISD::UNDEF)
      return getNode(ISD::UNDEF, VT);
    break;
  case ISD::SIGN_EXTEND:
    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
           "Invalid SIGN_EXTEND!");
    if (Operand.getValueType() == VT) return Operand;   // noop extension
    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
           && "Invalid sext node, dst < src!");
    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
    break;
  case ISD::ZERO_EXTEND:
    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
           "Invalid ZERO_EXTEND!");
    if (Operand.getValueType() == VT) return Operand;   // noop extension
    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
           && "Invalid zext node, dst < src!");
    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
    break;
  case ISD::ANY_EXTEND:
    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
           "Invalid ANY_EXTEND!");
    if (Operand.getValueType() == VT) return Operand;   // noop extension
    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
           && "Invalid anyext node, dst < src!");
    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
    break;
  case ISD::TRUNCATE:
    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
           "Invalid TRUNCATE!");
    if (Operand.getValueType() == VT) return Operand;   // noop truncate
    assert(MVT::getSizeInBits(Operand.getValueType()) > MVT::getSizeInBits(VT)
           && "Invalid truncate node, src < dst!");
    if (OpOpcode == ISD::TRUNCATE)
      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
             OpOpcode == ISD::ANY_EXTEND) {
      // If the source is smaller than the dest, we still need an extend.
      if (MVT::getSizeInBits(Operand.Val->getOperand(0).getValueType())
          < MVT::getSizeInBits(VT))
        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
      else if (MVT::getSizeInBits(Operand.Val->getOperand(0).getValueType())
               > MVT::getSizeInBits(VT))
        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
      else
        return Operand.Val->getOperand(0);
    }
    break;
  case ISD::BIT_CONVERT:
    // Basic sanity checking.
    assert(MVT::getSizeInBits(VT) == MVT::getSizeInBits(Operand.getValueType())
           && "Cannot BIT_CONVERT between types of different sizes!");
    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
    if (OpOpcode == ISD::UNDEF)
      return getNode(ISD::UNDEF, VT);
    break;
  case ISD::SCALAR_TO_VECTOR:
    assert(MVT::isVector(VT) && !MVT::isVector(Operand.getValueType()) &&
           MVT::getVectorElementType(VT) == Operand.getValueType() &&
           "Illegal SCALAR_TO_VECTOR node!");
    if (OpOpcode == ISD::UNDEF)
      return getNode(ISD::UNDEF, VT);
    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
        isa<ConstantSDNode>(Operand.getOperand(1)) &&
        Operand.getConstantOperandVal(1) == 0 &&
        Operand.getOperand(0).getValueType() == VT)
      return Operand.getOperand(0);
    break;
  case ISD::FNEG:
    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
      return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
                     Operand.Val->getOperand(0));
    if (OpOpcode == ISD::FNEG)  // --X -> X
      return Operand.Val->getOperand(0);
    break;
  case ISD::FABS:
    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
    break;
  }

  SDNode *N;
  SDVTList VTs = getVTList(VT);
  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
    FoldingSetNodeID ID;
    SDOperand Ops[1] = { Operand };
    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
    void *IP = 0;
    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
      return SDOperand(E, 0);
    N = new UnarySDNode(Opcode, VTs, Operand);
    CSEMap.InsertNode(N, IP);
  } else {
    N = new UnarySDNode(Opcode, VTs, Operand);
  }
  AllNodes.push_back(N);
  return SDOperand(N, 0);
}



SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
                                SDOperand N1, SDOperand N2) {
  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
  switch (Opcode) {
  default: break;
  case ISD::TokenFactor:
    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
           N2.getValueType() == MVT::Other && "Invalid token factor!");
    // Fold trivial token factors.
    if (N1.getOpcode() == ISD::EntryToken) return N2;
    if (N2.getOpcode() == ISD::EntryToken) return N1;
    break;
  case ISD::AND:
    assert(MVT::isInteger(VT) && N1.getValueType() == N2.getValueType() &&
           N1.getValueType() == VT && "Binary operator types must match!");
    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
    // worth handling here.
    if (N2C && N2C->isNullValue())
      return N2;
    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
      return N1;
    break;
  case ISD::OR:
  case ISD::XOR:
    assert(MVT::isInteger(VT) && N1.getValueType() == N2.getValueType() &&
           N1.getValueType() == VT && "Binary operator types must match!");
    // (X ^| 0) -> X.  This commonly occurs when legalizing i64 values, so it's
    // worth handling here.
    if (N2C && N2C->isNullValue())
      return N1;
    break;
  case ISD::UDIV:
  case ISD::UREM:
  case ISD::MULHU:
  case ISD::MULHS:
    assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
    // fall through
  case ISD::ADD:
  case ISD::SUB:
  case ISD::MUL:
  case ISD::SDIV:
  case ISD::SREM:
  case ISD::FADD:
  case ISD::FSUB:
  case ISD::FMUL:
  case ISD::FDIV:
  case ISD::FREM:
    assert(N1.getValueType() == N2.getValueType() &&
           N1.getValueType() == VT && "Binary operator types must match!");
    break;
  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
    assert(N1.getValueType() == VT &&
           MVT::isFloatingPoint(N1.getValueType()) && 
           MVT::isFloatingPoint(N2.getValueType()) &&
           "Invalid FCOPYSIGN!");
    break;
  case ISD::SHL:
  case ISD::SRA:
  case ISD::SRL:
  case ISD::ROTL:
  case ISD::ROTR:
    assert(VT == N1.getValueType() &&
           "Shift operators return type must be the same as their first arg");
    assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
           VT != MVT::i1 && "Shifts only work on integers");
    break;
  case ISD::FP_ROUND_INREG: {
    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
    assert(VT == N1.getValueType() && "Not an inreg round!");
    assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
           "Cannot FP_ROUND_INREG integer types");
    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
           "Not rounding down!");
    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
    break;
  }
  case ISD::FP_ROUND:
    assert(MVT::isFloatingPoint(VT) &&
           MVT::isFloatingPoint(N1.getValueType()) &&
           MVT::getSizeInBits(VT) <= MVT::getSizeInBits(N1.getValueType()) &&
           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
    if (N1.getValueType() == VT) return N1;  // noop conversion.
    break;
  case ISD::AssertSext:
  case ISD::AssertZext: {
    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
    assert(VT == N1.getValueType() && "Not an inreg extend!");
    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
           "Cannot *_EXTEND_INREG FP types");
    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
           "Not extending!");
    if (VT == EVT) return N1; // noop assertion.
    break;
  }
  case ISD::SIGN_EXTEND_INREG: {
    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
    assert(VT == N1.getValueType() && "Not an inreg extend!");
    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
           "Cannot *_EXTEND_INREG FP types");
    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
           "Not extending!");
    if (EVT == VT) return N1;  // Not actually extending

    if (N1C) {
      APInt Val = N1C->getAPIntValue();
      unsigned FromBits = MVT::getSizeInBits(cast<VTSDNode>(N2)->getVT());
      Val <<= Val.getBitWidth()-FromBits;
      Val = Val.ashr(Val.getBitWidth()-FromBits);
      return getConstant(Val, VT);
    }
    break;
  }
  case ISD::EXTRACT_VECTOR_ELT:
    assert(N2C && "Bad EXTRACT_VECTOR_ELT!");

    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
    if (N1.getOpcode() == ISD::UNDEF)
      return getNode(ISD::UNDEF, VT);
      
    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
    // expanding copies of large vectors from registers.
    if (N1.getOpcode() == ISD::CONCAT_VECTORS &&
        N1.getNumOperands() > 0) {
      unsigned Factor =
        MVT::getVectorNumElements(N1.getOperand(0).getValueType());
      return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
                     N1.getOperand(N2C->getValue() / Factor),
                     getConstant(N2C->getValue() % Factor, N2.getValueType()));
    }

    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
    // expanding large vector constants.
    if (N1.getOpcode() == ISD::BUILD_VECTOR)
      return N1.getOperand(N2C->getValue());
      
    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
    // operations are lowered to scalars.
    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT)
      if (ConstantSDNode *IEC = dyn_cast<ConstantSDNode>(N1.getOperand(2))) {
        if (IEC == N2C)
          return N1.getOperand(1);
        else
          return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
      }
    break;
  case ISD::EXTRACT_ELEMENT:
    assert(N2C && (unsigned)N2C->getValue() < 2 && "Bad EXTRACT_ELEMENT!");
    assert(!MVT::isVector(N1.getValueType()) &&
           MVT::isInteger(N1.getValueType()) &&
           !MVT::isVector(VT) && MVT::isInteger(VT) &&
           "EXTRACT_ELEMENT only applies to integers!");

    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
    // 64-bit integers into 32-bit parts.  Instead of building the extract of
    // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 
    if (N1.getOpcode() == ISD::BUILD_PAIR)
      return N1.getOperand(N2C->getValue());

    // EXTRACT_ELEMENT of a constant int is also very common.
    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
      unsigned ElementSize = MVT::getSizeInBits(VT);
      unsigned Shift = ElementSize * N2C->getValue();
      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
      return getConstant(ShiftedVal.trunc(ElementSize), VT);
    }
    break;
  case ISD::EXTRACT_SUBVECTOR:
    if (N1.getValueType() == VT) // Trivial extraction.
      return N1;
    break;
  }

  if (N1C) {
    if (N2C) {
      APInt C1 = N1C->getAPIntValue(), C2 = N2C->getAPIntValue();
      switch (Opcode) {
      case ISD::ADD: return getConstant(C1 + C2, VT);
      case ISD::SUB: return getConstant(C1 - C2, VT);
      case ISD::MUL: return getConstant(C1 * C2, VT);
      case ISD::UDIV:
        if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
        break;
      case ISD::UREM :
        if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
        break;
      case ISD::SDIV :
        if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
        break;
      case ISD::SREM :
        if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
        break;
      case ISD::AND  : return getConstant(C1 & C2, VT);
      case ISD::OR   : return getConstant(C1 | C2, VT);
      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
      case ISD::SHL  : return getConstant(C1 << C2, VT);
      case ISD::SRL  : return getConstant(C1.lshr(C2), VT);
      case ISD::SRA  : return getConstant(C1.ashr(C2), VT);
      case ISD::ROTL : return getConstant(C1.rotl(C2), VT);
      case ISD::ROTR : return getConstant(C1.rotr(C2), VT);
      default: break;
      }
    } else {      // Cannonicalize constant to RHS if commutative
      if (isCommutativeBinOp(Opcode)) {
        std::swap(N1C, N2C);
        std::swap(N1, N2);
      }
    }
  }

  // Constant fold FP operations.
  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
  if (N1CFP) {
    if (!N2CFP && isCommutativeBinOp(Opcode)) {
      // Cannonicalize constant to RHS if commutative
      std::swap(N1CFP, N2CFP);
      std::swap(N1, N2);
    } else if (N2CFP && VT != MVT::ppcf128) {
      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
      APFloat::opStatus s;
      switch (Opcode) {
      case ISD::FADD: 
        s = V1.add(V2, APFloat::rmNearestTiesToEven);
        if (s != APFloat::opInvalidOp)
          return getConstantFP(V1, VT);
        break;
      case ISD::FSUB: 
        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
        if (s!=APFloat::opInvalidOp)
          return getConstantFP(V1, VT);
        break;
      case ISD::FMUL:
        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
        if (s!=APFloat::opInvalidOp)
          return getConstantFP(V1, VT);
        break;
      case ISD::FDIV:
        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
          return getConstantFP(V1, VT);
        break;
      case ISD::FREM :
        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
          return getConstantFP(V1, VT);
        break;
      case ISD::FCOPYSIGN:
        V1.copySign(V2);
        return getConstantFP(V1, VT);
      default: break;
      }
    }
  }
  
  // Canonicalize an UNDEF to the RHS, even over a constant.
  if (N1.getOpcode() == ISD::UNDEF) {
    if (isCommutativeBinOp(Opcode)) {
      std::swap(N1, N2);
    } else {
      switch (Opcode) {
      case ISD::FP_ROUND_INREG:
      case ISD::SIGN_EXTEND_INREG:
      case ISD::SUB:
      case ISD::FSUB:
      case ISD::FDIV:
      case ISD::FREM:
      case ISD::SRA:
        return N1;     // fold op(undef, arg2) -> undef
      case ISD::UDIV:
      case ISD::SDIV:
      case ISD::UREM:
      case ISD::SREM:
      case ISD::SRL:
      case ISD::SHL:
        if (!MVT::isVector(VT)) 
          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
        // For vectors, we can't easily build an all zero vector, just return
        // the LHS.
        return N2;
      }
    }
  }
  
  // Fold a bunch of operators when the RHS is undef. 
  if (N2.getOpcode() == ISD::UNDEF) {
    switch (Opcode) {
    case ISD::XOR:
      if (N1.getOpcode() == ISD::UNDEF)
        // Handle undef ^ undef -> 0 special case. This is a common
        // idiom (misuse).
        return getConstant(0, VT);
      // fallthrough
    case ISD::ADD:
    case ISD::ADDC:
    case ISD::ADDE:
    case ISD::SUB:
    case ISD::FADD:
    case ISD::FSUB:
    case ISD::FMUL:
    case ISD::FDIV:
    case ISD::FREM:
    case ISD::UDIV:
    case ISD::SDIV:
    case ISD::UREM:
    case ISD::SREM:
      return N2;       // fold op(arg1, undef) -> undef
    case ISD::MUL: 
    case ISD::AND:
    case ISD::SRL:
    case ISD::SHL:
      if (!MVT::isVector(VT)) 
        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
      // For vectors, we can't easily build an all zero vector, just return
      // the LHS.
      return N1;
    case ISD::OR:
      if (!MVT::isVector(VT)) 
        return getConstant(MVT::getIntVTBitMask(VT), VT);
      // For vectors, we can't easily build an all one vector, just return
      // the LHS.
      return N1;
    case ISD::SRA:
      return N1;
    }
  }

  // Memoize this node if possible.
  SDNode *N;
  SDVTList VTs = getVTList(VT);
  if (VT != MVT::Flag) {
    SDOperand Ops[] = { N1, N2 };
    FoldingSetNodeID ID;
    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
    void *IP = 0;
    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
      return SDOperand(E, 0);
    N = new BinarySDNode(Opcode, VTs, N1, N2);
    CSEMap.InsertNode(N, IP);
  } else {
    N = new BinarySDNode(Opcode, VTs, N1, N2);
  }

  AllNodes.push_back(N);
  return SDOperand(N, 0);
}

SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
                                SDOperand N1, SDOperand N2, SDOperand N3) {
  // Perform various simplifications.
  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
  switch (Opcode) {
  case ISD::SETCC: {
    // Use FoldSetCC to simplify SETCC's.
    SDOperand Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
    if (Simp.Val) return Simp;
    break;
  }
  case ISD::SELECT:
    if (N1C) {
     if (N1C->getValue())
        return N2;             // select true, X, Y -> X
      else
        return N3;             // select false, X, Y -> Y
    }

    if (N2 == N3) return N2;   // select C, X, X -> X
    break;
  case ISD::BRCOND:
    if (N2C) {
      if (N2C->getValue()) // Unconditional branch
        return getNode(ISD::BR, MVT::Other, N1, N3);
      else
        return N1;         // Never-taken branch
    }
    break;
  case ISD::VECTOR_SHUFFLE:
    assert(VT == N1.getValueType() && VT == N2.getValueType() &&
           MVT::isVector(VT) && MVT::isVector(N3.getValueType()) &&
           N3.getOpcode() == ISD::BUILD_VECTOR &&
           MVT::getVectorNumElements(VT) == N3.getNumOperands() &&
           "Illegal VECTOR_SHUFFLE node!");
    break;
  case ISD::BIT_CONVERT:
    // Fold bit_convert nodes from a type to themselves.
    if (N1.getValueType() == VT)
      return N1;
    break;
  }

  // Memoize node if it doesn't produce a flag.
  SDNode *N;
  SDVTList VTs = getVTList(VT);
  if (VT != MVT::Flag) {
    SDOperand Ops[] = { N1, N2, N3 };
    FoldingSetNodeID ID;
    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
    void *IP = 0;
    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
      return SDOperand(E, 0);
    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
    CSEMap.InsertNode(N, IP);
  } else {
    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
  }
  AllNodes.push_back(N);
  return SDOperand(N, 0);
}

SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
                                SDOperand N1, SDOperand N2, SDOperand N3,
                                SDOperand N4) {
  SDOperand Ops[] = { N1, N2, N3, N4 };
  return getNode(Opcode, VT, Ops, 4);
}

SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
                                SDOperand N1, SDOperand N2, SDOperand N3,
                                SDOperand N4, SDOperand N5) {
  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
  return getNode(Opcode, VT, Ops, 5);
}

/// getMemsetValue - Vectorized representation of the memset value
/// operand.
static SDOperand getMemsetValue(SDOperand Value, MVT::ValueType VT,
                                SelectionDAG &DAG) {
  MVT::ValueType CurVT = VT;
  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
    uint64_t Val   = C->getValue() & 255;
    unsigned Shift = 8;
    while (CurVT != MVT::i8) {
      Val = (Val << Shift) | Val;
      Shift <<= 1;
      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
    }
    return DAG.getConstant(Val, VT);
  } else {
    Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
    unsigned Shift = 8;
    while (CurVT != MVT::i8) {
      Value =
        DAG.getNode(ISD::OR, VT,
                    DAG.getNode(ISD::SHL, VT, Value,
                                DAG.getConstant(Shift, MVT::i8)), Value);
      Shift <<= 1;
      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
    }

    return Value;
  }
}

/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
/// used when a memcpy is turned into a memset when the source is a constant
/// string ptr.
static SDOperand getMemsetStringVal(MVT::ValueType VT,
                                    SelectionDAG &DAG,
                                    const TargetLowering &TLI,
                                    std::string &Str, unsigned Offset) {
  uint64_t Val = 0;
  unsigned MSB = MVT::getSizeInBits(VT) / 8;
  if (TLI.isLittleEndian())
    Offset = Offset + MSB - 1;
  for (unsigned i = 0; i != MSB; ++i) {
    Val = (Val << 8) | (unsigned char)Str[Offset];
    Offset += TLI.isLittleEndian() ? -1 : 1;
  }
  return DAG.getConstant(Val, VT);
}

/// getMemBasePlusOffset - Returns base and offset node for the 
static SDOperand getMemBasePlusOffset(SDOperand Base, unsigned Offset,
                                      SelectionDAG &DAG) {
  MVT::ValueType VT = Base.getValueType();
  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
}

/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
/// to replace the memset / memcpy is below the threshold. It also returns the
/// types of the sequence of memory ops to perform memset / memcpy.
static bool MeetsMaxMemopRequirement(std::vector<MVT::ValueType> &MemOps,
                                     unsigned Limit, uint64_t Size,
                                     unsigned Align,
                                     const TargetLowering &TLI) {
  MVT::ValueType VT;

  if (TLI.allowsUnalignedMemoryAccesses()) {
    VT = MVT::i64;
  } else {
    switch (Align & 7) {
    case 0:
      VT = MVT::i64;
      break;
    case 4:
      VT = MVT::i32;
      break;
    case 2:
      VT = MVT::i16;
      break;
    default:
      VT = MVT::i8;
      break;
    }
  }

  MVT::ValueType LVT = MVT::i64;
  while (!TLI.isTypeLegal(LVT))
    LVT = (MVT::ValueType)((unsigned)LVT - 1);
  assert(MVT::isInteger(LVT));

  if (VT > LVT)
    VT = LVT;

  unsigned NumMemOps = 0;
  while (Size != 0) {
    unsigned VTSize = MVT::getSizeInBits(VT) / 8;
    while (VTSize > Size) {
      VT = (MVT::ValueType)((unsigned)VT - 1);
      VTSize >>= 1;
    }
    assert(MVT::isInteger(VT));

    if (++NumMemOps > Limit)
      return false;
    MemOps.push_back(VT);
    Size -= VTSize;
  }

  return true;
}

static SDOperand getMemcpyLoadsAndStores(SelectionDAG &DAG,
                                         SDOperand Chain, SDOperand Dst,
                                         SDOperand Src, uint64_t Size,
                                         unsigned Align,
                                         bool AlwaysInline,
                                         const Value *DstSV, uint64_t DstSVOff,
                                         const Value *SrcSV, uint64_t SrcSVOff){
  const TargetLowering &TLI = DAG.getTargetLoweringInfo();

  // Expand memcpy to a series of store ops if the size operand falls below
  // a certain threshold.
  std::vector<MVT::ValueType> MemOps;
  uint64_t Limit = -1;
  if (!AlwaysInline)
    Limit = TLI.getMaxStoresPerMemcpy();
  if (!MeetsMaxMemopRequirement(MemOps, Limit, Size, Align, TLI))
    return SDOperand();

  SmallVector<SDOperand, 8> OutChains;

  unsigned NumMemOps = MemOps.size();
  unsigned SrcDelta = 0;
  GlobalAddressSDNode *G = NULL;
  std::string Str;
  bool CopyFromStr = false;
  uint64_t SrcOff = 0, DstOff = 0;

  if (Src.getOpcode() == ISD::GlobalAddress)
    G = cast<GlobalAddressSDNode>(Src);
  else if (Src.getOpcode() == ISD::ADD &&
           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
           Src.getOperand(1).getOpcode() == ISD::Constant) {
    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getValue();
  }
  if (G) {
    GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
    if (GV && GV->isConstant()) {
      Str = GV->getStringValue(false);
      if (!Str.empty()) {
        CopyFromStr = true;
        SrcOff += SrcDelta;
      }
    }
  }

  for (unsigned i = 0; i < NumMemOps; i++) {
    MVT::ValueType VT = MemOps[i];
    unsigned VTSize = MVT::getSizeInBits(VT) / 8;
    SDOperand Value, Store;

    if (CopyFromStr) {
      Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
      Store =
        DAG.getStore(Chain, Value,
                     getMemBasePlusOffset(Dst, DstOff, DAG),
                     DstSV, DstSVOff + DstOff);
    } else {
      Value = DAG.getLoad(VT, Chain,
                          getMemBasePlusOffset(Src, SrcOff, DAG),
                          SrcSV, SrcSVOff + SrcOff, false, Align);
      Store =
        DAG.getStore(Chain, Value,
                     getMemBasePlusOffset(Dst, DstOff, DAG),
                     DstSV, DstSVOff + DstOff, false, Align);
    }
    OutChains.push_back(Store);
    SrcOff += VTSize;
    DstOff += VTSize;
  }

  return DAG.getNode(ISD::TokenFactor, MVT::Other,
                     &OutChains[0], OutChains.size());
}

static SDOperand getMemsetStores(SelectionDAG &DAG,
                                 SDOperand Chain, SDOperand Dst,
                                 SDOperand Src, uint64_t Size,
                                 unsigned Align,
                                 const Value *DstSV, uint64_t DstSVOff) {
  const TargetLowering &TLI = DAG.getTargetLoweringInfo();

  // Expand memset to a series of load/store ops if the size operand
  // falls below a certain threshold.
  std::vector<MVT::ValueType> MemOps;
  if (!MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemset(),
                                Size, Align, TLI))
    return SDOperand();

  SmallVector<SDOperand, 8> OutChains;
  uint64_t DstOff = 0;

  unsigned NumMemOps = MemOps.size();
  for (unsigned i = 0; i < NumMemOps; i++) {
    MVT::ValueType VT = MemOps[i];
    unsigned VTSize = MVT::getSizeInBits(VT) / 8;
    SDOperand Value = getMemsetValue(Src, VT, DAG);
    SDOperand Store = DAG.getStore(Chain, Value,
                                   getMemBasePlusOffset(Dst, DstOff, DAG),
                                   DstSV, DstSVOff + DstOff);
    OutChains.push_back(Store);
    DstOff += VTSize;
  }

  return DAG.getNode(ISD::TokenFactor, MVT::Other,
                     &OutChains[0], OutChains.size());
}

SDOperand SelectionDAG::getMemcpy(SDOperand Chain, SDOperand Dst,
                                  SDOperand Src, SDOperand Size,
                                  unsigned Align, bool AlwaysInline,
                                  const Value *DstSV, uint64_t DstSVOff,
                                  const Value *SrcSV, uint64_t SrcSVOff) {

  // Check to see if we should lower the memcpy to loads and stores first.
  // For cases within the target-specified limits, this is the best choice.
  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
  if (ConstantSize) {
    // Memcpy with size zero? Just return the original chain.
    if (ConstantSize->isNullValue())
      return Chain;

    SDOperand Result =
      getMemcpyLoadsAndStores(*this, Chain, Dst, Src, ConstantSize->getValue(),
                              Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
    if (Result.Val)
      return Result;
  }

  // Then check to see if we should lower the memcpy with target-specific
  // code. If the target chooses to do this, this is the next best.
  SDOperand Result =
    TLI.EmitTargetCodeForMemcpy(*this, Chain, Dst, Src, Size, Align,
                                AlwaysInline,
                                DstSV, DstSVOff, SrcSV, SrcSVOff);
  if (Result.Val)
    return Result;

  // If we really need inline code and the target declined to provide it,
  // use a (potentially long) sequence of loads and stores.
  if (AlwaysInline) {
    assert(ConstantSize && "AlwaysInline requires a constant size!");
    return getMemcpyLoadsAndStores(*this, Chain, Dst, Src,
                                   ConstantSize->getValue(), Align, true,
                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
  }

  // Emit a library call.
  TargetLowering::ArgListTy Args;
  TargetLowering::ArgListEntry Entry;
  Entry.Ty = TLI.getTargetData()->getIntPtrType();
  Entry.Node = Dst; Args.push_back(Entry);
  Entry.Node = Src; Args.push_back(Entry);
  Entry.Node = Size; Args.push_back(Entry);
  std::pair<SDOperand,SDOperand> CallResult =
    TLI.LowerCallTo(Chain, Type::VoidTy,
                    false, false, false, CallingConv::C, false,
                    getExternalSymbol("memcpy", TLI.getPointerTy()),
                    Args, *this);
  return CallResult.second;
}

SDOperand SelectionDAG::getMemmove(SDOperand Chain, SDOperand Dst,
                                   SDOperand Src, SDOperand Size,
                                   unsigned Align,
                                   const Value *DstSV, uint64_t DstSVOff,
                                   const Value *SrcSV, uint64_t SrcSVOff) {

  // TODO: Optimize small memmove cases with simple loads and stores,
  // ensuring that all loads precede all stores. This can cause severe
  // register pressure, so targets should be careful with the size limit.

  // Then check to see if we should lower the memmove with target-specific
  // code. If the target chooses to do this, this is the next best.
  SDOperand Result =
    TLI.EmitTargetCodeForMemmove(*this, Chain, Dst, Src, Size, Align,
                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
  if (Result.Val)
    return Result;

  // Emit a library call.
  TargetLowering::ArgListTy Args;
  TargetLowering::ArgListEntry Entry;
  Entry.Ty = TLI.getTargetData()->getIntPtrType();
  Entry.Node = Dst; Args.push_back(Entry);
  Entry.Node = Src; Args.push_back(Entry);
  Entry.Node = Size; Args.push_back(Entry);
  std::pair<SDOperand,SDOperand> CallResult =
    TLI.LowerCallTo(Chain, Type::VoidTy,
                    false, false, false, CallingConv::C, false,
                    getExternalSymbol("memmove", TLI.getPointerTy()),
                    Args, *this);
  return CallResult.second;
}

SDOperand SelectionDAG::getMemset(SDOperand Chain, SDOperand Dst,
                                  SDOperand Src, SDOperand Size,
                                  unsigned Align,
                                  const Value *DstSV, uint64_t DstSVOff) {

  // Check to see if we should lower the memset to stores first.
  // For cases within the target-specified limits, this is the best choice.
  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
  if (ConstantSize) {
    // Memset with size zero? Just return the original chain.
    if (ConstantSize->isNullValue())
      return Chain;

    SDOperand Result =
      getMemsetStores(*this, Chain, Dst, Src, ConstantSize->getValue(), Align,
                      DstSV, DstSVOff);
    if (Result.Val)
      return Result;
  }

  // Then check to see if we should lower the memset with target-specific
  // code. If the target chooses to do this, this is the next best.
  SDOperand Result =
    TLI.EmitTargetCodeForMemset(*this, Chain, Dst, Src, Size, Align,
                                DstSV, DstSVOff);
  if (Result.Val)
    return Result;

  // Emit a library call.
  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType();
  TargetLowering::ArgListTy Args;
  TargetLowering::ArgListEntry Entry;
  Entry.Node = Dst; Entry.Ty = IntPtrTy;
  Args.push_back(Entry);
  // Extend or truncate the argument to be an i32 value for the call.
  if (Src.getValueType() > MVT::i32)
    Src = getNode(ISD::TRUNCATE, MVT::i32, Src);
  else
    Src = getNode(ISD::ZERO_EXTEND, MVT::i32, Src);
  Entry.Node = Src; Entry.Ty = Type::Int32Ty; Entry.isSExt = true;
  Args.push_back(Entry);
  Entry.Node = Size; Entry.Ty = IntPtrTy; Entry.isSExt = false;
  Args.push_back(Entry);
  std::pair<SDOperand,SDOperand> CallResult =
    TLI.LowerCallTo(Chain, Type::VoidTy,
                    false, false, false, CallingConv::C, false,
                    getExternalSymbol("memset", TLI.getPointerTy()),
                    Args, *this);
  return CallResult.second;
}

SDOperand SelectionDAG::getAtomic(unsigned Opcode, SDOperand Chain, 
                                  SDOperand Ptr, SDOperand Cmp, 
                                  SDOperand Swp, MVT::ValueType VT) {
  assert(Opcode == ISD::ATOMIC_LCS && "Invalid Atomic Op");
  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
  SDVTList VTs = getVTList(Cmp.getValueType(), MVT::Other);
  FoldingSetNodeID ID;
  SDOperand Ops[] = {Chain, Ptr, Cmp, Swp};
  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
  ID.AddInteger((unsigned int)VT);
  void* IP = 0;
  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
    return SDOperand(E, 0);
  SDNode* N = new AtomicSDNode(Opcode, VTs, Chain, Ptr, Cmp, Swp, VT);
  CSEMap.InsertNode(N, IP);
  AllNodes.push_back(N);
  return SDOperand(N, 0);
}

SDOperand SelectionDAG::getAtomic(unsigned Opcode, SDOperand Chain, 
                                  SDOperand Ptr, SDOperand Val, 
                                  MVT::ValueType VT) {
  assert((   Opcode == ISD::ATOMIC_LAS || Opcode == ISD::ATOMIC_LSS
          || Opcode == ISD::ATOMIC_SWAP || Opcode == ISD::ATOMIC_LOAD_AND
          || Opcode == ISD::ATOMIC_LOAD_OR || Opcode == ISD::ATOMIC_LOAD_XOR
          || Opcode == ISD::ATOMIC_LOAD_MIN || Opcode == ISD::ATOMIC_LOAD_MAX
          || Opcode == ISD::ATOMIC_LOAD_UMIN || Opcode == ISD::ATOMIC_LOAD_UMAX) 
         && "Invalid Atomic Op");
  SDVTList VTs = getVTList(Val.getValueType(), MVT::Other);
  FoldingSetNodeID ID;
  SDOperand Ops[] = {Chain, Ptr, Val};
  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
  ID.AddInteger((unsigned int)VT);
  void* IP = 0;
  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
    return SDOperand(E, 0);
  SDNode* N = new AtomicSDNode(Opcode, VTs, Chain, Ptr, Val, VT);
  CSEMap.InsertNode(N, IP);
  AllNodes.push_back(N);
  return SDOperand(N, 0);
}

SDOperand
SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
                      MVT::ValueType VT, SDOperand Chain,
                      SDOperand Ptr, SDOperand Offset,
                      const Value *SV, int SVOffset, MVT::ValueType EVT,
                      bool isVolatile, unsigned Alignment) {
  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
    const Type *Ty = 0;
    if (VT != MVT::iPTR) {
      Ty = MVT::getTypeForValueType(VT);
    } else if (SV) {
      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
      assert(PT && "Value for load must be a pointer");
      Ty = PT->getElementType();
    }
    assert(Ty && "Could not get type information for load");
    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
  }

  if (VT == EVT) {
    ExtType = ISD::NON_EXTLOAD;
  } else if (ExtType == ISD::NON_EXTLOAD) {
    assert(VT == EVT && "Non-extending load from different memory type!");
  } else {
    // Extending load.
    if (MVT::isVector(VT))
      assert(EVT == MVT::getVectorElementType(VT) && "Invalid vector extload!");
    else
      assert(MVT::getSizeInBits(EVT) < MVT::getSizeInBits(VT) &&
             "Should only be an extending load, not truncating!");
    assert((ExtType == ISD::EXTLOAD || MVT::isInteger(VT)) &&
           "Cannot sign/zero extend a FP/Vector load!");
    assert(MVT::isInteger(VT) == MVT::isInteger(EVT) &&
           "Cannot convert from FP to Int or Int -> FP!");
  }

  bool Indexed = AM != ISD::UNINDEXED;
  assert(Indexed || Offset.getOpcode() == ISD::UNDEF &&
         "Unindexed load with an offset!");

  SDVTList VTs = Indexed ?
    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
  SDOperand Ops[] = { Chain, Ptr, Offset };
  FoldingSetNodeID ID;
  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
  ID.AddInteger(AM);
  ID.AddInteger(ExtType);
  ID.AddInteger((unsigned int)EVT);
  ID.AddInteger(Alignment);
  ID.AddInteger(isVolatile);
  void *IP = 0;
  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
    return SDOperand(E, 0);
  SDNode *N = new LoadSDNode(Ops, VTs, AM, ExtType, EVT, SV, SVOffset,
                             Alignment, isVolatile);
  CSEMap.InsertNode(N, IP);
  AllNodes.push_back(N);
  return SDOperand(N, 0);
}

SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
                                SDOperand Chain, SDOperand Ptr,
                                const Value *SV, int SVOffset,
                                bool isVolatile, unsigned Alignment) {
  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
  return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
                 SV, SVOffset, VT, isVolatile, Alignment);
}

SDOperand SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT::ValueType VT,
                                   SDOperand Chain, SDOperand Ptr,
                                   const Value *SV,
                                   int SVOffset, MVT::ValueType EVT,
                                   bool isVolatile, unsigned Alignment) {
  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
  return getLoad(ISD::UNINDEXED, ExtType, VT, Chain, Ptr, Undef,
                 SV, SVOffset, EVT, isVolatile, Alignment);
}

SDOperand
SelectionDAG::getIndexedLoad(SDOperand OrigLoad, SDOperand Base,
                             SDOperand Offset, ISD::MemIndexedMode AM) {
  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
         "Load is already a indexed load!");
  return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(),
                 LD->getChain(), Base, Offset, LD->getSrcValue(),
                 LD->getSrcValueOffset(), LD->getMemoryVT(),
                 LD->isVolatile(), LD->getAlignment());
}

SDOperand SelectionDAG::getStore(SDOperand Chain, SDOperand Val,
                                 SDOperand Ptr, const Value *SV, int SVOffset,
                                 bool isVolatile, unsigned Alignment) {
  MVT::ValueType VT = Val.getValueType();

  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
    const Type *Ty = 0;
    if (VT != MVT::iPTR) {
      Ty = MVT::getTypeForValueType(VT);
    } else if (SV) {
      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
      assert(PT && "Value for store must be a pointer");
      Ty = PT->getElementType();
    }
    assert(Ty && "Could not get type information for store");
    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
  }
  SDVTList VTs = getVTList(MVT::Other);
  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
  FoldingSetNodeID ID;
  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
  ID.AddInteger(ISD::UNINDEXED);
  ID.AddInteger(false);
  ID.AddInteger((unsigned int)VT);
  ID.AddInteger(Alignment);
  ID.AddInteger(isVolatile);
  void *IP = 0;
  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
    return SDOperand(E, 0);
  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
                              VT, SV, SVOffset, Alignment, isVolatile);
  CSEMap.InsertNode(N, IP);
  AllNodes.push_back(N);
  return SDOperand(N, 0);
}

SDOperand SelectionDAG::getTruncStore(SDOperand Chain, SDOperand Val,
                                      SDOperand Ptr, const Value *SV,
                                      int SVOffset, MVT::ValueType SVT,
                                      bool isVolatile, unsigned Alignment) {
  MVT::ValueType VT = Val.getValueType();

  if (VT == SVT)
    return getStore(Chain, Val, Ptr, SV, SVOffset, isVolatile, Alignment);

  assert(MVT::getSizeInBits(VT) > MVT::getSizeInBits(SVT) &&
         "Not a truncation?");
  assert(MVT::isInteger(VT) == MVT::isInteger(SVT) &&
         "Can't do FP-INT conversion!");

  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
    const Type *Ty = 0;
    if (VT != MVT::iPTR) {
      Ty = MVT::getTypeForValueType(VT);
    } else if (SV) {
      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
      assert(PT && "Value for store must be a pointer");
      Ty = PT->getElementType();
    }
    assert(Ty && "Could not get type information for store");
    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
  }
  SDVTList VTs = getVTList(MVT::Other);
  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
  FoldingSetNodeID ID;
  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
  ID.AddInteger(ISD::UNINDEXED);
  ID.AddInteger(1);
  ID.AddInteger((unsigned int)SVT);
  ID.AddInteger(Alignment);
  ID.AddInteger(isVolatile);
  void *IP = 0;
  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
    return SDOperand(E, 0);
  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, true,
                              SVT, SV, SVOffset, Alignment, isVolatile);
  CSEMap.InsertNode(N, IP);
  AllNodes.push_back(N);
  return SDOperand(N, 0);
}

SDOperand
SelectionDAG::getIndexedStore(SDOperand OrigStore, SDOperand Base,
                              SDOperand Offset, ISD::MemIndexedMode AM) {
  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
         "Store is already a indexed store!");
  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
  SDOperand Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
  FoldingSetNodeID ID;
  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
  ID.AddInteger(AM);
  ID.AddInteger(ST->isTruncatingStore());
  ID.AddInteger((unsigned int)(ST->getMemoryVT()));
  ID.AddInteger(ST->getAlignment());
  ID.AddInteger(ST->isVolatile());
  void *IP = 0;
  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
    return SDOperand(E, 0);
  SDNode *N = new StoreSDNode(Ops, VTs, AM,
                              ST->isTruncatingStore(), ST->getMemoryVT(),
                              ST->getSrcValue(), ST->getSrcValueOffset(),
                              ST->getAlignment(), ST->isVolatile());
  CSEMap.InsertNode(N, IP);
  AllNodes.push_back(N);
  return SDOperand(N, 0);
}

SDOperand SelectionDAG::getVAArg(MVT::ValueType VT,
                                 SDOperand Chain, SDOperand Ptr,
                                 SDOperand SV) {
  SDOperand Ops[] = { Chain, Ptr, SV };
  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
}

SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
                                SDOperandPtr Ops, unsigned NumOps) {
  switch (NumOps) {
  case 0: return getNode(Opcode, VT);
  case 1: return getNode(Opcode, VT, Ops[0]);
  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
  default: break;
  }
  
  switch (Opcode) {
  default: break;
  case ISD::SELECT_CC: {
    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
           "LHS and RHS of condition must have same type!");
    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
           "True and False arms of SelectCC must have same type!");
    assert(Ops[2].getValueType() == VT &&
           "select_cc node must be of same type as true and false value!");
    break;
  }
  case ISD::BR_CC: {
    assert(NumOps == 5 && "BR_CC takes 5 operands!");
    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
           "LHS/RHS of comparison should match types!");
    break;
  }
  }

  // Memoize nodes.
  SDNode *N;
  SDVTList VTs = getVTList(VT);
  if (VT != MVT::Flag) {
    FoldingSetNodeID ID;
    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
    void *IP = 0;
    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
      return SDOperand(E, 0);
    N = new SDNode(Opcode, VTs, Ops, NumOps);
    CSEMap.InsertNode(N, IP);
  } else {
    N = new SDNode(Opcode, VTs, Ops, NumOps);
  }
  AllNodes.push_back(N);
  return SDOperand(N, 0);
}

SDOperand SelectionDAG::getNode(unsigned Opcode,
                                std::vector<MVT::ValueType> &ResultTys,
                                SDOperandPtr Ops, unsigned NumOps) {
  return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
                 Ops, NumOps);
}

SDOperand SelectionDAG::getNode(unsigned Opcode,
                                const MVT::ValueType *VTs, unsigned NumVTs,
                                SDOperandPtr Ops, unsigned NumOps) {
  if (NumVTs == 1)
    return getNode(Opcode, VTs[0], Ops, NumOps);
  return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
}  
  
SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
                                SDOperandPtr Ops, unsigned NumOps) {
  if (VTList.NumVTs == 1)
    return getNode(Opcode, VTList.VTs[0], Ops, NumOps);

  switch (Opcode) {
  // FIXME: figure out how to safely handle things like
  // int foo(int x) { return 1 << (x & 255); }
  // int bar() { return foo(256); }
#if 0
  case ISD::SRA_PARTS:
  case ISD::SRL_PARTS:
  case ISD::SHL_PARTS:
    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
    else if (N3.getOpcode() == ISD::AND)
      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
        // If the and is only masking out bits that cannot effect the shift,
        // eliminate the and.
        unsigned NumBits = MVT::getSizeInBits(VT)*2;
        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
      }
    break;
#endif
  }

  // Memoize the node unless it returns a flag.
  SDNode *N;
  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
    FoldingSetNodeID ID;
    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
    void *IP = 0;
    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
      return SDOperand(E, 0);
    if (NumOps == 1)
      N = new UnarySDNode(Opcode, VTList, Ops[0]);
    else if (NumOps == 2)
      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
    else if (NumOps == 3)
      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
    else
      N = new SDNode(Opcode, VTList, Ops, NumOps);
    CSEMap.InsertNode(N, IP);
  } else {
    if (NumOps == 1)
      N = new UnarySDNode(Opcode, VTList, Ops[0]);
    else if (NumOps == 2)
      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
    else if (NumOps == 3)
      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
    else
      N = new SDNode(Opcode, VTList, Ops, NumOps);
  }
  AllNodes.push_back(N);
  return SDOperand(N, 0);
}

SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList) {
  return getNode(Opcode, VTList, (SDOperand*)0, 0);
}

SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
                                SDOperand N1) {
  SDOperand Ops[] = { N1 };
  return getNode(Opcode, VTList, Ops, 1);
}

SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
                                SDOperand N1, SDOperand N2) {
  SDOperand Ops[] = { N1, N2 };
  return getNode(Opcode, VTList, Ops, 2);
}

SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
                                SDOperand N1, SDOperand N2, SDOperand N3) {
  SDOperand Ops[] = { N1, N2, N3 };
  return getNode(Opcode, VTList, Ops, 3);
}

SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
                                SDOperand N1, SDOperand N2, SDOperand N3,
                                SDOperand N4) {
  SDOperand Ops[] = { N1, N2, N3, N4 };
  return getNode(Opcode, VTList, Ops, 4);
}

SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
                                SDOperand N1, SDOperand N2, SDOperand N3,
                                SDOperand N4, SDOperand N5) {
  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
  return getNode(Opcode, VTList, Ops, 5);
}

SDVTList SelectionDAG::getVTList(MVT::ValueType VT) {
  return makeVTList(SDNode::getValueTypeList(VT), 1);
}

SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2) {
  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
       E = VTList.end(); I != E; ++I) {
    if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2)
      return makeVTList(&(*I)[0], 2);
  }
  std::vector<MVT::ValueType> V;
  V.push_back(VT1);
  V.push_back(VT2);
  VTList.push_front(V);
  return makeVTList(&(*VTList.begin())[0], 2);
}
SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2,
                                 MVT::ValueType VT3) {
  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
       E = VTList.end(); I != E; ++I) {
    if (I->size() == 3 && (*I)[0] == VT1 && (*I)[1] == VT2 &&
        (*I)[2] == VT3)
      return makeVTList(&(*I)[0], 3);
  }
  std::vector<MVT::ValueType> V;
  V.push_back(VT1);
  V.push_back(VT2);
  V.push_back(VT3);
  VTList.push_front(V);
  return makeVTList(&(*VTList.begin())[0], 3);
}

SDVTList SelectionDAG::getVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
  switch (NumVTs) {
    case 0: assert(0 && "Cannot have nodes without results!");
    case 1: return getVTList(VTs[0]);
    case 2: return getVTList(VTs[0], VTs[1]);
    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
    default: break;
  }

  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
       E = VTList.end(); I != E; ++I) {
    if (I->size() != NumVTs || VTs[0] != (*I)[0] || VTs[1] != (*I)[1]) continue;
   
    bool NoMatch = false;
    for (unsigned i = 2; i != NumVTs; ++i)
      if (VTs[i] != (*I)[i]) {
        NoMatch = true;
        break;
      }
    if (!NoMatch)
      return makeVTList(&*I->begin(), NumVTs);
  }
  
  VTList.push_front(std::vector<MVT::ValueType>(VTs, VTs+NumVTs));
  return makeVTList(&*VTList.begin()->begin(), NumVTs);
}


/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
/// specified operands.  If the resultant node already exists in the DAG,
/// this does not modify the specified node, instead it returns the node that
/// already exists.  If the resultant node does not exist in the DAG, the
/// input node is returned.  As a degenerate case, if you specify the same
/// input operands as the node already has, the input node is returned.
SDOperand SelectionDAG::
UpdateNodeOperands(SDOperand InN, SDOperand Op) {
  SDNode *N = InN.Val;
  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
  
  // Check to see if there is no change.
  if (Op == N->getOperand(0)) return InN;
  
  // See if the modified node already exists.
  void *InsertPos = 0;
  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
    return SDOperand(Existing, InN.ResNo);
  
  // Nope it doesn't.  Remove the node from it's current place in the maps.
  if (InsertPos)
    RemoveNodeFromCSEMaps(N);
  
  // Now we update the operands.
  N->OperandList[0].getVal()->removeUser(0, N);
  N->OperandList[0] = Op;
  N->OperandList[0].setUser(N);
  Op.Val->addUser(0, N);
  
  // If this gets put into a CSE map, add it.
  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
  return InN;
}

SDOperand SelectionDAG::
UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) {
  SDNode *N = InN.Val;
  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
  
  // Check to see if there is no change.
  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
    return InN;   // No operands changed, just return the input node.
  
  // See if the modified node already exists.
  void *InsertPos = 0;
  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
    return SDOperand(Existing, InN.ResNo);
  
  // Nope it doesn't.  Remove the node from it's current place in the maps.
  if (InsertPos)
    RemoveNodeFromCSEMaps(N);
  
  // Now we update the operands.
  if (N->OperandList[0] != Op1) {
    N->OperandList[0].getVal()->removeUser(0, N);
    N->OperandList[0] = Op1;
    N->OperandList[0].setUser(N);
    Op1.Val->addUser(0, N);
  }
  if (N->OperandList[1] != Op2) {
    N->OperandList[1].getVal()->removeUser(1, N);
    N->OperandList[1] = Op2;
    N->OperandList[1].setUser(N);
    Op2.Val->addUser(1, N);
  }
  
  // If this gets put into a CSE map, add it.
  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
  return InN;
}

SDOperand SelectionDAG::
UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
  SDOperand Ops[] = { Op1, Op2, Op3 };
  return UpdateNodeOperands(N, Ops, 3);
}

SDOperand SelectionDAG::
UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, 
                   SDOperand Op3, SDOperand Op4) {
  SDOperand Ops[] = { Op1, Op2, Op3, Op4 };
  return UpdateNodeOperands(N, Ops, 4);
}

SDOperand SelectionDAG::
UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
                   SDOperand Op3, SDOperand Op4, SDOperand Op5) {
  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5 };
  return UpdateNodeOperands(N, Ops, 5);
}

SDOperand SelectionDAG::
UpdateNodeOperands(SDOperand InN, SDOperandPtr Ops, unsigned NumOps) {
  SDNode *N = InN.Val;
  assert(N->getNumOperands() == NumOps &&
         "Update with wrong number of operands");
  
  // Check to see if there is no change.
  bool AnyChange = false;
  for (unsigned i = 0; i != NumOps; ++i) {
    if (Ops[i] != N->getOperand(i)) {
      AnyChange = true;
      break;
    }
  }
  
  // No operands changed, just return the input node.
  if (!AnyChange) return InN;
  
  // See if the modified node already exists.
  void *InsertPos = 0;
  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
    return SDOperand(Existing, InN.ResNo);
  
  // Nope it doesn't.  Remove the node from its current place in the maps.
  if (InsertPos)
    RemoveNodeFromCSEMaps(N);
  
  // Now we update the operands.
  for (unsigned i = 0; i != NumOps; ++i) {
    if (N->OperandList[i] != Ops[i]) {
      N->OperandList[i].getVal()->removeUser(i, N);
      N->OperandList[i] = Ops[i];
      N->OperandList[i].setUser(N);
      Ops[i].Val->addUser(i, N);
    }
  }

  // If this gets put into a CSE map, add it.
  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
  return InN;
}

/// MorphNodeTo - This frees the operands of the current node, resets the
/// opcode, types, and operands to the specified value.  This should only be
/// used by the SelectionDAG class.
void SDNode::MorphNodeTo(unsigned Opc, SDVTList L,
                         SDOperandPtr Ops, unsigned NumOps) {
  NodeType = Opc;
  ValueList = L.VTs;
  NumValues = L.NumVTs;
  
  // Clear the operands list, updating used nodes to remove this from their
  // use list.
  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
    I->getVal()->removeUser(std::distance(op_begin(), I), this);
  
  // If NumOps is larger than the # of operands we currently have, reallocate
  // the operand list.
  if (NumOps > NumOperands) {
    if (OperandsNeedDelete) {
      delete [] OperandList;
    }
    OperandList = new SDUse[NumOps];
    OperandsNeedDelete = true;
  }
  
  // Assign the new operands.
  NumOperands = NumOps;
  
  for (unsigned i = 0, e = NumOps; i != e; ++i) {
    OperandList[i] = Ops[i];
    OperandList[i].setUser(this);
    SDNode *N = OperandList[i].getVal();
    N->addUser(i, this);
    ++N->UsesSize;
  }
}

/// SelectNodeTo - These are used for target selectors to *mutate* the
/// specified node to have the specified return type, Target opcode, and
/// operands.  Note that target opcodes are stored as
/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
///
/// Note that SelectNodeTo returns the resultant node.  If there is already a
/// node of the specified opcode and operands, it returns that node instead of
/// the current one.
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
                                   MVT::ValueType VT) {
  SDVTList VTs = getVTList(VT);
  FoldingSetNodeID ID;
  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, (SDOperand*)0, 0);
  void *IP = 0;
  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
    return ON;
   
  RemoveNodeFromCSEMaps(N);
  
  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, SDOperandPtr(), 0);

  CSEMap.InsertNode(N, IP);
  return N;
}

SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
                                   MVT::ValueType VT, SDOperand Op1) {
  // If an identical node already exists, use it.
  SDVTList VTs = getVTList(VT);
  SDOperand Ops[] = { Op1 };
  
  FoldingSetNodeID ID;
  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
  void *IP = 0;
  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
    return ON;
                                       
  RemoveNodeFromCSEMaps(N);
  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
  CSEMap.InsertNode(N, IP);
  return N;
}

SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
                                   MVT::ValueType VT, SDOperand Op1,
                                   SDOperand Op2) {
  // If an identical node already exists, use it.
  SDVTList VTs = getVTList(VT);
  SDOperand Ops[] = { Op1, Op2 };
  
  FoldingSetNodeID ID;
  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
  void *IP = 0;
  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
    return ON;
                                       
  RemoveNodeFromCSEMaps(N);
  
  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
  
  CSEMap.InsertNode(N, IP);   // Memoize the new node.
  return N;
}

SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
                                   MVT::ValueType VT, SDOperand Op1,
                                   SDOperand Op2, SDOperand Op3) {
  // If an identical node already exists, use it.
  SDVTList VTs = getVTList(VT);
  SDOperand Ops[] = { Op1, Op2, Op3 };
  FoldingSetNodeID ID;
  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
  void *IP = 0;
  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
    return ON;
                                       
  RemoveNodeFromCSEMaps(N);
  
  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);

  CSEMap.InsertNode(N, IP);   // Memoize the new node.
  return N;
}

SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
                                   MVT::ValueType VT, SDOperandPtr Ops,
                                   unsigned NumOps) {
  // If an identical node already exists, use it.
  SDVTList VTs = getVTList(VT);
  FoldingSetNodeID ID;
  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
  void *IP = 0;
  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
    return ON;
                                       
  RemoveNodeFromCSEMaps(N);
  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
  
  CSEMap.InsertNode(N, IP);   // Memoize the new node.
  return N;
}

SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc, 
                                   MVT::ValueType VT1, MVT::ValueType VT2,
                                   SDOperand Op1, SDOperand Op2) {
  SDVTList VTs = getVTList(VT1, VT2);
  FoldingSetNodeID ID;
  SDOperand Ops[] = { Op1, Op2 };
  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
  void *IP = 0;
  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
    return ON;

  RemoveNodeFromCSEMaps(N);
  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
  CSEMap.InsertNode(N, IP);   // Memoize the new node.
  return N;
}

SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
                                   MVT::ValueType VT1, MVT::ValueType VT2,
                                   SDOperand Op1, SDOperand Op2, 
                                   SDOperand Op3) {
  // If an identical node already exists, use it.
  SDVTList VTs = getVTList(VT1, VT2);
  SDOperand Ops[] = { Op1, Op2, Op3 };
  FoldingSetNodeID ID;
  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
  void *IP = 0;
  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
    return ON;

  RemoveNodeFromCSEMaps(N);

  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
  CSEMap.InsertNode(N, IP);   // Memoize the new node.
  return N;
}


/// getTargetNode - These are used for target selectors to create a new node
/// with specified return type(s), target opcode, and operands.
///
/// Note that getTargetNode returns the resultant node.  If there is already a
/// node of the specified opcode and operands, it returns that node instead of
/// the current one.
SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT) {
  return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val;
}
SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
                                    SDOperand Op1) {
  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val;
}
SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
                                    SDOperand Op1, SDOperand Op2) {
  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val;
}
SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
                                    SDOperand Op1, SDOperand Op2,
                                    SDOperand Op3) {
  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val;
}
SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
                                    SDOperandPtr Ops, unsigned NumOps) {
  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops, NumOps).Val;
}
SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
                                    MVT::ValueType VT2) {
  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
  SDOperand Op;
  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op, 0).Val;
}
SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
                                    MVT::ValueType VT2, SDOperand Op1) {
  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op1, 1).Val;
}
SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
                                    MVT::ValueType VT2, SDOperand Op1,
                                    SDOperand Op2) {
  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
  SDOperand Ops[] = { Op1, Op2 };
  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 2).Val;
}
SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
                                    MVT::ValueType VT2, SDOperand Op1,
                                    SDOperand Op2, SDOperand Op3) {
  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
  SDOperand Ops[] = { Op1, Op2, Op3 };
  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 3).Val;
}
SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1, 
                                    MVT::ValueType VT2,
                                    SDOperandPtr Ops, unsigned NumOps) {
  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, NumOps).Val;
}
SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
                                    MVT::ValueType VT2, MVT::ValueType VT3,
                                    SDOperand Op1, SDOperand Op2) {
  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
  SDOperand Ops[] = { Op1, Op2 };
  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 2).Val;
}
SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
                                    MVT::ValueType VT2, MVT::ValueType VT3,
                                    SDOperand Op1, SDOperand Op2,
                                    SDOperand Op3) {
  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
  SDOperand Ops[] = { Op1, Op2, Op3 };
  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 3).Val;
}
SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1, 
                                    MVT::ValueType VT2, MVT::ValueType VT3,
                                    SDOperandPtr Ops, unsigned NumOps) {
  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, NumOps).Val;
}
SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1, 
                                    MVT::ValueType VT2, MVT::ValueType VT3,
                                    MVT::ValueType VT4,
                                    SDOperandPtr Ops, unsigned NumOps) {
  std::vector<MVT::ValueType> VTList;
  VTList.push_back(VT1);
  VTList.push_back(VT2);
  VTList.push_back(VT3);
  VTList.push_back(VT4);
  const MVT::ValueType *VTs = getNodeValueTypes(VTList);
  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 4, Ops, NumOps).Val;
}
SDNode *SelectionDAG::getTargetNode(unsigned Opcode,
                                    std::vector<MVT::ValueType> &ResultTys,
                                    SDOperandPtr Ops, unsigned NumOps) {
  const MVT::ValueType *VTs = getNodeValueTypes(ResultTys);
  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, ResultTys.size(),
                 Ops, NumOps).Val;
}

/// getNodeIfExists - Get the specified node if it's already available, or
/// else return NULL.
SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
                                      SDOperandPtr Ops, unsigned NumOps) {
  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
    FoldingSetNodeID ID;
    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
    void *IP = 0;
    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
      return E;
  }
  return NULL;
}


/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
/// This can cause recursive merging of nodes in the DAG.
///
/// This version assumes From has a single result value.
///
void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand To,
                                      DAGUpdateListener *UpdateListener) {
  SDNode *From = FromN.Val;
  assert(From->getNumValues() == 1 && FromN.ResNo == 0 && 
         "Cannot replace with this method!");
  assert(From != To.Val && "Cannot replace uses of with self");

  while (!From->use_empty()) {
    SDNode::use_iterator UI = From->use_begin();
    SDNode *U = UI->getUser();

    // This node is about to morph, remove its old self from the CSE maps.
    RemoveNodeFromCSEMaps(U);
    int operandNum = 0;
    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
         I != E; ++I, ++operandNum)
      if (I->getVal() == From) {
        From->removeUser(operandNum, U);
        *I = To;
        I->setUser(U);
        To.Val->addUser(operandNum, U);
      }    

    // Now that we have modified U, add it back to the CSE maps.  If it already
    // exists there, recursively merge the results together.
    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
      ReplaceAllUsesWith(U, Existing, UpdateListener);
      // U is now dead.  Inform the listener if it exists and delete it.
      if (UpdateListener) 
        UpdateListener->NodeDeleted(U);
      DeleteNodeNotInCSEMaps(U);
    } else {
      // If the node doesn't already exist, we updated it.  Inform a listener if
      // it exists.
      if (UpdateListener) 
        UpdateListener->NodeUpdated(U);
    }
  }
}

/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
/// This can cause recursive merging of nodes in the DAG.
///
/// This version assumes From/To have matching types and numbers of result
/// values.
///
void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
                                      DAGUpdateListener *UpdateListener) {
  assert(From != To && "Cannot replace uses of with self");
  assert(From->getNumValues() == To->getNumValues() &&
         "Cannot use this version of ReplaceAllUsesWith!");
  if (From->getNumValues() == 1)   // If possible, use the faster version.
    return ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0),
                              UpdateListener);
  
  while (!From->use_empty()) {
    SDNode::use_iterator UI = From->use_begin();
    SDNode *U = UI->getUser();

    // This node is about to morph, remove its old self from the CSE maps.
    RemoveNodeFromCSEMaps(U);
    int operandNum = 0;
    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
         I != E; ++I, ++operandNum)
      if (I->getVal() == From) {
        From->removeUser(operandNum, U);
        I->getVal() = To;
        To->addUser(operandNum, U);
      }

    // Now that we have modified U, add it back to the CSE maps.  If it already
    // exists there, recursively merge the results together.
    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
      ReplaceAllUsesWith(U, Existing, UpdateListener);
      // U is now dead.  Inform the listener if it exists and delete it.
      if (UpdateListener) 
        UpdateListener->NodeDeleted(U);
      DeleteNodeNotInCSEMaps(U);
    } else {
      // If the node doesn't already exist, we updated it.  Inform a listener if
      // it exists.
      if (UpdateListener) 
        UpdateListener->NodeUpdated(U);
    }
  }
}

/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
/// This can cause recursive merging of nodes in the DAG.
///
/// This version can replace From with any result values.  To must match the
/// number and types of values returned by From.
void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
                                      SDOperandPtr To,
                                      DAGUpdateListener *UpdateListener) {
  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
    return ReplaceAllUsesWith(SDOperand(From, 0), To[0], UpdateListener);

  while (!From->use_empty()) {
    SDNode::use_iterator UI = From->use_begin();
    SDNode *U = UI->getUser();

    // This node is about to morph, remove its old self from the CSE maps.
    RemoveNodeFromCSEMaps(U);
    int operandNum = 0;
    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
         I != E; ++I, ++operandNum)
      if (I->getVal() == From) {
        const SDOperand &ToOp = To[I->getSDOperand().ResNo];
        From->removeUser(operandNum, U);
        *I = ToOp;
        I->setUser(U);
        ToOp.Val->addUser(operandNum, U);
      }

    // Now that we have modified U, add it back to the CSE maps.  If it already
    // exists there, recursively merge the results together.
    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
      ReplaceAllUsesWith(U, Existing, UpdateListener);
      // U is now dead.  Inform the listener if it exists and delete it.
      if (UpdateListener) 
        UpdateListener->NodeDeleted(U);
      DeleteNodeNotInCSEMaps(U);
    } else {
      // If the node doesn't already exist, we updated it.  Inform a listener if
      // it exists.
      if (UpdateListener) 
        UpdateListener->NodeUpdated(U);
    }
  }
}

namespace {
  /// ChainedSetUpdaterListener - This class is a DAGUpdateListener that removes
  /// any deleted nodes from the set passed into its constructor and recursively
  /// notifies another update listener if specified.
  class ChainedSetUpdaterListener : 
  public SelectionDAG::DAGUpdateListener {
    SmallSetVector<SDNode*, 16> &Set;
    SelectionDAG::DAGUpdateListener *Chain;
  public:
    ChainedSetUpdaterListener(SmallSetVector<SDNode*, 16> &set,
                              SelectionDAG::DAGUpdateListener *chain)
      : Set(set), Chain(chain) {}
 
    virtual void NodeDeleted(SDNode *N) {
      Set.remove(N);
      if (Chain) Chain->NodeDeleted(N);
    }
    virtual void NodeUpdated(SDNode *N) {
      if (Chain) Chain->NodeUpdated(N);
    }
  };
}

/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
/// uses of other values produced by From.Val alone.  The Deleted vector is
/// handled the same way as for ReplaceAllUsesWith.
void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To,
                                             DAGUpdateListener *UpdateListener){
  assert(From != To && "Cannot replace a value with itself");
  
  // Handle the simple, trivial, case efficiently.
  if (From.Val->getNumValues() == 1) {
    ReplaceAllUsesWith(From, To, UpdateListener);
    return;
  }

  if (From.use_empty()) return;

  // Get all of the users of From.Val.  We want these in a nice,
  // deterministically ordered and uniqued set, so we use a SmallSetVector.
  SmallSetVector<SDNode*, 16> Users;
  for (SDNode::use_iterator UI = From.Val->use_begin(), 
      E = From.Val->use_end(); UI != E; ++UI) {
    SDNode *User = UI->getUser();
    if (!Users.count(User))
      Users.insert(User);
  }

  // When one of the recursive merges deletes nodes from the graph, we need to
  // make sure that UpdateListener is notified *and* that the node is removed
  // from Users if present.  CSUL does this.
  ChainedSetUpdaterListener CSUL(Users, UpdateListener);
  
  while (!Users.empty()) {
    // We know that this user uses some value of From.  If it is the right
    // value, update it.
    SDNode *User = Users.back();
    Users.pop_back();
    
    // Scan for an operand that matches From.
    SDNode::op_iterator Op = User->op_begin(), E = User->op_end();
    for (; Op != E; ++Op)
      if (*Op == From) break;
    
    // If there are no matches, the user must use some other result of From.
    if (Op == E) continue;
      
    // Okay, we know this user needs to be updated.  Remove its old self
    // from the CSE maps.
    RemoveNodeFromCSEMaps(User);
    
    // Update all operands that match "From" in case there are multiple uses.
    for (; Op != E; ++Op) {
      if (*Op == From) {
        From.Val->removeUser(Op-User->op_begin(), User);
        *Op = To;
        Op->setUser(User);
        To.Val->addUser(Op-User->op_begin(), User);
      }
    }
               
    // Now that we have modified User, add it back to the CSE maps.  If it
    // already exists there, recursively merge the results together.
    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
    if (!Existing) {
      if (UpdateListener) UpdateListener->NodeUpdated(User);
      continue;  // Continue on to next user.
    }
    
    // If there was already an existing matching node, use ReplaceAllUsesWith
    // to replace the dead one with the existing one.  This can cause
    // recursive merging of other unrelated nodes down the line.  The merging
    // can cause deletion of nodes that used the old value.  To handle this, we
    // use CSUL to remove them from the Users set.
    ReplaceAllUsesWith(User, Existing, &CSUL);
    
    // User is now dead.  Notify a listener if present.
    if (UpdateListener) UpdateListener->NodeDeleted(User);
    DeleteNodeNotInCSEMaps(User);
  }
}

/// AssignNodeIds - Assign a unique node id for each node in the DAG based on
/// their allnodes order. It returns the maximum id.
unsigned SelectionDAG::AssignNodeIds() {
  unsigned Id = 0;
  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I){
    SDNode *N = I;
    N->setNodeId(Id++);
  }
  return Id;
}

/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
/// based on their topological order. It returns the maximum id and a vector
/// of the SDNodes* in assigned order by reference.
unsigned SelectionDAG::AssignTopologicalOrder(std::vector<SDNode*> &TopOrder) {
  unsigned DAGSize = AllNodes.size();
  std::vector<unsigned> InDegree(DAGSize);
  std::vector<SDNode*> Sources;

  // Use a two pass approach to avoid using a std::map which is slow.
  unsigned Id = 0;
  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I){
    SDNode *N = I;
    N->setNodeId(Id++);
    unsigned Degree = N->use_size();
    InDegree[N->getNodeId()] = Degree;
    if (Degree == 0)
      Sources.push_back(N);
  }

  TopOrder.clear();
  while (!Sources.empty()) {
    SDNode *N = Sources.back();
    Sources.pop_back();
    TopOrder.push_back(N);
    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
      SDNode *P = I->getVal();
      unsigned Degree = --InDegree[P->getNodeId()];
      if (Degree == 0)
        Sources.push_back(P);
    }
  }

  // Second pass, assign the actual topological order as node ids.
  Id = 0;
  for (std::vector<SDNode*>::iterator TI = TopOrder.begin(),TE = TopOrder.end();
       TI != TE; ++TI)
    (*TI)->setNodeId(Id++);

  return Id;
}



//===----------------------------------------------------------------------===//
//                              SDNode Class
//===----------------------------------------------------------------------===//

// Out-of-line virtual method to give class a home.
void SDNode::ANCHOR() {}
void UnarySDNode::ANCHOR() {}
void BinarySDNode::ANCHOR() {}
void TernarySDNode::ANCHOR() {}
void HandleSDNode::ANCHOR() {}
void StringSDNode::ANCHOR() {}
void ConstantSDNode::ANCHOR() {}
void ConstantFPSDNode::ANCHOR() {}
void GlobalAddressSDNode::ANCHOR() {}
void FrameIndexSDNode::ANCHOR() {}
void JumpTableSDNode::ANCHOR() {}
void ConstantPoolSDNode::ANCHOR() {}
void BasicBlockSDNode::ANCHOR() {}
void SrcValueSDNode::ANCHOR() {}
void MemOperandSDNode::ANCHOR() {}
void RegisterSDNode::ANCHOR() {}
void ExternalSymbolSDNode::ANCHOR() {}
void CondCodeSDNode::ANCHOR() {}
void ARG_FLAGSSDNode::ANCHOR() {}
void VTSDNode::ANCHOR() {}
void LoadSDNode::ANCHOR() {}
void StoreSDNode::ANCHOR() {}
void AtomicSDNode::ANCHOR() {}

HandleSDNode::~HandleSDNode() {
  SDVTList VTs = { 0, 0 };
  MorphNodeTo(ISD::HANDLENODE, VTs, SDOperandPtr(), 0);  // Drops operand uses.
}

GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
                                         MVT::ValueType VT, int o)
  : SDNode(isa<GlobalVariable>(GA) &&
           cast<GlobalVariable>(GA)->isThreadLocal() ?
           // Thread Local
           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
           // Non Thread Local
           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
           getSDVTList(VT)), Offset(o) {
  TheGlobal = const_cast<GlobalValue*>(GA);
}

/// getMemOperand - Return a MachineMemOperand object describing the memory
/// reference performed by this load or store.
MachineMemOperand LSBaseSDNode::getMemOperand() const {
  int Size = (MVT::getSizeInBits(getMemoryVT()) + 7) >> 3;
  int Flags =
    getOpcode() == ISD::LOAD ? MachineMemOperand::MOLoad :
                               MachineMemOperand::MOStore;
  if (IsVolatile) Flags |= MachineMemOperand::MOVolatile;

  // Check if the load references a frame index, and does not have
  // an SV attached.
  const FrameIndexSDNode *FI =
    dyn_cast<const FrameIndexSDNode>(getBasePtr().Val);
  if (!getSrcValue() && FI)
    return MachineMemOperand(PseudoSourceValue::getFixedStack(), Flags,
                             FI->getIndex(), Size, Alignment);
  else
    return MachineMemOperand(getSrcValue(), Flags,
                             getSrcValueOffset(), Size, Alignment);
}

/// Profile - Gather unique data for the node.
///
void SDNode::Profile(FoldingSetNodeID &ID) {
  AddNodeIDNode(ID, this);
}

/// getValueTypeList - Return a pointer to the specified value type.
///
const MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) {
  if (MVT::isExtendedVT(VT)) {
    static std::set<MVT::ValueType> EVTs;
    return &(*EVTs.insert(VT).first);
  } else {
    static MVT::ValueType VTs[MVT::LAST_VALUETYPE];
    VTs[VT] = VT;
    return &VTs[VT];
  }
}

/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
/// indicated value.  This method ignores uses of other values defined by this
/// operation.
bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
  assert(Value < getNumValues() && "Bad value!");

  // If there is only one value, this is easy.
  if (getNumValues() == 1)
    return use_size() == NUses;
  if (use_size() < NUses) return false;

  SDOperand TheValue(const_cast<SDNode *>(this), Value);

  SmallPtrSet<SDNode*, 32> UsersHandled;

  // TODO: Only iterate over uses of a given value of the node
  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
    if (*UI == TheValue) {
      if (NUses == 0)
        return false;
      --NUses;
    }
  }

  // Found exactly the right number of uses?
  return NUses == 0;
}


/// hasAnyUseOfValue - Return true if there are any use of the indicated
/// value. This method ignores uses of other values defined by this operation.
bool SDNode::hasAnyUseOfValue(unsigned Value) const {
  assert(Value < getNumValues() && "Bad value!");

  if (use_empty()) return false;

  SDOperand TheValue(const_cast<SDNode *>(this), Value);

  SmallPtrSet<SDNode*, 32> UsersHandled;

  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
    SDNode *User = UI->getUser();
    if (User->getNumOperands() == 1 ||
        UsersHandled.insert(User))     // First time we've seen this?
      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
        if (User->getOperand(i) == TheValue) {
          return true;
        }
  }

  return false;
}


/// isOnlyUseOf - Return true if this node is the only use of N.
///
bool SDNode::isOnlyUseOf(SDNode *N) const {
  bool Seen = false;
  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
    SDNode *User = I->getUser();
    if (User == this)
      Seen = true;
    else
      return false;
  }

  return Seen;
}

/// isOperand - Return true if this node is an operand of N.
///
bool SDOperand::isOperandOf(SDNode *N) const {
  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
    if (*this == N->getOperand(i))
      return true;
  return false;
}

bool SDNode::isOperandOf(SDNode *N) const {
  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
    if (this == N->OperandList[i].getVal())
      return true;
  return false;
}

/// reachesChainWithoutSideEffects - Return true if this operand (which must
/// be a chain) reaches the specified operand without crossing any 
/// side-effecting instructions.  In practice, this looks through token
/// factors and non-volatile loads.  In order to remain efficient, this only
/// looks a couple of nodes in, it does not do an exhaustive search.
bool SDOperand::reachesChainWithoutSideEffects(SDOperand Dest, 
                                               unsigned Depth) const {
  if (*this == Dest) return true;
  
  // Don't search too deeply, we just want to be able to see through
  // TokenFactor's etc.
  if (Depth == 0) return false;
  
  // If this is a token factor, all inputs to the TF happen in parallel.  If any
  // of the operands of the TF reach dest, then we can do the xform.
  if (getOpcode() == ISD::TokenFactor) {
    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
        return true;
    return false;
  }
  
  // Loads don't have side effects, look through them.
  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
    if (!Ld->isVolatile())
      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
  }
  return false;
}


static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
                            SmallPtrSet<SDNode *, 32> &Visited) {
  if (found || !Visited.insert(N))
    return;

  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
    SDNode *Op = N->getOperand(i).Val;
    if (Op == P) {
      found = true;
      return;
    }
    findPredecessor(Op, P, found, Visited);
  }
}

/// isPredecessorOf - Return true if this node is a predecessor of N. This node
/// is either an operand of N or it can be reached by recursively traversing
/// up the operands.
/// NOTE: this is an expensive method. Use it carefully.
bool SDNode::isPredecessorOf(SDNode *N) const {
  SmallPtrSet<SDNode *, 32> Visited;
  bool found = false;
  findPredecessor(N, this, found, Visited);
  return found;
}

uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
  assert(Num < NumOperands && "Invalid child # of SDNode!");
  return cast<ConstantSDNode>(OperandList[Num])->getValue();
}

std::string SDNode::getOperationName(const SelectionDAG *G) const {
  switch (getOpcode()) {
  default:
    if (getOpcode() < ISD::BUILTIN_OP_END)
      return "<<Unknown DAG Node>>";
    else {
      if (G) {
        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
          if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
            return TII->get(getOpcode()-ISD::BUILTIN_OP_END).getName();

        TargetLowering &TLI = G->getTargetLoweringInfo();
        const char *Name =
          TLI.getTargetNodeName(getOpcode());
        if (Name) return Name;
      }

      return "<<Unknown Target Node>>";
    }
   
  case ISD::PREFETCH:      return "Prefetch";
  case ISD::MEMBARRIER:    return "MemBarrier";
  case ISD::ATOMIC_LCS:    return "AtomicLCS";
  case ISD::ATOMIC_LAS:    return "AtomicLAS";
  case ISD::ATOMIC_LSS:    return "AtomicLSS";
  case ISD::ATOMIC_LOAD_AND:  return "AtomicLoadAnd";
  case ISD::ATOMIC_LOAD_OR:   return "AtomicLoadOr";
  case ISD::ATOMIC_LOAD_XOR:  return "AtomicLoadXor";
  case ISD::ATOMIC_LOAD_MIN:  return "AtomicLoadMin";
  case ISD::ATOMIC_LOAD_MAX:  return "AtomicLoadMax";
  case ISD::ATOMIC_LOAD_UMIN: return "AtomicLoadUMin";
  case ISD::ATOMIC_LOAD_UMAX: return "AtomicLoadUMax";
  case ISD::ATOMIC_SWAP:   return "AtomicSWAP";
  case ISD::PCMARKER:      return "PCMarker";
  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
  case ISD::SRCVALUE:      return "SrcValue";
  case ISD::MEMOPERAND:    return "MemOperand";
  case ISD::EntryToken:    return "EntryToken";
  case ISD::TokenFactor:   return "TokenFactor";
  case ISD::AssertSext:    return "AssertSext";
  case ISD::AssertZext:    return "AssertZext";

  case ISD::STRING:        return "String";
  case ISD::BasicBlock:    return "BasicBlock";
  case ISD::ARG_FLAGS:     return "ArgFlags";
  case ISD::VALUETYPE:     return "ValueType";
  case ISD::Register:      return "Register";

  case ISD::Constant:      return "Constant";
  case ISD::ConstantFP:    return "ConstantFP";
  case ISD::GlobalAddress: return "GlobalAddress";
  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
  case ISD::FrameIndex:    return "FrameIndex";
  case ISD::JumpTable:     return "JumpTable";
  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
  case ISD::RETURNADDR: return "RETURNADDR";
  case ISD::FRAMEADDR: return "FRAMEADDR";
  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
  case ISD::EHSELECTION: return "EHSELECTION";
  case ISD::EH_RETURN: return "EH_RETURN";
  case ISD::ConstantPool:  return "ConstantPool";
  case ISD::ExternalSymbol: return "ExternalSymbol";
  case ISD::INTRINSIC_WO_CHAIN: {
    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getValue();
    return Intrinsic::getName((Intrinsic::ID)IID);
  }
  case ISD::INTRINSIC_VOID:
  case ISD::INTRINSIC_W_CHAIN: {
    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getValue();
    return Intrinsic::getName((Intrinsic::ID)IID);
  }

  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
  case ISD::TargetConstant: return "TargetConstant";
  case ISD::TargetConstantFP:return "TargetConstantFP";
  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
  case ISD::TargetFrameIndex: return "TargetFrameIndex";
  case ISD::TargetJumpTable:  return "TargetJumpTable";
  case ISD::TargetConstantPool:  return "TargetConstantPool";
  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";

  case ISD::CopyToReg:     return "CopyToReg";
  case ISD::CopyFromReg:   return "CopyFromReg";
  case ISD::UNDEF:         return "undef";
  case ISD::MERGE_VALUES:  return "merge_values";
  case ISD::INLINEASM:     return "inlineasm";
  case ISD::LABEL:         return "label";
  case ISD::DECLARE:       return "declare";
  case ISD::HANDLENODE:    return "handlenode";
  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
  case ISD::CALL:          return "call";
    
  // Unary operators
  case ISD::FABS:   return "fabs";
  case ISD::FNEG:   return "fneg";
  case ISD::FSQRT:  return "fsqrt";
  case ISD::FSIN:   return "fsin";
  case ISD::FCOS:   return "fcos";
  case ISD::FPOWI:  return "fpowi";
  case ISD::FPOW:   return "fpow";

  // Binary operators
  case ISD::ADD:    return "add";
  case ISD::SUB:    return "sub";
  case ISD::MUL:    return "mul";
  case ISD::MULHU:  return "mulhu";
  case ISD::MULHS:  return "mulhs";
  case ISD::SDIV:   return "sdiv";
  case ISD::UDIV:   return "udiv";
  case ISD::SREM:   return "srem";
  case ISD::UREM:   return "urem";
  case ISD::SMUL_LOHI:  return "smul_lohi";
  case ISD::UMUL_LOHI:  return "umul_lohi";
  case ISD::SDIVREM:    return "sdivrem";
  case ISD::UDIVREM:    return "divrem";
  case ISD::AND:    return "and";
  case ISD::OR:     return "or";
  case ISD::XOR:    return "xor";
  case ISD::SHL:    return "shl";
  case ISD::SRA:    return "sra";
  case ISD::SRL:    return "srl";
  case ISD::ROTL:   return "rotl";
  case ISD::ROTR:   return "rotr";
  case ISD::FADD:   return "fadd";
  case ISD::FSUB:   return "fsub";
  case ISD::FMUL:   return "fmul";
  case ISD::FDIV:   return "fdiv";
  case ISD::FREM:   return "frem";
  case ISD::FCOPYSIGN: return "fcopysign";
  case ISD::FGETSIGN:  return "fgetsign";

  case ISD::SETCC:       return "setcc";
  case ISD::VSETCC:      return "vsetcc";
  case ISD::SELECT:      return "select";
  case ISD::SELECT_CC:   return "select_cc";
  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
  case ISD::CONCAT_VECTORS:      return "concat_vectors";
  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
  case ISD::CARRY_FALSE:         return "carry_false";
  case ISD::ADDC:        return "addc";
  case ISD::ADDE:        return "adde";
  case ISD::SUBC:        return "subc";
  case ISD::SUBE:        return "sube";
  case ISD::SHL_PARTS:   return "shl_parts";
  case ISD::SRA_PARTS:   return "sra_parts";
  case ISD::SRL_PARTS:   return "srl_parts";
  
  case ISD::EXTRACT_SUBREG:     return "extract_subreg";
  case ISD::INSERT_SUBREG:      return "insert_subreg";
  
  // Conversion operators.
  case ISD::SIGN_EXTEND: return "sign_extend";
  case ISD::ZERO_EXTEND: return "zero_extend";
  case ISD::ANY_EXTEND:  return "any_extend";
  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
  case ISD::TRUNCATE:    return "truncate";
  case ISD::FP_ROUND:    return "fp_round";
  case ISD::FLT_ROUNDS_: return "flt_rounds";
  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
  case ISD::FP_EXTEND:   return "fp_extend";

  case ISD::SINT_TO_FP:  return "sint_to_fp";
  case ISD::UINT_TO_FP:  return "uint_to_fp";
  case ISD::FP_TO_SINT:  return "fp_to_sint";
  case ISD::FP_TO_UINT:  return "fp_to_uint";
  case ISD::BIT_CONVERT: return "bit_convert";

    // Control flow instructions
  case ISD::BR:      return "br";
  case ISD::BRIND:   return "brind";
  case ISD::BR_JT:   return "br_jt";
  case ISD::BRCOND:  return "brcond";
  case ISD::BR_CC:   return "br_cc";
  case ISD::RET:     return "ret";
  case ISD::CALLSEQ_START:  return "callseq_start";
  case ISD::CALLSEQ_END:    return "callseq_end";

    // Other operators
  case ISD::LOAD:               return "load";
  case ISD::STORE:              return "store";
  case ISD::VAARG:              return "vaarg";
  case ISD::VACOPY:             return "vacopy";
  case ISD::VAEND:              return "vaend";
  case ISD::VASTART:            return "vastart";
  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
  case ISD::EXTRACT_ELEMENT:    return "extract_element";
  case ISD::BUILD_PAIR:         return "build_pair";
  case ISD::STACKSAVE:          return "stacksave";
  case ISD::STACKRESTORE:       return "stackrestore";
  case ISD::TRAP:               return "trap";

  // Bit manipulation
  case ISD::BSWAP:   return "bswap";
  case ISD::CTPOP:   return "ctpop";
  case ISD::CTTZ:    return "cttz";
  case ISD::CTLZ:    return "ctlz";

  // Debug info
  case ISD::LOCATION: return "location";
  case ISD::DEBUG_LOC: return "debug_loc";

  // Trampolines
  case ISD::TRAMPOLINE: return "trampoline";

  case ISD::CONDCODE:
    switch (cast<CondCodeSDNode>(this)->get()) {
    default: assert(0 && "Unknown setcc condition!");
    case ISD::SETOEQ:  return "setoeq";
    case ISD::SETOGT:  return "setogt";
    case ISD::SETOGE:  return "setoge";
    case ISD::SETOLT:  return "setolt";
    case ISD::SETOLE:  return "setole";
    case ISD::SETONE:  return "setone";

    case ISD::SETO:    return "seto";
    case ISD::SETUO:   return "setuo";
    case ISD::SETUEQ:  return "setue";
    case ISD::SETUGT:  return "setugt";
    case ISD::SETUGE:  return "setuge";
    case ISD::SETULT:  return "setult";
    case ISD::SETULE:  return "setule";
    case ISD::SETUNE:  return "setune";

    case ISD::SETEQ:   return "seteq";
    case ISD::SETGT:   return "setgt";
    case ISD::SETGE:   return "setge";
    case ISD::SETLT:   return "setlt";
    case ISD::SETLE:   return "setle";
    case ISD::SETNE:   return "setne";
    }
  }
}

const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
  switch (AM) {
  default:
    return "";
  case ISD::PRE_INC:
    return "<pre-inc>";
  case ISD::PRE_DEC:
    return "<pre-dec>";
  case ISD::POST_INC:
    return "<post-inc>";
  case ISD::POST_DEC:
    return "<post-dec>";
  }
}

std::string ISD::ArgFlagsTy::getArgFlagsString() {
  std::string S = "< ";

  if (isZExt())
    S += "zext ";
  if (isSExt())
    S += "sext ";
  if (isInReg())
    S += "inreg ";
  if (isSRet())
    S += "sret ";
  if (isByVal())
    S += "byval ";
  if (isNest())
    S += "nest ";
  if (getByValAlign())
    S += "byval-align:" + utostr(getByValAlign()) + " ";
  if (getOrigAlign())
    S += "orig-align:" + utostr(getOrigAlign()) + " ";
  if (getByValSize())
    S += "byval-size:" + utostr(getByValSize()) + " ";
  return S + ">";
}

void SDNode::dump() const { dump(0); }
void SDNode::dump(const SelectionDAG *G) const {
  cerr << (void*)this << ": ";

  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
    if (i) cerr << ",";
    if (getValueType(i) == MVT::Other)
      cerr << "ch";
    else
      cerr << MVT::getValueTypeString(getValueType(i));
  }
  cerr << " = " << getOperationName(G);

  cerr << " ";
  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
    if (i) cerr << ", ";
    cerr << (void*)getOperand(i).Val;
    if (unsigned RN = getOperand(i).ResNo)
      cerr << ":" << RN;
  }

  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
    SDNode *Mask = getOperand(2).Val;
    cerr << "<";
    for (unsigned i = 0, e = Mask->getNumOperands(); i != e; ++i) {
      if (i) cerr << ",";
      if (Mask->getOperand(i).getOpcode() == ISD::UNDEF)
        cerr << "u";
      else
        cerr << cast<ConstantSDNode>(Mask->getOperand(i))->getValue();
    }
    cerr << ">";
  }

  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
    cerr << "<" << CSDN->getValue() << ">";
  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
      cerr << "<" << CSDN->getValueAPF().convertToFloat() << ">";
    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
      cerr << "<" << CSDN->getValueAPF().convertToDouble() << ">";
    else {
      cerr << "<APFloat(";
      CSDN->getValueAPF().convertToAPInt().dump();
      cerr << ")>";
    }
  } else if (const GlobalAddressSDNode *GADN =
             dyn_cast<GlobalAddressSDNode>(this)) {
    int offset = GADN->getOffset();
    cerr << "<";
    WriteAsOperand(*cerr.stream(), GADN->getGlobal()) << ">";
    if (offset > 0)
      cerr << " + " << offset;
    else
      cerr << " " << offset;
  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
    cerr << "<" << FIDN->getIndex() << ">";
  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
    cerr << "<" << JTDN->getIndex() << ">";
  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
    int offset = CP->getOffset();
    if (CP->isMachineConstantPoolEntry())
      cerr << "<" << *CP->getMachineCPVal() << ">";
    else
      cerr << "<" << *CP->getConstVal() << ">";
    if (offset > 0)
      cerr << " + " << offset;
    else
      cerr << " " << offset;
  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
    cerr << "<";
    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
    if (LBB)
      cerr << LBB->getName() << " ";
    cerr << (const void*)BBDN->getBasicBlock() << ">";
  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
    if (G && R->getReg() &&
        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
      cerr << " " << G->getTarget().getRegisterInfo()->getName(R->getReg());
    } else {
      cerr << " #" << R->getReg();
    }
  } else if (const ExternalSymbolSDNode *ES =
             dyn_cast<ExternalSymbolSDNode>(this)) {
    cerr << "'" << ES->getSymbol() << "'";
  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
    if (M->getValue())
      cerr << "<" << M->getValue() << ">";
    else
      cerr << "<null>";
  } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
    if (M->MO.getValue())
      cerr << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
    else
      cerr << "<null:" << M->MO.getOffset() << ">";
  } else if (const ARG_FLAGSSDNode *N = dyn_cast<ARG_FLAGSSDNode>(this)) {
    cerr << N->getArgFlags().getArgFlagsString();
  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
    cerr << ":" << MVT::getValueTypeString(N->getVT());
  } else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
    const Value *SrcValue = LD->getSrcValue();
    int SrcOffset = LD->getSrcValueOffset();
    cerr << " <";
    if (SrcValue)
      cerr << SrcValue;
    else
      cerr << "null";
    cerr << ":" << SrcOffset << ">";

    bool doExt = true;
    switch (LD->getExtensionType()) {
    default: doExt = false; break;
    case ISD::EXTLOAD:
      cerr << " <anyext ";
      break;
    case ISD::SEXTLOAD:
      cerr << " <sext ";
      break;
    case ISD::ZEXTLOAD:
      cerr << " <zext ";
      break;
    }
    if (doExt)
      cerr << MVT::getValueTypeString(LD->getMemoryVT()) << ">";

    const char *AM = getIndexedModeName(LD->getAddressingMode());
    if (*AM)
      cerr << " " << AM;
    if (LD->isVolatile())
      cerr << " <volatile>";
    cerr << " alignment=" << LD->getAlignment();
  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
    const Value *SrcValue = ST->getSrcValue();
    int SrcOffset = ST->getSrcValueOffset();
    cerr << " <";
    if (SrcValue)
      cerr << SrcValue;
    else
      cerr << "null";
    cerr << ":" << SrcOffset << ">";

    if (ST->isTruncatingStore())
      cerr << " <trunc "
           << MVT::getValueTypeString(ST->getMemoryVT()) << ">";

    const char *AM = getIndexedModeName(ST->getAddressingMode());
    if (*AM)
      cerr << " " << AM;
    if (ST->isVolatile())
      cerr << " <volatile>";
    cerr << " alignment=" << ST->getAlignment();
  }
}

static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
    if (N->getOperand(i).Val->hasOneUse())
      DumpNodes(N->getOperand(i).Val, indent+2, G);
    else
      cerr << "\n" << std::string(indent+2, ' ')
           << (void*)N->getOperand(i).Val << ": <multiple use>";


  cerr << "\n" << std::string(indent, ' ');
  N->dump(G);
}

void SelectionDAG::dump() const {
  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
  std::vector<const SDNode*> Nodes;
  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
       I != E; ++I)
    Nodes.push_back(I);
  
  std::sort(Nodes.begin(), Nodes.end());

  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
    if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
      DumpNodes(Nodes[i], 2, this);
  }

  if (getRoot().Val) DumpNodes(getRoot().Val, 2, this);

  cerr << "\n\n";
}

const Type *ConstantPoolSDNode::getType() const {
  if (isMachineConstantPoolEntry())
    return Val.MachineCPVal->getType();
  return Val.ConstVal->getType();
}