summaryrefslogtreecommitdiff
path: root/lib/CodeGen/ShrinkWrapping.cpp
blob: 160f38f69236875e35fb3d147337e2d7cc7a3c3f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
//===-- ShrinkWrapping.cpp - Reduce spills/restores of callee-saved regs --===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements a shrink wrapping variant of prolog/epilog insertion:
// - Spills and restores of callee-saved registers (CSRs) are placed in the
//   machine CFG to tightly surround their uses so that execution paths that
//   do not use CSRs do not pay the spill/restore penalty.
//
// - Avoiding placment of spills/restores in loops: if a CSR is used inside a
//   loop the spills are placed in the loop preheader, and restores are
//   placed in the loop exit nodes (the successors of loop _exiting_ nodes).
//
// - Covering paths without CSR uses:
//   If a region in a CFG uses CSRs and has multiple entry and/or exit points,
//   the use info for the CSRs inside the region is propagated outward in the
//   CFG to ensure validity of the spill/restore placements. This decreases
//   the effectiveness of shrink wrapping but does not require edge splitting
//   in the machine CFG.
//
// This shrink wrapping implementation uses an iterative analysis to determine
// which basic blocks require spills and restores for CSRs.
//
// This pass uses MachineDominators and MachineLoopInfo. Loop information
// is used to prevent placement of callee-saved register spills/restores
// in the bodies of loops.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "shrink-wrap"

#include "PrologEpilogInserter.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/ADT/SparseBitVector.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Statistic.h"
#include <sstream>

using namespace llvm;

STATISTIC(numSRReduced, "Number of CSR spills+restores reduced.");

// Shrink Wrapping:
static cl::opt<bool>
ShrinkWrapping("shrink-wrap",
               cl::desc("Shrink wrap callee-saved register spills/restores"));

// Shrink wrap only the specified function, a debugging aid.
static cl::opt<std::string>
ShrinkWrapFunc("shrink-wrap-func", cl::Hidden,
               cl::desc("Shrink wrap the specified function"),
               cl::value_desc("funcname"),
               cl::init(""));

// Debugging level for shrink wrapping.
enum ShrinkWrapDebugLevel {
  None, BasicInfo, Iterations, Details
};

static cl::opt<enum ShrinkWrapDebugLevel>
ShrinkWrapDebugging("shrink-wrap-dbg", cl::Hidden,
  cl::desc("Print shrink wrapping debugging information"),
  cl::values(
    clEnumVal(None      , "disable debug output"),
    clEnumVal(BasicInfo , "print basic DF sets"),
    clEnumVal(Iterations, "print SR sets for each iteration"),
    clEnumVal(Details   , "print all DF sets"),
    clEnumValEnd));


void PEI::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.setPreservesCFG();
  if (ShrinkWrapping || ShrinkWrapFunc != "") {
    AU.addRequired<MachineLoopInfo>();
    AU.addRequired<MachineDominatorTree>();
  }
  AU.addPreserved<MachineLoopInfo>();
  AU.addPreserved<MachineDominatorTree>();
  MachineFunctionPass::getAnalysisUsage(AU);
}

//===----------------------------------------------------------------------===//
//  ShrinkWrapping implementation
//===----------------------------------------------------------------------===//

// Convienences for dealing with machine loops.
MachineBasicBlock* PEI::getTopLevelLoopPreheader(MachineLoop* LP) {
  assert(LP && "Machine loop is NULL.");
  MachineBasicBlock* PHDR = LP->getLoopPreheader();
  MachineLoop* PLP = LP->getParentLoop();
  while (PLP) {
    PHDR = PLP->getLoopPreheader();
    PLP = PLP->getParentLoop();
  }
  return PHDR;
}

MachineLoop* PEI::getTopLevelLoopParent(MachineLoop *LP) {
  if (LP == 0)
    return 0;
  MachineLoop* PLP = LP->getParentLoop();
  while (PLP) {
    LP = PLP;
    PLP = PLP->getParentLoop();
  }
  return LP;
}

bool PEI::isReturnBlock(MachineBasicBlock* MBB) {
  return (MBB && !MBB->empty() && MBB->back().getDesc().isReturn());
}

// Initialize shrink wrapping DFA sets, called before iterations.
void PEI::clearAnticAvailSets() {
  AnticIn.clear();
  AnticOut.clear();
  AvailIn.clear();
  AvailOut.clear();
}

// Clear all sets constructed by shrink wrapping.
void PEI::clearAllSets() {
  ReturnBlocks.clear();
  clearAnticAvailSets();
  UsedCSRegs.clear();
  CSRUsed.clear();
  TLLoops.clear();
  CSRSave.clear();
  CSRRestore.clear();
}

// Initialize all shrink wrapping data.
void PEI::initShrinkWrappingInfo() {
  clearAllSets();
  EntryBlock = 0;
#ifndef NDEBUG
  HasFastExitPath = false;
#endif
  ShrinkWrapThisFunction = ShrinkWrapping;
  // DEBUG: enable or disable shrink wrapping for the current function
  // via --shrink-wrap-func=<funcname>.
#ifndef NDEBUG
  if (ShrinkWrapFunc != "") {
    std::string MFName = MF->getFunction()->getNameStr();
    ShrinkWrapThisFunction = (MFName == ShrinkWrapFunc);
  }
#endif
}


/// placeCSRSpillsAndRestores - determine which MBBs of the function
/// need save, restore code for callee-saved registers by doing a DF analysis
/// similar to the one used in code motion (GVNPRE). This produces maps of MBBs
/// to sets of registers (CSRs) for saves and restores. MachineLoopInfo
/// is used to ensure that CSR save/restore code is not placed inside loops.
/// This function computes the maps of MBBs -> CSRs to spill and restore
/// in CSRSave, CSRRestore.
///
/// If shrink wrapping is not being performed, place all spills in
/// the entry block, all restores in return blocks. In this case,
/// CSRSave has a single mapping, CSRRestore has mappings for each
/// return block.
///
void PEI::placeCSRSpillsAndRestores(MachineFunction &Fn) {

  DEBUG(MF = &Fn);

  initShrinkWrappingInfo();

  DEBUG(if (ShrinkWrapThisFunction) {
      dbgs() << "Place CSR spills/restores for "
             << MF->getFunction()->getName() << "\n";
    });

  if (calculateSets(Fn))
    placeSpillsAndRestores(Fn);
}

/// calcAnticInOut - calculate the anticipated in/out reg sets
/// for the given MBB by looking forward in the MCFG at MBB's
/// successors.
///
bool PEI::calcAnticInOut(MachineBasicBlock* MBB) {
  bool changed = false;

  // AnticOut[MBB] = INTERSECT(AnticIn[S] for S in SUCCESSORS(MBB))
  SmallVector<MachineBasicBlock*, 4> successors;
  for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
         SE = MBB->succ_end(); SI != SE; ++SI) {
    MachineBasicBlock* SUCC = *SI;
    if (SUCC != MBB)
      successors.push_back(SUCC);
  }

  unsigned i = 0, e = successors.size();
  if (i != e) {
    CSRegSet prevAnticOut = AnticOut[MBB];
    MachineBasicBlock* SUCC = successors[i];

    AnticOut[MBB] = AnticIn[SUCC];
    for (++i; i != e; ++i) {
      SUCC = successors[i];
      AnticOut[MBB] &= AnticIn[SUCC];
    }
    if (prevAnticOut != AnticOut[MBB])
      changed = true;
  }

  // AnticIn[MBB] = UNION(CSRUsed[MBB], AnticOut[MBB]);
  CSRegSet prevAnticIn = AnticIn[MBB];
  AnticIn[MBB] = CSRUsed[MBB] | AnticOut[MBB];
  if (prevAnticIn != AnticIn[MBB])
    changed = true;
  return changed;
}

/// calcAvailInOut - calculate the available in/out reg sets
/// for the given MBB by looking backward in the MCFG at MBB's
/// predecessors.
///
bool PEI::calcAvailInOut(MachineBasicBlock* MBB) {
  bool changed = false;

  // AvailIn[MBB] = INTERSECT(AvailOut[P] for P in PREDECESSORS(MBB))
  SmallVector<MachineBasicBlock*, 4> predecessors;
  for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
         PE = MBB->pred_end(); PI != PE; ++PI) {
    MachineBasicBlock* PRED = *PI;
    if (PRED != MBB)
      predecessors.push_back(PRED);
  }

  unsigned i = 0, e = predecessors.size();
  if (i != e) {
    CSRegSet prevAvailIn = AvailIn[MBB];
    MachineBasicBlock* PRED = predecessors[i];

    AvailIn[MBB] = AvailOut[PRED];
    for (++i; i != e; ++i) {
      PRED = predecessors[i];
      AvailIn[MBB] &= AvailOut[PRED];
    }
    if (prevAvailIn != AvailIn[MBB])
      changed = true;
  }

  // AvailOut[MBB] = UNION(CSRUsed[MBB], AvailIn[MBB]);
  CSRegSet prevAvailOut = AvailOut[MBB];
  AvailOut[MBB] = CSRUsed[MBB] | AvailIn[MBB];
  if (prevAvailOut != AvailOut[MBB])
    changed = true;
  return changed;
}

/// calculateAnticAvail - build the sets anticipated and available
/// registers in the MCFG of the current function iteratively,
/// doing a combined forward and backward analysis.
///
void PEI::calculateAnticAvail(MachineFunction &Fn) {
  // Initialize data flow sets.
  clearAnticAvailSets();

  // Calculate Antic{In,Out} and Avail{In,Out} iteratively on the MCFG.
  bool changed = true;
  unsigned iterations = 0;
  while (changed) {
    changed = false;
    ++iterations;
    for (MachineFunction::iterator MBBI = Fn.begin(), MBBE = Fn.end();
         MBBI != MBBE; ++MBBI) {
      MachineBasicBlock* MBB = MBBI;

      // Calculate anticipated in, out regs at MBB from
      // anticipated at successors of MBB.
      changed |= calcAnticInOut(MBB);

      // Calculate available in, out regs at MBB from
      // available at predecessors of MBB.
      changed |= calcAvailInOut(MBB);
    }
  }

  DEBUG({
      if (ShrinkWrapDebugging >= Details) {
        dbgs()
          << "-----------------------------------------------------------\n"
          << " Antic/Avail Sets:\n"
          << "-----------------------------------------------------------\n"
          << "iterations = " << iterations << "\n"
          << "-----------------------------------------------------------\n"
          << "MBB | USED | ANTIC_IN | ANTIC_OUT | AVAIL_IN | AVAIL_OUT\n"
          << "-----------------------------------------------------------\n";

        for (MachineFunction::iterator MBBI = Fn.begin(), MBBE = Fn.end();
             MBBI != MBBE; ++MBBI) {
          MachineBasicBlock* MBB = MBBI;
          dumpSets(MBB);
        }

        dbgs()
          << "-----------------------------------------------------------\n";
      }
    });
}

/// propagateUsesAroundLoop - copy used register info from MBB to all blocks
/// of the loop given by LP and its parent loops. This prevents spills/restores
/// from being placed in the bodies of loops.
///
void PEI::propagateUsesAroundLoop(MachineBasicBlock* MBB, MachineLoop* LP) {
  if (! MBB || !LP)
    return;

  std::vector<MachineBasicBlock*> loopBlocks = LP->getBlocks();
  for (unsigned i = 0, e = loopBlocks.size(); i != e; ++i) {
    MachineBasicBlock* LBB = loopBlocks[i];
    if (LBB == MBB)
      continue;
    if (CSRUsed[LBB].contains(CSRUsed[MBB]))
      continue;
    CSRUsed[LBB] |= CSRUsed[MBB];
  }
}

/// calculateSets - collect the CSRs used in this function, compute
/// the DF sets that describe the initial minimal regions in the
/// Machine CFG around which CSR spills and restores must be placed.
///
/// Additionally, this function decides if shrink wrapping should
/// be disabled for the current function, checking the following:
///  1. the current function has more than 500 MBBs: heuristic limit
///     on function size to reduce compile time impact of the current
///     iterative algorithm.
///  2. all CSRs are used in the entry block.
///  3. all CSRs are used in all immediate successors of the entry block.
///  4. all CSRs are used in a subset of blocks, each of which dominates
///     all return blocks. These blocks, taken as a subgraph of the MCFG,
///     are equivalent to the entry block since all execution paths pass
///     through them.
///
bool PEI::calculateSets(MachineFunction &Fn) {
  // Sets used to compute spill, restore placement sets.
  const std::vector<CalleeSavedInfo> CSI =
    Fn.getFrameInfo()->getCalleeSavedInfo();

  // If no CSRs used, we are done.
  if (CSI.empty()) {
    DEBUG(if (ShrinkWrapThisFunction)
            dbgs() << "DISABLED: " << Fn.getFunction()->getName()
                   << ": uses no callee-saved registers\n");
    return false;
  }

  // Save refs to entry and return blocks.
  EntryBlock = Fn.begin();
  for (MachineFunction::iterator MBB = Fn.begin(), E = Fn.end();
       MBB != E; ++MBB)
    if (isReturnBlock(MBB))
      ReturnBlocks.push_back(MBB);

  // Determine if this function has fast exit paths.
  DEBUG(if (ShrinkWrapThisFunction)
          findFastExitPath());

  // Limit shrink wrapping via the current iterative bit vector
  // implementation to functions with <= 500 MBBs.
  if (Fn.size() > 500) {
    DEBUG(if (ShrinkWrapThisFunction)
            dbgs() << "DISABLED: " << Fn.getFunction()->getName()
                   << ": too large (" << Fn.size() << " MBBs)\n");
    ShrinkWrapThisFunction = false;
  }

  // Return now if not shrink wrapping.
  if (! ShrinkWrapThisFunction)
    return false;

  // Collect set of used CSRs.
  for (unsigned inx = 0, e = CSI.size(); inx != e; ++inx) {
    UsedCSRegs.set(inx);
  }

  // Walk instructions in all MBBs, create CSRUsed[] sets, choose
  // whether or not to shrink wrap this function.
  MachineLoopInfo &LI = getAnalysis<MachineLoopInfo>();
  MachineDominatorTree &DT = getAnalysis<MachineDominatorTree>();
  const TargetRegisterInfo *TRI = Fn.getTarget().getRegisterInfo();

  bool allCSRUsesInEntryBlock = true;
  for (MachineFunction::iterator MBBI = Fn.begin(), MBBE = Fn.end();
       MBBI != MBBE; ++MBBI) {
    MachineBasicBlock* MBB = MBBI;
    for (MachineBasicBlock::iterator I = MBB->begin(); I != MBB->end(); ++I) {
      for (unsigned inx = 0, e = CSI.size(); inx != e; ++inx) {
        unsigned Reg = CSI[inx].getReg();
        // If instruction I reads or modifies Reg, add it to UsedCSRegs,
        // CSRUsed map for the current block.
        for (unsigned opInx = 0, opEnd = I->getNumOperands();
             opInx != opEnd; ++opInx) {
          const MachineOperand &MO = I->getOperand(opInx);
          if (! (MO.isReg() && (MO.isUse() || MO.isDef())))
            continue;
          unsigned MOReg = MO.getReg();
          if (!MOReg)
            continue;
          if (MOReg == Reg ||
              (TargetRegisterInfo::isPhysicalRegister(MOReg) &&
               TargetRegisterInfo::isPhysicalRegister(Reg) &&
               TRI->isSubRegister(Reg, MOReg))) {
            // CSR Reg is defined/used in block MBB.
            CSRUsed[MBB].set(inx);
            // Check for uses in EntryBlock.
            if (MBB != EntryBlock)
              allCSRUsesInEntryBlock = false;
          }
        }
      }
    }

    if (CSRUsed[MBB].empty())
      continue;

    // Propagate CSRUsed[MBB] in loops
    if (MachineLoop* LP = LI.getLoopFor(MBB)) {
      // Add top level loop to work list.
      MachineBasicBlock* HDR = getTopLevelLoopPreheader(LP);
      MachineLoop* PLP = getTopLevelLoopParent(LP);

      if (! HDR) {
        HDR = PLP->getHeader();
        assert(HDR->pred_size() > 0 && "Loop header has no predecessors?");
        MachineBasicBlock::pred_iterator PI = HDR->pred_begin();
        HDR = *PI;
      }
      TLLoops[HDR] = PLP;

      // Push uses from inside loop to its parent loops,
      // or to all other MBBs in its loop.
      if (LP->getLoopDepth() > 1) {
        for (MachineLoop* PLP = LP->getParentLoop(); PLP;
             PLP = PLP->getParentLoop()) {
          propagateUsesAroundLoop(MBB, PLP);
        }
      } else {
        propagateUsesAroundLoop(MBB, LP);
      }
    }
  }

  if (allCSRUsesInEntryBlock) {
    DEBUG(dbgs() << "DISABLED: " << Fn.getFunction()->getName()
                 << ": all CSRs used in EntryBlock\n");
    ShrinkWrapThisFunction = false;
  } else {
    bool allCSRsUsedInEntryFanout = true;
    for (MachineBasicBlock::succ_iterator SI = EntryBlock->succ_begin(),
           SE = EntryBlock->succ_end(); SI != SE; ++SI) {
      MachineBasicBlock* SUCC = *SI;
      if (CSRUsed[SUCC] != UsedCSRegs)
        allCSRsUsedInEntryFanout = false;
    }
    if (allCSRsUsedInEntryFanout) {
      DEBUG(dbgs() << "DISABLED: " << Fn.getFunction()->getName()
                   << ": all CSRs used in imm successors of EntryBlock\n");
      ShrinkWrapThisFunction = false;
    }
  }

  if (ShrinkWrapThisFunction) {
    // Check if MBB uses CSRs and dominates all exit nodes.
    // Such nodes are equiv. to the entry node w.r.t.
    // CSR uses: every path through the function must
    // pass through this node. If each CSR is used at least
    // once by these nodes, shrink wrapping is disabled.
    CSRegSet CSRUsedInChokePoints;
    for (MachineFunction::iterator MBBI = Fn.begin(), MBBE = Fn.end();
         MBBI != MBBE; ++MBBI) {
      MachineBasicBlock* MBB = MBBI;
      if (MBB == EntryBlock || CSRUsed[MBB].empty() || MBB->succ_size() < 1)
        continue;
      bool dominatesExitNodes = true;
      for (unsigned ri = 0, re = ReturnBlocks.size(); ri != re; ++ri)
        if (! DT.dominates(MBB, ReturnBlocks[ri])) {
          dominatesExitNodes = false;
          break;
        }
      if (dominatesExitNodes) {
        CSRUsedInChokePoints |= CSRUsed[MBB];
        if (CSRUsedInChokePoints == UsedCSRegs) {
          DEBUG(dbgs() << "DISABLED: " << Fn.getFunction()->getName()
                       << ": all CSRs used in choke point(s) at "
                       << getBasicBlockName(MBB) << "\n");
          ShrinkWrapThisFunction = false;
          break;
        }
      }
    }
  }

  // Return now if we have decided not to apply shrink wrapping
  // to the current function.
  if (! ShrinkWrapThisFunction)
    return false;

  DEBUG({
      dbgs() << "ENABLED: " << Fn.getFunction()->getName();
      if (HasFastExitPath)
        dbgs() << " (fast exit path)";
      dbgs() << "\n";
      if (ShrinkWrapDebugging >= BasicInfo) {
        dbgs() << "------------------------------"
             << "-----------------------------\n";
        dbgs() << "UsedCSRegs = " << stringifyCSRegSet(UsedCSRegs) << "\n";
        if (ShrinkWrapDebugging >= Details) {
          dbgs() << "------------------------------"
               << "-----------------------------\n";
          dumpAllUsed();
        }
      }
    });

  // Build initial DF sets to determine minimal regions in the
  // Machine CFG around which CSRs must be spilled and restored.
  calculateAnticAvail(Fn);

  return true;
}

/// addUsesForMEMERegion - add uses of CSRs spilled or restored in
/// multi-entry, multi-exit (MEME) regions so spill and restore
/// placement will not break code that enters or leaves a
/// shrink-wrapped region by inducing spills with no matching
/// restores or restores with no matching spills. A MEME region
/// is a subgraph of the MCFG with multiple entry edges, multiple
/// exit edges, or both. This code propagates use information
/// through the MCFG until all paths requiring spills and restores
/// _outside_ the computed minimal placement regions have been covered.
///
bool PEI::addUsesForMEMERegion(MachineBasicBlock* MBB,
                               SmallVector<MachineBasicBlock*, 4>& blks) {
  if (MBB->succ_size() < 2 && MBB->pred_size() < 2) {
    bool processThisBlock = false;
    for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
           SE = MBB->succ_end(); SI != SE; ++SI) {
      MachineBasicBlock* SUCC = *SI;
      if (SUCC->pred_size() > 1) {
        processThisBlock = true;
        break;
      }
    }
    if (!CSRRestore[MBB].empty() && MBB->succ_size() > 0) {
      for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
             PE = MBB->pred_end(); PI != PE; ++PI) {
        MachineBasicBlock* PRED = *PI;
        if (PRED->succ_size() > 1) {
          processThisBlock = true;
          break;
        }
      }
    }
    if (! processThisBlock)
      return false;
  }

  CSRegSet prop;
  if (!CSRSave[MBB].empty())
    prop = CSRSave[MBB];
  else if (!CSRRestore[MBB].empty())
    prop = CSRRestore[MBB];
  else
    prop = CSRUsed[MBB];
  if (prop.empty())
    return false;

  // Propagate selected bits to successors, predecessors of MBB.
  bool addedUses = false;
  for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
         SE = MBB->succ_end(); SI != SE; ++SI) {
    MachineBasicBlock* SUCC = *SI;
    // Self-loop
    if (SUCC == MBB)
      continue;
    if (! CSRUsed[SUCC].contains(prop)) {
      CSRUsed[SUCC] |= prop;
      addedUses = true;
      blks.push_back(SUCC);
      DEBUG(if (ShrinkWrapDebugging >= Iterations)
              dbgs() << getBasicBlockName(MBB)
                   << "(" << stringifyCSRegSet(prop) << ")->"
                   << "successor " << getBasicBlockName(SUCC) << "\n");
    }
  }
  for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
         PE = MBB->pred_end(); PI != PE; ++PI) {
    MachineBasicBlock* PRED = *PI;
    // Self-loop
    if (PRED == MBB)
      continue;
    if (! CSRUsed[PRED].contains(prop)) {
      CSRUsed[PRED] |= prop;
      addedUses = true;
      blks.push_back(PRED);
      DEBUG(if (ShrinkWrapDebugging >= Iterations)
              dbgs() << getBasicBlockName(MBB)
                   << "(" << stringifyCSRegSet(prop) << ")->"
                   << "predecessor " << getBasicBlockName(PRED) << "\n");
    }
  }
  return addedUses;
}

/// addUsesForTopLevelLoops - add uses for CSRs used inside top
/// level loops to the exit blocks of those loops.
///
bool PEI::addUsesForTopLevelLoops(SmallVector<MachineBasicBlock*, 4>& blks) {
  bool addedUses = false;

  // Place restores for top level loops where needed.
  for (DenseMap<MachineBasicBlock*, MachineLoop*>::iterator
         I = TLLoops.begin(), E = TLLoops.end(); I != E; ++I) {
    MachineBasicBlock* MBB = I->first;
    MachineLoop* LP = I->second;
    MachineBasicBlock* HDR = LP->getHeader();
    SmallVector<MachineBasicBlock*, 4> exitBlocks;
    CSRegSet loopSpills;

    loopSpills = CSRSave[MBB];
    if (CSRSave[MBB].empty()) {
      loopSpills = CSRUsed[HDR];
      assert(!loopSpills.empty() && "No CSRs used in loop?");
    } else if (CSRRestore[MBB].contains(CSRSave[MBB]))
      continue;

    LP->getExitBlocks(exitBlocks);
    assert(exitBlocks.size() > 0 && "Loop has no top level exit blocks?");
    for (unsigned i = 0, e = exitBlocks.size(); i != e; ++i) {
      MachineBasicBlock* EXB = exitBlocks[i];
      if (! CSRUsed[EXB].contains(loopSpills)) {
        CSRUsed[EXB] |= loopSpills;
        addedUses = true;
        DEBUG(if (ShrinkWrapDebugging >= Iterations)
                dbgs() << "LOOP " << getBasicBlockName(MBB)
                     << "(" << stringifyCSRegSet(loopSpills) << ")->"
                     << getBasicBlockName(EXB) << "\n");
        if (EXB->succ_size() > 1 || EXB->pred_size() > 1)
          blks.push_back(EXB);
      }
    }
  }
  return addedUses;
}

/// calcSpillPlacements - determine which CSRs should be spilled
/// in MBB using AnticIn sets of MBB's predecessors, keeping track
/// of changes to spilled reg sets. Add MBB to the set of blocks
/// that need to be processed for propagating use info to cover
/// multi-entry/exit regions.
///
bool PEI::calcSpillPlacements(MachineBasicBlock* MBB,
                              SmallVector<MachineBasicBlock*, 4> &blks,
                              CSRegBlockMap &prevSpills) {
  bool placedSpills = false;
  // Intersect (CSRegs - AnticIn[P]) for P in Predecessors(MBB)
  CSRegSet anticInPreds;
  SmallVector<MachineBasicBlock*, 4> predecessors;
  for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
         PE = MBB->pred_end(); PI != PE; ++PI) {
    MachineBasicBlock* PRED = *PI;
    if (PRED != MBB)
      predecessors.push_back(PRED);
  }
  unsigned i = 0, e = predecessors.size();
  if (i != e) {
    MachineBasicBlock* PRED = predecessors[i];
    anticInPreds = UsedCSRegs - AnticIn[PRED];
    for (++i; i != e; ++i) {
      PRED = predecessors[i];
      anticInPreds &= (UsedCSRegs - AnticIn[PRED]);
    }
  } else {
    // Handle uses in entry blocks (which have no predecessors).
    // This is necessary because the DFA formulation assumes the
    // entry and (multiple) exit nodes cannot have CSR uses, which
    // is not the case in the real world.
    anticInPreds = UsedCSRegs;
  }
  // Compute spills required at MBB:
  CSRSave[MBB] |= (AnticIn[MBB] - AvailIn[MBB]) & anticInPreds;

  if (! CSRSave[MBB].empty()) {
    if (MBB == EntryBlock) {
      for (unsigned ri = 0, re = ReturnBlocks.size(); ri != re; ++ri)
        CSRRestore[ReturnBlocks[ri]] |= CSRSave[MBB];
    } else {
      // Reset all regs spilled in MBB that are also spilled in EntryBlock.
      if (CSRSave[EntryBlock].intersects(CSRSave[MBB])) {
        CSRSave[MBB] = CSRSave[MBB] - CSRSave[EntryBlock];
      }
    }
  }
  placedSpills = (CSRSave[MBB] != prevSpills[MBB]);
  prevSpills[MBB] = CSRSave[MBB];
  // Remember this block for adding restores to successor
  // blocks for multi-entry region.
  if (placedSpills)
    blks.push_back(MBB);

  DEBUG(if (! CSRSave[MBB].empty() && ShrinkWrapDebugging >= Iterations)
          dbgs() << "SAVE[" << getBasicBlockName(MBB) << "] = "
               << stringifyCSRegSet(CSRSave[MBB]) << "\n");

  return placedSpills;
}

/// calcRestorePlacements - determine which CSRs should be restored
/// in MBB using AvailOut sets of MBB's succcessors, keeping track
/// of changes to restored reg sets. Add MBB to the set of blocks
/// that need to be processed for propagating use info to cover
/// multi-entry/exit regions.
///
bool PEI::calcRestorePlacements(MachineBasicBlock* MBB,
                                SmallVector<MachineBasicBlock*, 4> &blks,
                                CSRegBlockMap &prevRestores) {
  bool placedRestores = false;
  // Intersect (CSRegs - AvailOut[S]) for S in Successors(MBB)
  CSRegSet availOutSucc;
  SmallVector<MachineBasicBlock*, 4> successors;
  for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
         SE = MBB->succ_end(); SI != SE; ++SI) {
    MachineBasicBlock* SUCC = *SI;
    if (SUCC != MBB)
      successors.push_back(SUCC);
  }
  unsigned i = 0, e = successors.size();
  if (i != e) {
    MachineBasicBlock* SUCC = successors[i];
    availOutSucc = UsedCSRegs - AvailOut[SUCC];
    for (++i; i != e; ++i) {
      SUCC = successors[i];
      availOutSucc &= (UsedCSRegs - AvailOut[SUCC]);
    }
  } else {
    if (! CSRUsed[MBB].empty() || ! AvailOut[MBB].empty()) {
      // Handle uses in return blocks (which have no successors).
      // This is necessary because the DFA formulation assumes the
      // entry and (multiple) exit nodes cannot have CSR uses, which
      // is not the case in the real world.
      availOutSucc = UsedCSRegs;
    }
  }
  // Compute restores required at MBB:
  CSRRestore[MBB] |= (AvailOut[MBB] - AnticOut[MBB]) & availOutSucc;

  // Postprocess restore placements at MBB.
  // Remove the CSRs that are restored in the return blocks.
  // Lest this be confusing, note that:
  // CSRSave[EntryBlock] == CSRRestore[B] for all B in ReturnBlocks.
  if (MBB->succ_size() && ! CSRRestore[MBB].empty()) {
    if (! CSRSave[EntryBlock].empty())
      CSRRestore[MBB] = CSRRestore[MBB] - CSRSave[EntryBlock];
  }
  placedRestores = (CSRRestore[MBB] != prevRestores[MBB]);
  prevRestores[MBB] = CSRRestore[MBB];
  // Remember this block for adding saves to predecessor
  // blocks for multi-entry region.
  if (placedRestores)
    blks.push_back(MBB);

  DEBUG(if (! CSRRestore[MBB].empty() && ShrinkWrapDebugging >= Iterations)
          dbgs() << "RESTORE[" << getBasicBlockName(MBB) << "] = "
               << stringifyCSRegSet(CSRRestore[MBB]) << "\n");

  return placedRestores;
}

/// placeSpillsAndRestores - place spills and restores of CSRs
/// used in MBBs in minimal regions that contain the uses.
///
void PEI::placeSpillsAndRestores(MachineFunction &Fn) {
  CSRegBlockMap prevCSRSave;
  CSRegBlockMap prevCSRRestore;
  SmallVector<MachineBasicBlock*, 4> cvBlocks, ncvBlocks;
  bool changed = true;
  unsigned iterations = 0;

  // Iterate computation of spill and restore placements in the MCFG until:
  //   1. CSR use info has been fully propagated around the MCFG, and
  //   2. computation of CSRSave[], CSRRestore[] reach fixed points.
  while (changed) {
    changed = false;
    ++iterations;

    DEBUG(if (ShrinkWrapDebugging >= Iterations)
            dbgs() << "iter " << iterations
                 << " --------------------------------------------------\n");

    // Calculate CSR{Save,Restore} sets using Antic, Avail on the MCFG,
    // which determines the placements of spills and restores.
    // Keep track of changes to spills, restores in each iteration to
    // minimize the total iterations.
    bool SRChanged = false;
    for (MachineFunction::iterator MBBI = Fn.begin(), MBBE = Fn.end();
         MBBI != MBBE; ++MBBI) {
      MachineBasicBlock* MBB = MBBI;

      // Place spills for CSRs in MBB.
      SRChanged |= calcSpillPlacements(MBB, cvBlocks, prevCSRSave);

      // Place restores for CSRs in MBB.
      SRChanged |= calcRestorePlacements(MBB, cvBlocks, prevCSRRestore);
    }

    // Add uses of CSRs used inside loops where needed.
    changed |= addUsesForTopLevelLoops(cvBlocks);

    // Add uses for CSRs spilled or restored at branch, join points.
    if (changed || SRChanged) {
      while (! cvBlocks.empty()) {
        MachineBasicBlock* MBB = cvBlocks.pop_back_val();
        changed |= addUsesForMEMERegion(MBB, ncvBlocks);
      }
      if (! ncvBlocks.empty()) {
        cvBlocks = ncvBlocks;
        ncvBlocks.clear();
      }
    }

    if (changed) {
      calculateAnticAvail(Fn);
      CSRSave.clear();
      CSRRestore.clear();
    }
  }

  // Check for effectiveness:
  //  SR0 = {r | r in CSRSave[EntryBlock], CSRRestore[RB], RB in ReturnBlocks}
  //  numSRReduced = |(UsedCSRegs - SR0)|, approx. SR0 by CSRSave[EntryBlock]
  // Gives a measure of how many CSR spills have been moved from EntryBlock
  // to minimal regions enclosing their uses.
  CSRegSet notSpilledInEntryBlock = (UsedCSRegs - CSRSave[EntryBlock]);
  unsigned numSRReducedThisFunc = notSpilledInEntryBlock.count();
  numSRReduced += numSRReducedThisFunc;
  DEBUG(if (ShrinkWrapDebugging >= BasicInfo) {
      dbgs() << "-----------------------------------------------------------\n";
      dbgs() << "total iterations = " << iterations << " ( "
           << Fn.getFunction()->getName()
           << " " << numSRReducedThisFunc
           << " " << Fn.size()
           << " )\n";
      dbgs() << "-----------------------------------------------------------\n";
      dumpSRSets();
      dbgs() << "-----------------------------------------------------------\n";
      if (numSRReducedThisFunc)
        verifySpillRestorePlacement();
    });
}

// Debugging methods.
#ifndef NDEBUG
/// findFastExitPath - debugging method used to detect functions
/// with at least one path from the entry block to a return block
/// directly or which has a very small number of edges.
///
void PEI::findFastExitPath() {
  if (! EntryBlock)
    return;
  // Fina a path from EntryBlock to any return block that does not branch:
  //        Entry
  //          |     ...
  //          v      |
  //         B1<-----+
  //          |
  //          v
  //       Return
  for (MachineBasicBlock::succ_iterator SI = EntryBlock->succ_begin(),
         SE = EntryBlock->succ_end(); SI != SE; ++SI) {
    MachineBasicBlock* SUCC = *SI;

    // Assume positive, disprove existence of fast path.
    HasFastExitPath = true;

    // Check the immediate successors.
    if (isReturnBlock(SUCC)) {
      if (ShrinkWrapDebugging >= BasicInfo)
        dbgs() << "Fast exit path: " << getBasicBlockName(EntryBlock)
             << "->" << getBasicBlockName(SUCC) << "\n";
      break;
    }
    // Traverse df from SUCC, look for a branch block.
    std::string exitPath = getBasicBlockName(SUCC);
    for (df_iterator<MachineBasicBlock*> BI = df_begin(SUCC),
           BE = df_end(SUCC); BI != BE; ++BI) {
      MachineBasicBlock* SBB = *BI;
      // Reject paths with branch nodes.
      if (SBB->succ_size() > 1) {
        HasFastExitPath = false;
        break;
      }
      exitPath += "->" + getBasicBlockName(SBB);
    }
    if (HasFastExitPath) {
      if (ShrinkWrapDebugging >= BasicInfo)
        dbgs() << "Fast exit path: " << getBasicBlockName(EntryBlock)
             << "->" << exitPath << "\n";
      break;
    }
  }
}

/// verifySpillRestorePlacement - check the current spill/restore
/// sets for safety. Attempt to find spills without restores or
/// restores without spills.
/// Spills: walk df from each MBB in spill set ensuring that
///         all CSRs spilled at MMBB are restored on all paths
///         from MBB to all exit blocks.
/// Restores: walk idf from each MBB in restore set ensuring that
///           all CSRs restored at MBB are spilled on all paths
///           reaching MBB.
///
void PEI::verifySpillRestorePlacement() {
  unsigned numReturnBlocks = 0;
  for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end();
       MBBI != MBBE; ++MBBI) {
    MachineBasicBlock* MBB = MBBI;
    if (isReturnBlock(MBB) || MBB->succ_size() == 0)
      ++numReturnBlocks;
  }
  for (CSRegBlockMap::iterator BI = CSRSave.begin(),
         BE = CSRSave.end(); BI != BE; ++BI) {
    MachineBasicBlock* MBB = BI->first;
    CSRegSet spilled = BI->second;
    CSRegSet restored;

    if (spilled.empty())
      continue;

    DEBUG(dbgs() << "SAVE[" << getBasicBlockName(MBB) << "] = "
                 << stringifyCSRegSet(spilled)
                 << "  RESTORE[" << getBasicBlockName(MBB) << "] = "
                 << stringifyCSRegSet(CSRRestore[MBB]) << "\n");

    if (CSRRestore[MBB].intersects(spilled)) {
      restored |= (CSRRestore[MBB] & spilled);
    }

    // Walk depth first from MBB to find restores of all CSRs spilled at MBB:
    // we must find restores for all spills w/no intervening spills on all
    // paths from MBB to all return blocks.
    for (df_iterator<MachineBasicBlock*> BI = df_begin(MBB),
           BE = df_end(MBB); BI != BE; ++BI) {
      MachineBasicBlock* SBB = *BI;
      if (SBB == MBB)
        continue;
      // Stop when we encounter spills of any CSRs spilled at MBB that
      // have not yet been seen to be restored.
      if (CSRSave[SBB].intersects(spilled) &&
          !restored.contains(CSRSave[SBB] & spilled))
        break;
      // Collect the CSRs spilled at MBB that are restored
      // at this DF successor of MBB.
      if (CSRRestore[SBB].intersects(spilled))
        restored |= (CSRRestore[SBB] & spilled);
      // If we are at a retun block, check that the restores
      // we have seen so far exhaust the spills at MBB, then
      // reset the restores.
      if (isReturnBlock(SBB) || SBB->succ_size() == 0) {
        if (restored != spilled) {
          CSRegSet notRestored = (spilled - restored);
          DEBUG(dbgs() << MF->getFunction()->getName() << ": "
                       << stringifyCSRegSet(notRestored)
                       << " spilled at " << getBasicBlockName(MBB)
                       << " are never restored on path to return "
                       << getBasicBlockName(SBB) << "\n");
        }
        restored.clear();
      }
    }
  }

  // Check restore placements.
  for (CSRegBlockMap::iterator BI = CSRRestore.begin(),
         BE = CSRRestore.end(); BI != BE; ++BI) {
    MachineBasicBlock* MBB = BI->first;
    CSRegSet restored = BI->second;
    CSRegSet spilled;

    if (restored.empty())
      continue;

    DEBUG(dbgs() << "SAVE[" << getBasicBlockName(MBB) << "] = "
                 << stringifyCSRegSet(CSRSave[MBB])
                 << "  RESTORE[" << getBasicBlockName(MBB) << "] = "
                 << stringifyCSRegSet(restored) << "\n");

    if (CSRSave[MBB].intersects(restored)) {
      spilled |= (CSRSave[MBB] & restored);
    }
    // Walk inverse depth first from MBB to find spills of all
    // CSRs restored at MBB:
    for (idf_iterator<MachineBasicBlock*> BI = idf_begin(MBB),
           BE = idf_end(MBB); BI != BE; ++BI) {
      MachineBasicBlock* PBB = *BI;
      if (PBB == MBB)
        continue;
      // Stop when we encounter restores of any CSRs restored at MBB that
      // have not yet been seen to be spilled.
      if (CSRRestore[PBB].intersects(restored) &&
          !spilled.contains(CSRRestore[PBB] & restored))
        break;
      // Collect the CSRs restored at MBB that are spilled
      // at this DF predecessor of MBB.
      if (CSRSave[PBB].intersects(restored))
        spilled |= (CSRSave[PBB] & restored);
    }
    if (spilled != restored) {
      CSRegSet notSpilled = (restored - spilled);
      DEBUG(dbgs() << MF->getFunction()->getName() << ": "
                   << stringifyCSRegSet(notSpilled)
                   << " restored at " << getBasicBlockName(MBB)
                   << " are never spilled\n");
    }
  }
}

// Debugging print methods.
std::string PEI::getBasicBlockName(const MachineBasicBlock* MBB) {
  if (!MBB)
    return "";

  if (MBB->getBasicBlock())
    return MBB->getBasicBlock()->getNameStr();

  std::ostringstream name;
  name << "_MBB_" << MBB->getNumber();
  return name.str();
}

std::string PEI::stringifyCSRegSet(const CSRegSet& s) {
  const TargetRegisterInfo* TRI = MF->getTarget().getRegisterInfo();
  const std::vector<CalleeSavedInfo> CSI =
    MF->getFrameInfo()->getCalleeSavedInfo();

  std::ostringstream srep;
  if (CSI.size() == 0) {
    srep << "[]";
    return srep.str();
  }
  srep << "[";
  CSRegSet::iterator I = s.begin(), E = s.end();
  if (I != E) {
    unsigned reg = CSI[*I].getReg();
    srep << TRI->getName(reg);
    for (++I; I != E; ++I) {
      reg = CSI[*I].getReg();
      srep << ",";
      srep << TRI->getName(reg);
    }
  }
  srep << "]";
  return srep.str();
}

void PEI::dumpSet(const CSRegSet& s) {
  DEBUG(dbgs() << stringifyCSRegSet(s) << "\n");
}

void PEI::dumpUsed(MachineBasicBlock* MBB) {
  DEBUG({
      if (MBB)
        dbgs() << "CSRUsed[" << getBasicBlockName(MBB) << "] = "
               << stringifyCSRegSet(CSRUsed[MBB])  << "\n";
    });
}

void PEI::dumpAllUsed() {
    for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end();
         MBBI != MBBE; ++MBBI) {
      MachineBasicBlock* MBB = MBBI;
      dumpUsed(MBB);
    }
}

void PEI::dumpSets(MachineBasicBlock* MBB) {
  DEBUG({
      if (MBB)
        dbgs() << getBasicBlockName(MBB)           << " | "
               << stringifyCSRegSet(CSRUsed[MBB])  << " | "
               << stringifyCSRegSet(AnticIn[MBB])  << " | "
               << stringifyCSRegSet(AnticOut[MBB]) << " | "
               << stringifyCSRegSet(AvailIn[MBB])  << " | "
               << stringifyCSRegSet(AvailOut[MBB]) << "\n";
    });
}

void PEI::dumpSets1(MachineBasicBlock* MBB) {
  DEBUG({
      if (MBB)
        dbgs() << getBasicBlockName(MBB)             << " | "
               << stringifyCSRegSet(CSRUsed[MBB])    << " | "
               << stringifyCSRegSet(AnticIn[MBB])    << " | "
               << stringifyCSRegSet(AnticOut[MBB])   << " | "
               << stringifyCSRegSet(AvailIn[MBB])    << " | "
               << stringifyCSRegSet(AvailOut[MBB])   << " | "
               << stringifyCSRegSet(CSRSave[MBB])    << " | "
               << stringifyCSRegSet(CSRRestore[MBB]) << "\n";
    });
}

void PEI::dumpAllSets() {
    for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end();
         MBBI != MBBE; ++MBBI) {
      MachineBasicBlock* MBB = MBBI;
      dumpSets1(MBB);
    }
}

void PEI::dumpSRSets() {
  DEBUG({
      for (MachineFunction::iterator MBB = MF->begin(), E = MF->end();
           MBB != E; ++MBB) {
        if (!CSRSave[MBB].empty()) {
          dbgs() << "SAVE[" << getBasicBlockName(MBB) << "] = "
                 << stringifyCSRegSet(CSRSave[MBB]);
          if (CSRRestore[MBB].empty())
            dbgs() << '\n';
        }

        if (!CSRRestore[MBB].empty() && !CSRSave[MBB].empty())
          dbgs() << "    "
                 << "RESTORE[" << getBasicBlockName(MBB) << "] = "
                 << stringifyCSRegSet(CSRRestore[MBB]) << "\n";
      }
    });
}
#endif