summaryrefslogtreecommitdiff
path: root/lib/CodeGen/SimpleRegisterCoalescing.cpp
blob: 7bf559fae2873af75c9abf20a8a2a8a506870aac (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
//===-- SimpleRegisterCoalescing.cpp - Register Coalescing ----------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements a simple register coalescing pass that attempts to
// aggressively coalesce every register copy that it can.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "regcoalescing"
#include "SimpleRegisterCoalescing.h"
#include "VirtRegMap.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/Value.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/RegisterCoalescer.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/OwningPtr.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
#include <algorithm>
#include <cmath>
using namespace llvm;

STATISTIC(numJoins    , "Number of interval joins performed");
STATISTIC(numCrossRCs , "Number of cross class joins performed");
STATISTIC(numCommutes , "Number of instruction commuting performed");
STATISTIC(numExtends  , "Number of copies extended");
STATISTIC(NumReMats   , "Number of instructions re-materialized");
STATISTIC(numPeep     , "Number of identity moves eliminated after coalescing");
STATISTIC(numAborts   , "Number of times interval joining aborted");
STATISTIC(numDeadValNo, "Number of valno def marked dead");

char SimpleRegisterCoalescing::ID = 0;
static cl::opt<bool>
EnableJoining("join-liveintervals",
              cl::desc("Coalesce copies (default=true)"),
              cl::init(true));

static cl::opt<bool>
DisableCrossClassJoin("disable-cross-class-join",
               cl::desc("Avoid coalescing cross register class copies"),
               cl::init(false), cl::Hidden);

static RegisterPass<SimpleRegisterCoalescing>
X("simple-register-coalescing", "Simple Register Coalescing");

// Declare that we implement the RegisterCoalescer interface
static RegisterAnalysisGroup<RegisterCoalescer, true/*The Default*/> V(X);

const PassInfo *const llvm::SimpleRegisterCoalescingID = &X;

void SimpleRegisterCoalescing::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.setPreservesCFG();
  AU.addRequired<AliasAnalysis>();
  AU.addRequired<LiveIntervals>();
  AU.addPreserved<LiveIntervals>();
  AU.addPreserved<SlotIndexes>();
  AU.addRequired<MachineLoopInfo>();
  AU.addPreserved<MachineLoopInfo>();
  AU.addPreservedID(MachineDominatorsID);
  if (StrongPHIElim)
    AU.addPreservedID(StrongPHIEliminationID);
  else
    AU.addPreservedID(PHIEliminationID);
  AU.addPreservedID(TwoAddressInstructionPassID);
  MachineFunctionPass::getAnalysisUsage(AU);
}

/// AdjustCopiesBackFrom - We found a non-trivially-coalescable copy with IntA
/// being the source and IntB being the dest, thus this defines a value number
/// in IntB.  If the source value number (in IntA) is defined by a copy from B,
/// see if we can merge these two pieces of B into a single value number,
/// eliminating a copy.  For example:
///
///  A3 = B0
///    ...
///  B1 = A3      <- this copy
///
/// In this case, B0 can be extended to where the B1 copy lives, allowing the B1
/// value number to be replaced with B0 (which simplifies the B liveinterval).
///
/// This returns true if an interval was modified.
///
bool SimpleRegisterCoalescing::AdjustCopiesBackFrom(const CoalescerPair &CP,
                                                    MachineInstr *CopyMI) {
  // Bail if there is no dst interval - can happen when merging physical subreg
  // operations.
  if (!li_->hasInterval(CP.getDstReg()))
    return false;

  LiveInterval &IntA =
    li_->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
  LiveInterval &IntB =
    li_->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
  SlotIndex CopyIdx = li_->getInstructionIndex(CopyMI).getDefIndex();

  // BValNo is a value number in B that is defined by a copy from A.  'B3' in
  // the example above.
  LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx);
  if (BLR == IntB.end()) return false;
  VNInfo *BValNo = BLR->valno;

  // Get the location that B is defined at.  Two options: either this value has
  // an unknown definition point or it is defined at CopyIdx.  If unknown, we
  // can't process it.
  if (!BValNo->getCopy()) return false;
  assert(BValNo->def == CopyIdx && "Copy doesn't define the value?");

  // AValNo is the value number in A that defines the copy, A3 in the example.
  SlotIndex CopyUseIdx = CopyIdx.getUseIndex();
  LiveInterval::iterator ALR = IntA.FindLiveRangeContaining(CopyUseIdx);
  // The live range might not exist after fun with physreg coalescing.
  if (ALR == IntA.end()) return false;
  VNInfo *AValNo = ALR->valno;
  // If it's re-defined by an early clobber somewhere in the live range, then
  // it's not safe to eliminate the copy. FIXME: This is a temporary workaround.
  // See PR3149:
  // 172     %ECX<def> = MOV32rr %reg1039<kill>
  // 180     INLINEASM <es:subl $5,$1
  //         sbbl $3,$0>, 10, %EAX<def>, 14, %ECX<earlyclobber,def>, 9,
  //         %EAX<kill>,
  // 36, <fi#0>, 1, %reg0, 0, 9, %ECX<kill>, 36, <fi#1>, 1, %reg0, 0
  // 188     %EAX<def> = MOV32rr %EAX<kill>
  // 196     %ECX<def> = MOV32rr %ECX<kill>
  // 204     %ECX<def> = MOV32rr %ECX<kill>
  // 212     %EAX<def> = MOV32rr %EAX<kill>
  // 220     %EAX<def> = MOV32rr %EAX
  // 228     %reg1039<def> = MOV32rr %ECX<kill>
  // The early clobber operand ties ECX input to the ECX def.
  //
  // The live interval of ECX is represented as this:
  // %reg20,inf = [46,47:1)[174,230:0)  0@174-(230) 1@46-(47)
  // The coalescer has no idea there was a def in the middle of [174,230].
  if (AValNo->hasRedefByEC())
    return false;

  // If AValNo is defined as a copy from IntB, we can potentially process this.
  // Get the instruction that defines this value number.
  if (!CP.isCoalescable(AValNo->getCopy()))
    return false;

  // Get the LiveRange in IntB that this value number starts with.
  LiveInterval::iterator ValLR =
    IntB.FindLiveRangeContaining(AValNo->def.getPrevSlot());
  if (ValLR == IntB.end())
    return false;

  // Make sure that the end of the live range is inside the same block as
  // CopyMI.
  MachineInstr *ValLREndInst =
    li_->getInstructionFromIndex(ValLR->end.getPrevSlot());
  if (!ValLREndInst || ValLREndInst->getParent() != CopyMI->getParent())
    return false;

  // Okay, we now know that ValLR ends in the same block that the CopyMI
  // live-range starts.  If there are no intervening live ranges between them in
  // IntB, we can merge them.
  if (ValLR+1 != BLR) return false;

  // If a live interval is a physical register, conservatively check if any
  // of its sub-registers is overlapping the live interval of the virtual
  // register. If so, do not coalesce.
  if (TargetRegisterInfo::isPhysicalRegister(IntB.reg) &&
      *tri_->getSubRegisters(IntB.reg)) {
    for (const unsigned* SR = tri_->getSubRegisters(IntB.reg); *SR; ++SR)
      if (li_->hasInterval(*SR) && IntA.overlaps(li_->getInterval(*SR))) {
        DEBUG({
            dbgs() << "\t\tInterfere with sub-register ";
            li_->getInterval(*SR).print(dbgs(), tri_);
          });
        return false;
      }
  }

  DEBUG({
      dbgs() << "Extending: ";
      IntB.print(dbgs(), tri_);
    });

  SlotIndex FillerStart = ValLR->end, FillerEnd = BLR->start;
  // We are about to delete CopyMI, so need to remove it as the 'instruction
  // that defines this value #'. Update the valnum with the new defining
  // instruction #.
  BValNo->def  = FillerStart;
  BValNo->setCopy(0);

  // Okay, we can merge them.  We need to insert a new liverange:
  // [ValLR.end, BLR.begin) of either value number, then we merge the
  // two value numbers.
  IntB.addRange(LiveRange(FillerStart, FillerEnd, BValNo));

  // If the IntB live range is assigned to a physical register, and if that
  // physreg has sub-registers, update their live intervals as well.
  if (TargetRegisterInfo::isPhysicalRegister(IntB.reg)) {
    for (const unsigned *SR = tri_->getSubRegisters(IntB.reg); *SR; ++SR) {
      if (!li_->hasInterval(*SR))
        continue;
      LiveInterval &SRLI = li_->getInterval(*SR);
      SRLI.addRange(LiveRange(FillerStart, FillerEnd,
                              SRLI.getNextValue(FillerStart, 0, true,
                                                li_->getVNInfoAllocator())));
    }
  }

  // Okay, merge "B1" into the same value number as "B0".
  if (BValNo != ValLR->valno) {
    IntB.MergeValueNumberInto(BValNo, ValLR->valno);
  }
  DEBUG({
      dbgs() << "   result = ";
      IntB.print(dbgs(), tri_);
      dbgs() << "\n";
    });

  // If the source instruction was killing the source register before the
  // merge, unset the isKill marker given the live range has been extended.
  int UIdx = ValLREndInst->findRegisterUseOperandIdx(IntB.reg, true);
  if (UIdx != -1) {
    ValLREndInst->getOperand(UIdx).setIsKill(false);
  }

  // If the copy instruction was killing the destination register before the
  // merge, find the last use and trim the live range. That will also add the
  // isKill marker.
  if (ALR->end == CopyIdx)
    TrimLiveIntervalToLastUse(CopyUseIdx, CopyMI->getParent(), IntA, ALR);

  ++numExtends;
  return true;
}

/// HasOtherReachingDefs - Return true if there are definitions of IntB
/// other than BValNo val# that can reach uses of AValno val# of IntA.
bool SimpleRegisterCoalescing::HasOtherReachingDefs(LiveInterval &IntA,
                                                    LiveInterval &IntB,
                                                    VNInfo *AValNo,
                                                    VNInfo *BValNo) {
  for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
       AI != AE; ++AI) {
    if (AI->valno != AValNo) continue;
    LiveInterval::Ranges::iterator BI =
      std::upper_bound(IntB.ranges.begin(), IntB.ranges.end(), AI->start);
    if (BI != IntB.ranges.begin())
      --BI;
    for (; BI != IntB.ranges.end() && AI->end >= BI->start; ++BI) {
      if (BI->valno == BValNo)
        continue;
      // When BValNo is null, we're looking for a dummy clobber-value for a subreg.
      if (!BValNo && !BI->valno->isDefAccurate() && !BI->valno->getCopy())
        continue;
      if (BI->start <= AI->start && BI->end > AI->start)
        return true;
      if (BI->start > AI->start && BI->start < AI->end)
        return true;
    }
  }
  return false;
}

static void
TransferImplicitOps(MachineInstr *MI, MachineInstr *NewMI) {
  for (unsigned i = MI->getDesc().getNumOperands(), e = MI->getNumOperands();
       i != e; ++i) {
    MachineOperand &MO = MI->getOperand(i);
    if (MO.isReg() && MO.isImplicit())
      NewMI->addOperand(MO);
  }
}

/// RemoveCopyByCommutingDef - We found a non-trivially-coalescable copy with
/// IntA being the source and IntB being the dest, thus this defines a value
/// number in IntB.  If the source value number (in IntA) is defined by a
/// commutable instruction and its other operand is coalesced to the copy dest
/// register, see if we can transform the copy into a noop by commuting the
/// definition. For example,
///
///  A3 = op A2 B0<kill>
///    ...
///  B1 = A3      <- this copy
///    ...
///     = op A3   <- more uses
///
/// ==>
///
///  B2 = op B0 A2<kill>
///    ...
///  B1 = B2      <- now an identify copy
///    ...
///     = op B2   <- more uses
///
/// This returns true if an interval was modified.
///
bool SimpleRegisterCoalescing::RemoveCopyByCommutingDef(const CoalescerPair &CP,
                                                        MachineInstr *CopyMI) {
  // FIXME: For now, only eliminate the copy by commuting its def when the
  // source register is a virtual register. We want to guard against cases
  // where the copy is a back edge copy and commuting the def lengthen the
  // live interval of the source register to the entire loop.
  if (CP.isPhys() && CP.isFlipped())
    return false;

  // Bail if there is no dst interval.
  if (!li_->hasInterval(CP.getDstReg()))
    return false;

  SlotIndex CopyIdx =
    li_->getInstructionIndex(CopyMI).getDefIndex();

  LiveInterval &IntA =
    li_->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
  LiveInterval &IntB =
    li_->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());

  // BValNo is a value number in B that is defined by a copy from A. 'B3' in
  // the example above.
  LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx);
  if (BLR == IntB.end()) return false;
  VNInfo *BValNo = BLR->valno;

  // Get the location that B is defined at.  Two options: either this value has
  // an unknown definition point or it is defined at CopyIdx.  If unknown, we
  // can't process it.
  if (!BValNo->getCopy()) return false;
  assert(BValNo->def == CopyIdx && "Copy doesn't define the value?");

  // AValNo is the value number in A that defines the copy, A3 in the example.
  LiveInterval::iterator ALR =
    IntA.FindLiveRangeContaining(CopyIdx.getUseIndex()); // 

  assert(ALR != IntA.end() && "Live range not found!");
  VNInfo *AValNo = ALR->valno;
  // If other defs can reach uses of this def, then it's not safe to perform
  // the optimization. FIXME: Do isPHIDef and isDefAccurate both need to be
  // tested?
  if (AValNo->isPHIDef() || !AValNo->isDefAccurate() ||
      AValNo->isUnused() || AValNo->hasPHIKill())
    return false;
  MachineInstr *DefMI = li_->getInstructionFromIndex(AValNo->def);
  if (!DefMI)
    return false;
  const TargetInstrDesc &TID = DefMI->getDesc();
  if (!TID.isCommutable())
    return false;
  // If DefMI is a two-address instruction then commuting it will change the
  // destination register.
  int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg);
  assert(DefIdx != -1);
  unsigned UseOpIdx;
  if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx))
    return false;
  unsigned Op1, Op2, NewDstIdx;
  if (!tii_->findCommutedOpIndices(DefMI, Op1, Op2))
    return false;
  if (Op1 == UseOpIdx)
    NewDstIdx = Op2;
  else if (Op2 == UseOpIdx)
    NewDstIdx = Op1;
  else
    return false;

  MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
  unsigned NewReg = NewDstMO.getReg();
  if (NewReg != IntB.reg || !NewDstMO.isKill())
    return false;

  // Make sure there are no other definitions of IntB that would reach the
  // uses which the new definition can reach.
  if (HasOtherReachingDefs(IntA, IntB, AValNo, BValNo))
    return false;

  bool BHasSubRegs = false;
  if (TargetRegisterInfo::isPhysicalRegister(IntB.reg))
    BHasSubRegs = *tri_->getSubRegisters(IntB.reg);

  // Abort if the subregisters of IntB.reg have values that are not simply the
  // clobbers from the superreg.
  if (BHasSubRegs)
    for (const unsigned *SR = tri_->getSubRegisters(IntB.reg); *SR; ++SR)
      if (li_->hasInterval(*SR) &&
          HasOtherReachingDefs(IntA, li_->getInterval(*SR), AValNo, 0))
        return false;

  // If some of the uses of IntA.reg is already coalesced away, return false.
  // It's not possible to determine whether it's safe to perform the coalescing.
  for (MachineRegisterInfo::use_nodbg_iterator UI = 
         mri_->use_nodbg_begin(IntA.reg), 
       UE = mri_->use_nodbg_end(); UI != UE; ++UI) {
    MachineInstr *UseMI = &*UI;
    SlotIndex UseIdx = li_->getInstructionIndex(UseMI);
    LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
    if (ULR == IntA.end())
      continue;
    if (ULR->valno == AValNo && JoinedCopies.count(UseMI))
      return false;
  }

  // At this point we have decided that it is legal to do this
  // transformation.  Start by commuting the instruction.
  MachineBasicBlock *MBB = DefMI->getParent();
  MachineInstr *NewMI = tii_->commuteInstruction(DefMI);
  if (!NewMI)
    return false;
  if (NewMI != DefMI) {
    li_->ReplaceMachineInstrInMaps(DefMI, NewMI);
    MBB->insert(DefMI, NewMI);
    MBB->erase(DefMI);
  }
  unsigned OpIdx = NewMI->findRegisterUseOperandIdx(IntA.reg, false);
  NewMI->getOperand(OpIdx).setIsKill();

  bool BHasPHIKill = BValNo->hasPHIKill();
  SmallVector<VNInfo*, 4> BDeadValNos;
  std::map<SlotIndex, SlotIndex> BExtend;

  // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
  // A = or A, B
  // ...
  // B = A
  // ...
  // C = A<kill>
  // ...
  //   = B
  bool Extended = BLR->end > ALR->end && ALR->end != ALR->start;
  if (Extended)
    BExtend[ALR->end] = BLR->end;

  // Update uses of IntA of the specific Val# with IntB.
  for (MachineRegisterInfo::use_iterator UI = mri_->use_begin(IntA.reg),
         UE = mri_->use_end(); UI != UE;) {
    MachineOperand &UseMO = UI.getOperand();
    MachineInstr *UseMI = &*UI;
    ++UI;
    if (JoinedCopies.count(UseMI))
      continue;
    if (UseMI->isDebugValue()) {
      // FIXME These don't have an instruction index.  Not clear we have enough
      // info to decide whether to do this replacement or not.  For now do it.
      UseMO.setReg(NewReg);
      continue;
    }
    SlotIndex UseIdx = li_->getInstructionIndex(UseMI).getUseIndex();
    LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
    if (ULR == IntA.end() || ULR->valno != AValNo)
      continue;
    if (TargetRegisterInfo::isPhysicalRegister(NewReg))
      UseMO.substPhysReg(NewReg, *tri_);
    else
      UseMO.setReg(NewReg);
    if (UseMI == CopyMI)
      continue;
    if (UseMO.isKill()) {
      if (Extended)
        UseMO.setIsKill(false);
    }
    if (!UseMI->isCopy())
      continue;
    if (UseMI->getOperand(0).getReg() != IntB.reg ||
        UseMI->getOperand(0).getSubReg())
      continue;
        
    // This copy will become a noop. If it's defining a new val#,
    // remove that val# as well. However this live range is being
    // extended to the end of the existing live range defined by the copy.
    SlotIndex DefIdx = UseIdx.getDefIndex();
    const LiveRange *DLR = IntB.getLiveRangeContaining(DefIdx);
    if (!DLR)
      continue;
    BHasPHIKill |= DLR->valno->hasPHIKill();
    assert(DLR->valno->def == DefIdx);
    BDeadValNos.push_back(DLR->valno);
    BExtend[DLR->start] = DLR->end;
    JoinedCopies.insert(UseMI);
  }

  // We need to insert a new liverange: [ALR.start, LastUse). It may be we can
  // simply extend BLR if CopyMI doesn't end the range.
  DEBUG({
      dbgs() << "Extending: ";
      IntB.print(dbgs(), tri_);
    });

  // Remove val#'s defined by copies that will be coalesced away.
  for (unsigned i = 0, e = BDeadValNos.size(); i != e; ++i) {
    VNInfo *DeadVNI = BDeadValNos[i];
    if (BHasSubRegs) {
      for (const unsigned *SR = tri_->getSubRegisters(IntB.reg); *SR; ++SR) {
        if (!li_->hasInterval(*SR))
          continue;
        LiveInterval &SRLI = li_->getInterval(*SR);
        if (const LiveRange *SRLR = SRLI.getLiveRangeContaining(DeadVNI->def))
          SRLI.removeValNo(SRLR->valno);
      }
    }
    IntB.removeValNo(BDeadValNos[i]);
  }

  // Extend BValNo by merging in IntA live ranges of AValNo. Val# definition
  // is updated.
  VNInfo *ValNo = BValNo;
  ValNo->def = AValNo->def;
  ValNo->setCopy(0);
  for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
       AI != AE; ++AI) {
    if (AI->valno != AValNo) continue;
    SlotIndex End = AI->end;
    std::map<SlotIndex, SlotIndex>::iterator
      EI = BExtend.find(End);
    if (EI != BExtend.end())
      End = EI->second;
    IntB.addRange(LiveRange(AI->start, End, ValNo));
  }
  ValNo->setHasPHIKill(BHasPHIKill);

  DEBUG({
      dbgs() << "   result = ";
      IntB.print(dbgs(), tri_);
      dbgs() << "\nShortening: ";
      IntA.print(dbgs(), tri_);
    });

  IntA.removeValNo(AValNo);

  DEBUG({
      dbgs() << "   result = ";
      IntA.print(dbgs(), tri_);
      dbgs() << '\n';
    });

  ++numCommutes;
  return true;
}

/// isSameOrFallThroughBB - Return true if MBB == SuccMBB or MBB simply
/// fallthoughs to SuccMBB.
static bool isSameOrFallThroughBB(MachineBasicBlock *MBB,
                                  MachineBasicBlock *SuccMBB,
                                  const TargetInstrInfo *tii_) {
  if (MBB == SuccMBB)
    return true;
  MachineBasicBlock *TBB = 0, *FBB = 0;
  SmallVector<MachineOperand, 4> Cond;
  return !tii_->AnalyzeBranch(*MBB, TBB, FBB, Cond) && !TBB && !FBB &&
    MBB->isSuccessor(SuccMBB);
}

/// removeRange - Wrapper for LiveInterval::removeRange. This removes a range
/// from a physical register live interval as well as from the live intervals
/// of its sub-registers.
static void removeRange(LiveInterval &li,
                        SlotIndex Start, SlotIndex End,
                        LiveIntervals *li_, const TargetRegisterInfo *tri_) {
  li.removeRange(Start, End, true);
  if (TargetRegisterInfo::isPhysicalRegister(li.reg)) {
    for (const unsigned* SR = tri_->getSubRegisters(li.reg); *SR; ++SR) {
      if (!li_->hasInterval(*SR))
        continue;
      LiveInterval &sli = li_->getInterval(*SR);
      SlotIndex RemoveStart = Start;
      SlotIndex RemoveEnd = Start;

      while (RemoveEnd != End) {
        LiveInterval::iterator LR = sli.FindLiveRangeContaining(RemoveStart);
        if (LR == sli.end())
          break;
        RemoveEnd = (LR->end < End) ? LR->end : End;
        sli.removeRange(RemoveStart, RemoveEnd, true);
        RemoveStart = RemoveEnd;
      }
    }
  }
}

/// TrimLiveIntervalToLastUse - If there is a last use in the same basic block
/// as the copy instruction, trim the live interval to the last use and return
/// true.
bool
SimpleRegisterCoalescing::TrimLiveIntervalToLastUse(SlotIndex CopyIdx,
                                                    MachineBasicBlock *CopyMBB,
                                                    LiveInterval &li,
                                                    const LiveRange *LR) {
  SlotIndex MBBStart = li_->getMBBStartIdx(CopyMBB);
  SlotIndex LastUseIdx;
  MachineOperand *LastUse =
    lastRegisterUse(LR->start, CopyIdx.getPrevSlot(), li.reg, LastUseIdx);
  if (LastUse) {
    MachineInstr *LastUseMI = LastUse->getParent();
    if (!isSameOrFallThroughBB(LastUseMI->getParent(), CopyMBB, tii_)) {
      // r1024 = op
      // ...
      // BB1:
      //       = r1024
      //
      // BB2:
      // r1025<dead> = r1024<kill>
      if (MBBStart < LR->end)
        removeRange(li, MBBStart, LR->end, li_, tri_);
      return true;
    }

    // There are uses before the copy, just shorten the live range to the end
    // of last use.
    LastUse->setIsKill();
    removeRange(li, LastUseIdx.getDefIndex(), LR->end, li_, tri_);
    if (LastUseMI->isCopy()) {
      MachineOperand &DefMO = LastUseMI->getOperand(0);
      if (DefMO.getReg() == li.reg && !DefMO.getSubReg())
        DefMO.setIsDead();
    }
    return true;
  }

  // Is it livein?
  if (LR->start <= MBBStart && LR->end > MBBStart) {
    if (LR->start == li_->getZeroIndex()) {
      assert(TargetRegisterInfo::isPhysicalRegister(li.reg));
      // Live-in to the function but dead. Remove it from entry live-in set.
      mf_->begin()->removeLiveIn(li.reg);
    }
    // FIXME: Shorten intervals in BBs that reaches this BB.
  }

  return false;
}

/// ReMaterializeTrivialDef - If the source of a copy is defined by a trivial
/// computation, replace the copy by rematerialize the definition.
bool SimpleRegisterCoalescing::ReMaterializeTrivialDef(LiveInterval &SrcInt,
                                                       unsigned DstReg,
                                                       unsigned DstSubIdx,
                                                       MachineInstr *CopyMI) {
  SlotIndex CopyIdx = li_->getInstructionIndex(CopyMI).getUseIndex();
  LiveInterval::iterator SrcLR = SrcInt.FindLiveRangeContaining(CopyIdx);
  assert(SrcLR != SrcInt.end() && "Live range not found!");
  VNInfo *ValNo = SrcLR->valno;
  // If other defs can reach uses of this def, then it's not safe to perform
  // the optimization. FIXME: Do isPHIDef and isDefAccurate both need to be
  // tested?
  if (ValNo->isPHIDef() || !ValNo->isDefAccurate() ||
      ValNo->isUnused() || ValNo->hasPHIKill())
    return false;
  MachineInstr *DefMI = li_->getInstructionFromIndex(ValNo->def);
  assert(DefMI && "Defining instruction disappeared");
  const TargetInstrDesc &TID = DefMI->getDesc();
  if (!TID.isAsCheapAsAMove())
    return false;
  if (!tii_->isTriviallyReMaterializable(DefMI, AA))
    return false;
  bool SawStore = false;
  if (!DefMI->isSafeToMove(tii_, AA, SawStore))
    return false;
  if (TID.getNumDefs() != 1)
    return false;
  if (!DefMI->isImplicitDef()) {
    // Make sure the copy destination register class fits the instruction
    // definition register class. The mismatch can happen as a result of earlier
    // extract_subreg, insert_subreg, subreg_to_reg coalescing.
    const TargetRegisterClass *RC = TID.OpInfo[0].getRegClass(tri_);
    if (TargetRegisterInfo::isVirtualRegister(DstReg)) {
      if (mri_->getRegClass(DstReg) != RC)
        return false;
    } else if (!RC->contains(DstReg))
      return false;
  }

  // If destination register has a sub-register index on it, make sure it mtches
  // the instruction register class.
  if (DstSubIdx) {
    const TargetInstrDesc &TID = DefMI->getDesc();
    if (TID.getNumDefs() != 1)
      return false;
    const TargetRegisterClass *DstRC = mri_->getRegClass(DstReg);
    const TargetRegisterClass *DstSubRC =
      DstRC->getSubRegisterRegClass(DstSubIdx);
    const TargetRegisterClass *DefRC = TID.OpInfo[0].getRegClass(tri_);
    if (DefRC == DstRC)
      DstSubIdx = 0;
    else if (DefRC != DstSubRC)
      return false;
  }

  RemoveCopyFlag(DstReg, CopyMI);

  // If copy kills the source register, find the last use and propagate
  // kill.
  bool checkForDeadDef = false;
  MachineBasicBlock *MBB = CopyMI->getParent();
  if (SrcLR->end == CopyIdx.getDefIndex())
    if (!TrimLiveIntervalToLastUse(CopyIdx, MBB, SrcInt, SrcLR)) {
      checkForDeadDef = true;
    }

  MachineBasicBlock::iterator MII =
    llvm::next(MachineBasicBlock::iterator(CopyMI));
  tii_->reMaterialize(*MBB, MII, DstReg, DstSubIdx, DefMI, *tri_);
  MachineInstr *NewMI = prior(MII);

  if (checkForDeadDef) {
    // PR4090 fix: Trim interval failed because there was no use of the
    // source interval in this MBB. If the def is in this MBB too then we
    // should mark it dead:
    if (DefMI->getParent() == MBB) {
      DefMI->addRegisterDead(SrcInt.reg, tri_);
      SrcLR->end = SrcLR->start.getNextSlot();
    }
  }

  // CopyMI may have implicit operands, transfer them over to the newly
  // rematerialized instruction. And update implicit def interval valnos.
  for (unsigned i = CopyMI->getDesc().getNumOperands(),
         e = CopyMI->getNumOperands(); i != e; ++i) {
    MachineOperand &MO = CopyMI->getOperand(i);
    if (MO.isReg() && MO.isImplicit())
      NewMI->addOperand(MO);
    if (MO.isDef())
      RemoveCopyFlag(MO.getReg(), CopyMI);
  }

  TransferImplicitOps(CopyMI, NewMI);
  li_->ReplaceMachineInstrInMaps(CopyMI, NewMI);
  CopyMI->eraseFromParent();
  ReMatCopies.insert(CopyMI);
  ReMatDefs.insert(DefMI);
  DEBUG(dbgs() << "Remat: " << *NewMI);
  ++NumReMats;
  return true;
}

/// UpdateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and
/// update the subregister number if it is not zero. If DstReg is a
/// physical register and the existing subregister number of the def / use
/// being updated is not zero, make sure to set it to the correct physical
/// subregister.
void
SimpleRegisterCoalescing::UpdateRegDefsUses(const CoalescerPair &CP) {
  bool DstIsPhys = CP.isPhys();
  unsigned SrcReg = CP.getSrcReg();
  unsigned DstReg = CP.getDstReg();
  unsigned SubIdx = CP.getSubIdx();

  for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(SrcReg);
       MachineInstr *UseMI = I.skipInstruction();) {
    // A PhysReg copy that won't be coalesced can perhaps be rematerialized
    // instead.
    if (DstIsPhys) {
      if (UseMI->isCopy() &&
          !UseMI->getOperand(1).getSubReg() &&
          !UseMI->getOperand(0).getSubReg() &&
          UseMI->getOperand(1).getReg() == SrcReg &&
          UseMI->getOperand(0).getReg() != SrcReg &&
          UseMI->getOperand(0).getReg() != DstReg &&
          !JoinedCopies.count(UseMI) &&
          ReMaterializeTrivialDef(li_->getInterval(SrcReg),
                                  UseMI->getOperand(0).getReg(), 0, UseMI))
        continue;
    }

    SmallVector<unsigned,8> Ops;
    bool Reads, Writes;
    tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops);
    bool Kills = false, Deads = false;

    // Replace SrcReg with DstReg in all UseMI operands.
    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
      MachineOperand &MO = UseMI->getOperand(Ops[i]);
      Kills |= MO.isKill();
      Deads |= MO.isDead();

      if (DstIsPhys)
        MO.substPhysReg(DstReg, *tri_);
      else
        MO.substVirtReg(DstReg, SubIdx, *tri_);
    }

    // This instruction is a copy that will be removed.
    if (JoinedCopies.count(UseMI))
      continue;

    if (SubIdx) {
      // If UseMI was a simple SrcReg def, make sure we didn't turn it into a
      // read-modify-write of DstReg.
      if (Deads)
        UseMI->addRegisterDead(DstReg, tri_);
      else if (!Reads && Writes)
        UseMI->addRegisterDefined(DstReg, tri_);

      // Kill flags apply to the whole physical register.
      if (DstIsPhys && Kills)
        UseMI->addRegisterKilled(DstReg, tri_);
    }

    DEBUG({
        dbgs() << "\t\tupdated: ";
        if (!UseMI->isDebugValue())
          dbgs() << li_->getInstructionIndex(UseMI) << "\t";
        dbgs() << *UseMI;
      });
  }
}

/// removeIntervalIfEmpty - Check if the live interval of a physical register
/// is empty, if so remove it and also remove the empty intervals of its
/// sub-registers. Return true if live interval is removed.
static bool removeIntervalIfEmpty(LiveInterval &li, LiveIntervals *li_,
                                  const TargetRegisterInfo *tri_) {
  if (li.empty()) {
    if (TargetRegisterInfo::isPhysicalRegister(li.reg))
      for (const unsigned* SR = tri_->getSubRegisters(li.reg); *SR; ++SR) {
        if (!li_->hasInterval(*SR))
          continue;
        LiveInterval &sli = li_->getInterval(*SR);
        if (sli.empty())
          li_->removeInterval(*SR);
      }
    li_->removeInterval(li.reg);
    return true;
  }
  return false;
}

/// ShortenDeadCopyLiveRange - Shorten a live range defined by a dead copy.
/// Return true if live interval is removed.
bool SimpleRegisterCoalescing::ShortenDeadCopyLiveRange(LiveInterval &li,
                                                        MachineInstr *CopyMI) {
  SlotIndex CopyIdx = li_->getInstructionIndex(CopyMI);
  LiveInterval::iterator MLR =
    li.FindLiveRangeContaining(CopyIdx.getDefIndex());
  if (MLR == li.end())
    return false;  // Already removed by ShortenDeadCopySrcLiveRange.
  SlotIndex RemoveStart = MLR->start;
  SlotIndex RemoveEnd = MLR->end;
  SlotIndex DefIdx = CopyIdx.getDefIndex();
  // Remove the liverange that's defined by this.
  if (RemoveStart == DefIdx && RemoveEnd == DefIdx.getStoreIndex()) {
    removeRange(li, RemoveStart, RemoveEnd, li_, tri_);
    return removeIntervalIfEmpty(li, li_, tri_);
  }
  return false;
}

/// RemoveDeadDef - If a def of a live interval is now determined dead, remove
/// the val# it defines. If the live interval becomes empty, remove it as well.
bool SimpleRegisterCoalescing::RemoveDeadDef(LiveInterval &li,
                                             MachineInstr *DefMI) {
  SlotIndex DefIdx = li_->getInstructionIndex(DefMI).getDefIndex();
  LiveInterval::iterator MLR = li.FindLiveRangeContaining(DefIdx);
  if (DefIdx != MLR->valno->def)
    return false;
  li.removeValNo(MLR->valno);
  return removeIntervalIfEmpty(li, li_, tri_);
}

void SimpleRegisterCoalescing::RemoveCopyFlag(unsigned DstReg,
                                              const MachineInstr *CopyMI) {
  SlotIndex DefIdx = li_->getInstructionIndex(CopyMI).getDefIndex();
  if (li_->hasInterval(DstReg)) {
    LiveInterval &LI = li_->getInterval(DstReg);
    if (const LiveRange *LR = LI.getLiveRangeContaining(DefIdx))
      if (LR->valno->getCopy() == CopyMI)
        LR->valno->setCopy(0);
  }
  if (!TargetRegisterInfo::isPhysicalRegister(DstReg))
    return;
  for (const unsigned* AS = tri_->getAliasSet(DstReg); *AS; ++AS) {
    if (!li_->hasInterval(*AS))
      continue;
    LiveInterval &LI = li_->getInterval(*AS);
    if (const LiveRange *LR = LI.getLiveRangeContaining(DefIdx))
      if (LR->valno->getCopy() == CopyMI)
        LR->valno->setCopy(0);
  }
}

/// PropagateDeadness - Propagate the dead marker to the instruction which
/// defines the val#.
static void PropagateDeadness(LiveInterval &li, MachineInstr *CopyMI,
                              SlotIndex &LRStart, LiveIntervals *li_,
                              const TargetRegisterInfo* tri_) {
  MachineInstr *DefMI =
    li_->getInstructionFromIndex(LRStart.getDefIndex());
  if (DefMI && DefMI != CopyMI) {
    int DeadIdx = DefMI->findRegisterDefOperandIdx(li.reg);
    if (DeadIdx != -1)
      DefMI->getOperand(DeadIdx).setIsDead();
    else
      DefMI->addOperand(MachineOperand::CreateReg(li.reg,
                   /*def*/true, /*implicit*/true, /*kill*/false, /*dead*/true));
    LRStart = LRStart.getNextSlot();
  }
}

/// ShortenDeadCopySrcLiveRange - Shorten a live range as it's artificially
/// extended by a dead copy. Mark the last use (if any) of the val# as kill as
/// ends the live range there. If there isn't another use, then this live range
/// is dead. Return true if live interval is removed.
bool
SimpleRegisterCoalescing::ShortenDeadCopySrcLiveRange(LiveInterval &li,
                                                      MachineInstr *CopyMI) {
  SlotIndex CopyIdx = li_->getInstructionIndex(CopyMI);
  if (CopyIdx == SlotIndex()) {
    // FIXME: special case: function live in. It can be a general case if the
    // first instruction index starts at > 0 value.
    assert(TargetRegisterInfo::isPhysicalRegister(li.reg));
    // Live-in to the function but dead. Remove it from entry live-in set.
    if (mf_->begin()->isLiveIn(li.reg))
      mf_->begin()->removeLiveIn(li.reg);
    if (const LiveRange *LR = li.getLiveRangeContaining(CopyIdx))
      removeRange(li, LR->start, LR->end, li_, tri_);
    return removeIntervalIfEmpty(li, li_, tri_);
  }

  LiveInterval::iterator LR =
    li.FindLiveRangeContaining(CopyIdx.getPrevIndex().getStoreIndex());
  if (LR == li.end())
    // Livein but defined by a phi.
    return false;

  SlotIndex RemoveStart = LR->start;
  SlotIndex RemoveEnd = CopyIdx.getStoreIndex();
  if (LR->end > RemoveEnd)
    // More uses past this copy? Nothing to do.
    return false;

  // If there is a last use in the same bb, we can't remove the live range.
  // Shorten the live interval and return.
  MachineBasicBlock *CopyMBB = CopyMI->getParent();
  if (TrimLiveIntervalToLastUse(CopyIdx, CopyMBB, li, LR))
    return false;

  // There are other kills of the val#. Nothing to do.
  if (!li.isOnlyLROfValNo(LR))
    return false;

  MachineBasicBlock *StartMBB = li_->getMBBFromIndex(RemoveStart);
  if (!isSameOrFallThroughBB(StartMBB, CopyMBB, tii_))
    // If the live range starts in another mbb and the copy mbb is not a fall
    // through mbb, then we can only cut the range from the beginning of the
    // copy mbb.
    RemoveStart = li_->getMBBStartIdx(CopyMBB).getNextIndex().getBaseIndex();

  if (LR->valno->def == RemoveStart) {
    // If the def MI defines the val# and this copy is the only kill of the
    // val#, then propagate the dead marker.
    PropagateDeadness(li, CopyMI, RemoveStart, li_, tri_);
    ++numDeadValNo;
  }

  removeRange(li, RemoveStart, RemoveEnd, li_, tri_);
  return removeIntervalIfEmpty(li, li_, tri_);
}


/// isWinToJoinCrossClass - Return true if it's profitable to coalesce
/// two virtual registers from different register classes.
bool
SimpleRegisterCoalescing::isWinToJoinCrossClass(unsigned SrcReg,
                                                unsigned DstReg,
                                             const TargetRegisterClass *SrcRC,
                                             const TargetRegisterClass *DstRC,
                                             const TargetRegisterClass *NewRC) {
  unsigned NewRCCount = allocatableRCRegs_[NewRC].count();
  // This heuristics is good enough in practice, but it's obviously not *right*.
  // 4 is a magic number that works well enough for x86, ARM, etc. It filter
  // out all but the most restrictive register classes.
  if (NewRCCount > 4 ||
      // Early exit if the function is fairly small, coalesce aggressively if
      // that's the case. For really special register classes with 3 or
      // fewer registers, be a bit more careful.
      (li_->getFuncInstructionCount() / NewRCCount) < 8)
    return true;
  LiveInterval &SrcInt = li_->getInterval(SrcReg);
  LiveInterval &DstInt = li_->getInterval(DstReg);
  unsigned SrcSize = li_->getApproximateInstructionCount(SrcInt);
  unsigned DstSize = li_->getApproximateInstructionCount(DstInt);
  if (SrcSize <= NewRCCount && DstSize <= NewRCCount)
    return true;
  // Estimate *register use density*. If it doubles or more, abort.
  unsigned SrcUses = std::distance(mri_->use_nodbg_begin(SrcReg),
                                   mri_->use_nodbg_end());
  unsigned DstUses = std::distance(mri_->use_nodbg_begin(DstReg),
                                   mri_->use_nodbg_end());
  unsigned NewUses = SrcUses + DstUses;
  unsigned NewSize = SrcSize + DstSize;
  if (SrcRC != NewRC && SrcSize > NewRCCount) {
    unsigned SrcRCCount = allocatableRCRegs_[SrcRC].count();
    if (NewUses*SrcSize*SrcRCCount > 2*SrcUses*NewSize*NewRCCount)
      return false;
  }
  if (DstRC != NewRC && DstSize > NewRCCount) {
    unsigned DstRCCount = allocatableRCRegs_[DstRC].count();
    if (NewUses*DstSize*DstRCCount > 2*DstUses*NewSize*NewRCCount)
      return false;
  }
  return true;
}


/// JoinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
/// which are the src/dst of the copy instruction CopyMI.  This returns true
/// if the copy was successfully coalesced away. If it is not currently
/// possible to coalesce this interval, but it may be possible if other
/// things get coalesced, then it returns true by reference in 'Again'.
bool SimpleRegisterCoalescing::JoinCopy(CopyRec &TheCopy, bool &Again) {
  MachineInstr *CopyMI = TheCopy.MI;

  Again = false;
  if (JoinedCopies.count(CopyMI) || ReMatCopies.count(CopyMI))
    return false; // Already done.

  DEBUG(dbgs() << li_->getInstructionIndex(CopyMI) << '\t' << *CopyMI);

  CoalescerPair CP(*tii_, *tri_);
  if (!CP.setRegisters(CopyMI)) {
    DEBUG(dbgs() << "\tNot coalescable.\n");
    return false;
  }

  // If they are already joined we continue.
  if (CP.getSrcReg() == CP.getDstReg()) {
    DEBUG(dbgs() << "\tCopy already coalesced.\n");
    return false;  // Not coalescable.
  }

  DEBUG(dbgs() << "\tConsidering merging %reg" << CP.getSrcReg());

  // Enforce policies.
  if (CP.isPhys()) {
    DEBUG(dbgs() <<" with physreg %" << tri_->getName(CP.getDstReg()) << "\n");
    // Only coalesce to allocatable physreg.
    if (!allocatableRegs_[CP.getDstReg()]) {
      DEBUG(dbgs() << "\tRegister is an unallocatable physreg.\n");
      return false;  // Not coalescable.
    }
  } else {
    DEBUG({
      dbgs() << " with reg%" << CP.getDstReg();
      if (CP.getSubIdx())
        dbgs() << ":" << tri_->getSubRegIndexName(CP.getSubIdx());
      dbgs() << " to " << CP.getNewRC()->getName() << "\n";
    });

    // Avoid constraining virtual register regclass too much.
    if (CP.isCrossClass()) {
      if (DisableCrossClassJoin) {
        DEBUG(dbgs() << "\tCross-class joins disabled.\n");
        return false;
      }
      if (!isWinToJoinCrossClass(CP.getSrcReg(), CP.getDstReg(),
                                 mri_->getRegClass(CP.getSrcReg()),
                                 mri_->getRegClass(CP.getDstReg()),
                                 CP.getNewRC())) {
        DEBUG(dbgs() << "\tAvoid coalescing to constrained register class: "
                     << CP.getNewRC()->getName() << ".\n");
        Again = true;  // May be possible to coalesce later.
        return false;
      }
    }

    // When possible, let DstReg be the larger interval.
    if (!CP.getSubIdx() && li_->getInterval(CP.getSrcReg()).ranges.size() >
                           li_->getInterval(CP.getDstReg()).ranges.size())
      CP.flip();
  }

  // We need to be careful about coalescing a source physical register with a
  // virtual register. Once the coalescing is done, it cannot be broken and
  // these are not spillable! If the destination interval uses are far away,
  // think twice about coalescing them!
  // FIXME: Why are we skipping this test for partial copies?
  //        CodeGen/X86/phys_subreg_coalesce-3.ll needs it.
  if (!CP.isPartial() && CP.isPhys()) {
    LiveInterval &JoinVInt = li_->getInterval(CP.getSrcReg());

    // Don't join with physregs that have a ridiculous number of live
    // ranges. The data structure performance is really bad when that
    // happens.
    if (li_->hasInterval(CP.getDstReg()) &&
        li_->getInterval(CP.getDstReg()).ranges.size() > 1000) {
      mri_->setRegAllocationHint(CP.getSrcReg(), 0, CP.getDstReg());
      ++numAborts;
      DEBUG(dbgs()
           << "\tPhysical register live interval too complicated, abort!\n");
      return false;
    }

    const TargetRegisterClass *RC = mri_->getRegClass(CP.getSrcReg());
    unsigned Threshold = allocatableRCRegs_[RC].count() * 2;
    unsigned Length = li_->getApproximateInstructionCount(JoinVInt);
    if (Length > Threshold &&
        std::distance(mri_->use_nodbg_begin(CP.getSrcReg()),
                      mri_->use_nodbg_end()) * Threshold < Length) {
      // Before giving up coalescing, if definition of source is defined by
      // trivial computation, try rematerializing it.
      if (!CP.isFlipped() &&
          ReMaterializeTrivialDef(JoinVInt, CP.getDstReg(), 0, CopyMI))
        return true;

      mri_->setRegAllocationHint(CP.getSrcReg(), 0, CP.getDstReg());
      ++numAborts;
      DEBUG(dbgs() << "\tMay tie down a physical register, abort!\n");
      Again = true;  // May be possible to coalesce later.
      return false;
    }
  }

  // Okay, attempt to join these two intervals.  On failure, this returns false.
  // Otherwise, if one of the intervals being joined is a physreg, this method
  // always canonicalizes DstInt to be it.  The output "SrcInt" will not have
  // been modified, so we can use this information below to update aliases.
  if (!JoinIntervals(CP)) {
    // Coalescing failed.

    // If definition of source is defined by trivial computation, try
    // rematerializing it.
    if (!CP.isFlipped() &&
        ReMaterializeTrivialDef(li_->getInterval(CP.getSrcReg()),
                                CP.getDstReg(), 0, CopyMI))
      return true;

    // If we can eliminate the copy without merging the live ranges, do so now.
    if (!CP.isPartial()) {
      if (AdjustCopiesBackFrom(CP, CopyMI) ||
          RemoveCopyByCommutingDef(CP, CopyMI)) {
        JoinedCopies.insert(CopyMI);
        DEBUG(dbgs() << "\tTrivial!\n");
        return true;
      }
    }

    // Otherwise, we are unable to join the intervals.
    DEBUG(dbgs() << "\tInterference!\n");
    Again = true;  // May be possible to coalesce later.
    return false;
  }

  // Coalescing to a virtual register that is of a sub-register class of the
  // other. Make sure the resulting register is set to the right register class.
  if (CP.isCrossClass()) {
    ++numCrossRCs;
    mri_->setRegClass(CP.getDstReg(), CP.getNewRC());
  }

  // Remember to delete the copy instruction.
  JoinedCopies.insert(CopyMI);

  UpdateRegDefsUses(CP);

  // If we have extended the live range of a physical register, make sure we
  // update live-in lists as well.
  if (CP.isPhys()) {
    SmallVector<MachineBasicBlock*, 16> BlockSeq;
    // JoinIntervals invalidates the VNInfos in SrcInt, but we only need the
    // ranges for this, and they are preserved.
    LiveInterval &SrcInt = li_->getInterval(CP.getSrcReg());
    for (LiveInterval::const_iterator I = SrcInt.begin(), E = SrcInt.end();
         I != E; ++I ) {
      li_->findLiveInMBBs(I->start, I->end, BlockSeq);
      for (unsigned idx = 0, size = BlockSeq.size(); idx != size; ++idx) {
        MachineBasicBlock &block = *BlockSeq[idx];
        if (!block.isLiveIn(CP.getDstReg()))
          block.addLiveIn(CP.getDstReg());
      }
      BlockSeq.clear();
    }
  }

  // SrcReg is guarateed to be the register whose live interval that is
  // being merged.
  li_->removeInterval(CP.getSrcReg());

  // Update regalloc hint.
  tri_->UpdateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *mf_);

  DEBUG({
    LiveInterval &DstInt = li_->getInterval(CP.getDstReg());
    dbgs() << "\tJoined. Result = ";
    DstInt.print(dbgs(), tri_);
    dbgs() << "\n";
  });

  ++numJoins;
  return true;
}

/// ComputeUltimateVN - Assuming we are going to join two live intervals,
/// compute what the resultant value numbers for each value in the input two
/// ranges will be.  This is complicated by copies between the two which can
/// and will commonly cause multiple value numbers to be merged into one.
///
/// VN is the value number that we're trying to resolve.  InstDefiningValue
/// keeps track of the new InstDefiningValue assignment for the result
/// LiveInterval.  ThisFromOther/OtherFromThis are sets that keep track of
/// whether a value in this or other is a copy from the opposite set.
/// ThisValNoAssignments/OtherValNoAssignments keep track of value #'s that have
/// already been assigned.
///
/// ThisFromOther[x] - If x is defined as a copy from the other interval, this
/// contains the value number the copy is from.
///
static unsigned ComputeUltimateVN(VNInfo *VNI,
                                  SmallVector<VNInfo*, 16> &NewVNInfo,
                                  DenseMap<VNInfo*, VNInfo*> &ThisFromOther,
                                  DenseMap<VNInfo*, VNInfo*> &OtherFromThis,
                                  SmallVector<int, 16> &ThisValNoAssignments,
                                  SmallVector<int, 16> &OtherValNoAssignments) {
  unsigned VN = VNI->id;

  // If the VN has already been computed, just return it.
  if (ThisValNoAssignments[VN] >= 0)
    return ThisValNoAssignments[VN];
  assert(ThisValNoAssignments[VN] != -2 && "Cyclic value numbers");

  // If this val is not a copy from the other val, then it must be a new value
  // number in the destination.
  DenseMap<VNInfo*, VNInfo*>::iterator I = ThisFromOther.find(VNI);
  if (I == ThisFromOther.end()) {
    NewVNInfo.push_back(VNI);
    return ThisValNoAssignments[VN] = NewVNInfo.size()-1;
  }
  VNInfo *OtherValNo = I->second;

  // Otherwise, this *is* a copy from the RHS.  If the other side has already
  // been computed, return it.
  if (OtherValNoAssignments[OtherValNo->id] >= 0)
    return ThisValNoAssignments[VN] = OtherValNoAssignments[OtherValNo->id];

  // Mark this value number as currently being computed, then ask what the
  // ultimate value # of the other value is.
  ThisValNoAssignments[VN] = -2;
  unsigned UltimateVN =
    ComputeUltimateVN(OtherValNo, NewVNInfo, OtherFromThis, ThisFromOther,
                      OtherValNoAssignments, ThisValNoAssignments);
  return ThisValNoAssignments[VN] = UltimateVN;
}

/// JoinIntervals - Attempt to join these two intervals.  On failure, this
/// returns false.
bool SimpleRegisterCoalescing::JoinIntervals(CoalescerPair &CP) {
  LiveInterval &RHS = li_->getInterval(CP.getSrcReg());
  DEBUG({ dbgs() << "\t\tRHS = "; RHS.print(dbgs(), tri_); dbgs() << "\n"; });

  // If a live interval is a physical register, check for interference with any
  // aliases. The interference check implemented here is a bit more conservative
  // than the full interfeence check below. We allow overlapping live ranges
  // only when one is a copy of the other.
  if (CP.isPhys()) {
    for (const unsigned *AS = tri_->getAliasSet(CP.getDstReg()); *AS; ++AS){
      if (!li_->hasInterval(*AS))
        continue;
      const LiveInterval &LHS = li_->getInterval(*AS);
      LiveInterval::const_iterator LI = LHS.begin();
      for (LiveInterval::const_iterator RI = RHS.begin(), RE = RHS.end();
           RI != RE; ++RI) {
        LI = std::lower_bound(LI, LHS.end(), RI->start);
        // Does LHS have an overlapping live range starting before RI?
        if ((LI != LHS.begin() && LI[-1].end > RI->start) &&
            (RI->start != RI->valno->def ||
             !CP.isCoalescable(li_->getInstructionFromIndex(RI->start)))) {
          DEBUG({
            dbgs() << "\t\tInterference from alias: ";
            LHS.print(dbgs(), tri_);
            dbgs() << "\n\t\tOverlap at " << RI->start << " and no copy.\n";
          });
          return false;
        }

        // Check that LHS ranges beginning in this range are copies.
        for (; LI != LHS.end() && LI->start < RI->end; ++LI) {
          if (LI->start != LI->valno->def ||
              !CP.isCoalescable(li_->getInstructionFromIndex(LI->start))) {
            DEBUG({
              dbgs() << "\t\tInterference from alias: ";
              LHS.print(dbgs(), tri_);
              dbgs() << "\n\t\tDef at " << LI->start << " is not a copy.\n";
            });
            return false;
          }
        }
      }
    }
  }

  // Compute the final value assignment, assuming that the live ranges can be
  // coalesced.
  SmallVector<int, 16> LHSValNoAssignments;
  SmallVector<int, 16> RHSValNoAssignments;
  DenseMap<VNInfo*, VNInfo*> LHSValsDefinedFromRHS;
  DenseMap<VNInfo*, VNInfo*> RHSValsDefinedFromLHS;
  SmallVector<VNInfo*, 16> NewVNInfo;

  LiveInterval &LHS = li_->getOrCreateInterval(CP.getDstReg());
  DEBUG({ dbgs() << "\t\tLHS = "; LHS.print(dbgs(), tri_); dbgs() << "\n"; });

  // Loop over the value numbers of the LHS, seeing if any are defined from
  // the RHS.
  for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
       i != e; ++i) {
    VNInfo *VNI = *i;
    if (VNI->isUnused() || VNI->getCopy() == 0)  // Src not defined by a copy?
      continue;

    // Never join with a register that has EarlyClobber redefs.
    if (VNI->hasRedefByEC())
      return false;

    // DstReg is known to be a register in the LHS interval.  If the src is
    // from the RHS interval, we can use its value #.
    if (!CP.isCoalescable(VNI->getCopy()))
      continue;

    // Figure out the value # from the RHS.
    LiveRange *lr = RHS.getLiveRangeContaining(VNI->def.getPrevSlot());
    // The copy could be to an aliased physreg.
    if (!lr) continue;
    LHSValsDefinedFromRHS[VNI] = lr->valno;
  }

  // Loop over the value numbers of the RHS, seeing if any are defined from
  // the LHS.
  for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end();
       i != e; ++i) {
    VNInfo *VNI = *i;
    if (VNI->isUnused() || VNI->getCopy() == 0)  // Src not defined by a copy?
      continue;

    // Never join with a register that has EarlyClobber redefs.
    if (VNI->hasRedefByEC())
      return false;

    // DstReg is known to be a register in the RHS interval.  If the src is
    // from the LHS interval, we can use its value #.
    if (!CP.isCoalescable(VNI->getCopy()))
      continue;

    // Figure out the value # from the LHS.
    LiveRange *lr = LHS.getLiveRangeContaining(VNI->def.getPrevSlot());
    // The copy could be to an aliased physreg.
    if (!lr) continue;
    RHSValsDefinedFromLHS[VNI] = lr->valno;
  }

  LHSValNoAssignments.resize(LHS.getNumValNums(), -1);
  RHSValNoAssignments.resize(RHS.getNumValNums(), -1);
  NewVNInfo.reserve(LHS.getNumValNums() + RHS.getNumValNums());

  for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
       i != e; ++i) {
    VNInfo *VNI = *i;
    unsigned VN = VNI->id;
    if (LHSValNoAssignments[VN] >= 0 || VNI->isUnused())
      continue;
    ComputeUltimateVN(VNI, NewVNInfo,
                      LHSValsDefinedFromRHS, RHSValsDefinedFromLHS,
                      LHSValNoAssignments, RHSValNoAssignments);
  }
  for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end();
       i != e; ++i) {
    VNInfo *VNI = *i;
    unsigned VN = VNI->id;
    if (RHSValNoAssignments[VN] >= 0 || VNI->isUnused())
      continue;
    // If this value number isn't a copy from the LHS, it's a new number.
    if (RHSValsDefinedFromLHS.find(VNI) == RHSValsDefinedFromLHS.end()) {
      NewVNInfo.push_back(VNI);
      RHSValNoAssignments[VN] = NewVNInfo.size()-1;
      continue;
    }

    ComputeUltimateVN(VNI, NewVNInfo,
                      RHSValsDefinedFromLHS, LHSValsDefinedFromRHS,
                      RHSValNoAssignments, LHSValNoAssignments);
  }

  // Armed with the mappings of LHS/RHS values to ultimate values, walk the
  // interval lists to see if these intervals are coalescable.
  LiveInterval::const_iterator I = LHS.begin();
  LiveInterval::const_iterator IE = LHS.end();
  LiveInterval::const_iterator J = RHS.begin();
  LiveInterval::const_iterator JE = RHS.end();

  // Skip ahead until the first place of potential sharing.
  if (I != IE && J != JE) {
    if (I->start < J->start) {
      I = std::upper_bound(I, IE, J->start);
      if (I != LHS.begin()) --I;
    } else if (J->start < I->start) {
      J = std::upper_bound(J, JE, I->start);
      if (J != RHS.begin()) --J;
    }
  }

  while (I != IE && J != JE) {
    // Determine if these two live ranges overlap.
    bool Overlaps;
    if (I->start < J->start) {
      Overlaps = I->end > J->start;
    } else {
      Overlaps = J->end > I->start;
    }

    // If so, check value # info to determine if they are really different.
    if (Overlaps) {
      // If the live range overlap will map to the same value number in the
      // result liverange, we can still coalesce them.  If not, we can't.
      if (LHSValNoAssignments[I->valno->id] !=
          RHSValNoAssignments[J->valno->id])
        return false;
      // If it's re-defined by an early clobber somewhere in the live range,
      // then conservatively abort coalescing.
      if (NewVNInfo[LHSValNoAssignments[I->valno->id]]->hasRedefByEC())
        return false;
    }

    if (I->end < J->end)
      ++I;
    else
      ++J;
  }

  // Update kill info. Some live ranges are extended due to copy coalescing.
  for (DenseMap<VNInfo*, VNInfo*>::iterator I = LHSValsDefinedFromRHS.begin(),
         E = LHSValsDefinedFromRHS.end(); I != E; ++I) {
    VNInfo *VNI = I->first;
    unsigned LHSValID = LHSValNoAssignments[VNI->id];
    if (VNI->hasPHIKill())
      NewVNInfo[LHSValID]->setHasPHIKill(true);
  }

  // Update kill info. Some live ranges are extended due to copy coalescing.
  for (DenseMap<VNInfo*, VNInfo*>::iterator I = RHSValsDefinedFromLHS.begin(),
         E = RHSValsDefinedFromLHS.end(); I != E; ++I) {
    VNInfo *VNI = I->first;
    unsigned RHSValID = RHSValNoAssignments[VNI->id];
    if (VNI->hasPHIKill())
      NewVNInfo[RHSValID]->setHasPHIKill(true);
  }

  if (LHSValNoAssignments.empty())
    LHSValNoAssignments.push_back(-1);
  if (RHSValNoAssignments.empty())
    RHSValNoAssignments.push_back(-1);

  // If we get here, we know that we can coalesce the live ranges.  Ask the
  // intervals to coalesce themselves now.
  LHS.join(RHS, &LHSValNoAssignments[0], &RHSValNoAssignments[0], NewVNInfo,
           mri_);
  return true;
}

namespace {
  // DepthMBBCompare - Comparison predicate that sort first based on the loop
  // depth of the basic block (the unsigned), and then on the MBB number.
  struct DepthMBBCompare {
    typedef std::pair<unsigned, MachineBasicBlock*> DepthMBBPair;
    bool operator()(const DepthMBBPair &LHS, const DepthMBBPair &RHS) const {
      // Deeper loops first
      if (LHS.first != RHS.first)
        return LHS.first > RHS.first;

      // Prefer blocks that are more connected in the CFG. This takes care of
      // the most difficult copies first while intervals are short.
      unsigned cl = LHS.second->pred_size() + LHS.second->succ_size();
      unsigned cr = RHS.second->pred_size() + RHS.second->succ_size();
      if (cl != cr)
        return cl > cr;

      // As a last resort, sort by block number.
      return LHS.second->getNumber() < RHS.second->getNumber();
    }
  };
}

void SimpleRegisterCoalescing::CopyCoalesceInMBB(MachineBasicBlock *MBB,
                                               std::vector<CopyRec> &TryAgain) {
  DEBUG(dbgs() << MBB->getName() << ":\n");

  std::vector<CopyRec> VirtCopies;
  std::vector<CopyRec> PhysCopies;
  std::vector<CopyRec> ImpDefCopies;
  for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
       MII != E;) {
    MachineInstr *Inst = MII++;

    // If this isn't a copy nor a extract_subreg, we can't join intervals.
    unsigned SrcReg, DstReg;
    if (Inst->isCopy()) {
      DstReg = Inst->getOperand(0).getReg();
      SrcReg = Inst->getOperand(1).getReg();
    } else if (Inst->isSubregToReg()) {
      DstReg = Inst->getOperand(0).getReg();
      SrcReg = Inst->getOperand(2).getReg();
    } else
      continue;

    bool SrcIsPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
    bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
    if (li_->hasInterval(SrcReg) && li_->getInterval(SrcReg).empty())
      ImpDefCopies.push_back(CopyRec(Inst, 0));
    else if (SrcIsPhys || DstIsPhys)
      PhysCopies.push_back(CopyRec(Inst, 0));
    else
      VirtCopies.push_back(CopyRec(Inst, 0));
  }

  // Try coalescing implicit copies and insert_subreg <undef> first,
  // followed by copies to / from physical registers, then finally copies
  // from virtual registers to virtual registers.
  for (unsigned i = 0, e = ImpDefCopies.size(); i != e; ++i) {
    CopyRec &TheCopy = ImpDefCopies[i];
    bool Again = false;
    if (!JoinCopy(TheCopy, Again))
      if (Again)
        TryAgain.push_back(TheCopy);
  }
  for (unsigned i = 0, e = PhysCopies.size(); i != e; ++i) {
    CopyRec &TheCopy = PhysCopies[i];
    bool Again = false;
    if (!JoinCopy(TheCopy, Again))
      if (Again)
        TryAgain.push_back(TheCopy);
  }
  for (unsigned i = 0, e = VirtCopies.size(); i != e; ++i) {
    CopyRec &TheCopy = VirtCopies[i];
    bool Again = false;
    if (!JoinCopy(TheCopy, Again))
      if (Again)
        TryAgain.push_back(TheCopy);
  }
}

void SimpleRegisterCoalescing::joinIntervals() {
  DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n");

  std::vector<CopyRec> TryAgainList;
  if (loopInfo->empty()) {
    // If there are no loops in the function, join intervals in function order.
    for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
         I != E; ++I)
      CopyCoalesceInMBB(I, TryAgainList);
  } else {
    // Otherwise, join intervals in inner loops before other intervals.
    // Unfortunately we can't just iterate over loop hierarchy here because
    // there may be more MBB's than BB's.  Collect MBB's for sorting.

    // Join intervals in the function prolog first. We want to join physical
    // registers with virtual registers before the intervals got too long.
    std::vector<std::pair<unsigned, MachineBasicBlock*> > MBBs;
    for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();I != E;++I){
      MachineBasicBlock *MBB = I;
      MBBs.push_back(std::make_pair(loopInfo->getLoopDepth(MBB), I));
    }

    // Sort by loop depth.
    std::sort(MBBs.begin(), MBBs.end(), DepthMBBCompare());

    // Finally, join intervals in loop nest order.
    for (unsigned i = 0, e = MBBs.size(); i != e; ++i)
      CopyCoalesceInMBB(MBBs[i].second, TryAgainList);
  }

  // Joining intervals can allow other intervals to be joined.  Iteratively join
  // until we make no progress.
  bool ProgressMade = true;
  while (ProgressMade) {
    ProgressMade = false;

    for (unsigned i = 0, e = TryAgainList.size(); i != e; ++i) {
      CopyRec &TheCopy = TryAgainList[i];
      if (!TheCopy.MI)
        continue;

      bool Again = false;
      bool Success = JoinCopy(TheCopy, Again);
      if (Success || !Again) {
        TheCopy.MI = 0;   // Mark this one as done.
        ProgressMade = true;
      }
    }
  }
}

/// Return true if the two specified registers belong to different register
/// classes.  The registers may be either phys or virt regs.
bool
SimpleRegisterCoalescing::differingRegisterClasses(unsigned RegA,
                                                   unsigned RegB) const {
  // Get the register classes for the first reg.
  if (TargetRegisterInfo::isPhysicalRegister(RegA)) {
    assert(TargetRegisterInfo::isVirtualRegister(RegB) &&
           "Shouldn't consider two physregs!");
    return !mri_->getRegClass(RegB)->contains(RegA);
  }

  // Compare against the regclass for the second reg.
  const TargetRegisterClass *RegClassA = mri_->getRegClass(RegA);
  if (TargetRegisterInfo::isVirtualRegister(RegB)) {
    const TargetRegisterClass *RegClassB = mri_->getRegClass(RegB);
    return RegClassA != RegClassB;
  }
  return !RegClassA->contains(RegB);
}

/// lastRegisterUse - Returns the last (non-debug) use of the specific register
/// between cycles Start and End or NULL if there are no uses.
MachineOperand *
SimpleRegisterCoalescing::lastRegisterUse(SlotIndex Start,
                                          SlotIndex End,
                                          unsigned Reg,
                                          SlotIndex &UseIdx) const{
  UseIdx = SlotIndex();
  if (TargetRegisterInfo::isVirtualRegister(Reg)) {
    MachineOperand *LastUse = NULL;
    for (MachineRegisterInfo::use_nodbg_iterator I = mri_->use_nodbg_begin(Reg),
           E = mri_->use_nodbg_end(); I != E; ++I) {
      MachineOperand &Use = I.getOperand();
      MachineInstr *UseMI = Use.getParent();
      if (UseMI->isIdentityCopy())
        continue;
      SlotIndex Idx = li_->getInstructionIndex(UseMI);
      // FIXME: Should this be Idx != UseIdx? SlotIndex() will return something
      // that compares higher than any other interval.
      if (Idx >= Start && Idx < End && Idx >= UseIdx) {
        LastUse = &Use;
        UseIdx = Idx.getUseIndex();
      }
    }
    return LastUse;
  }

  SlotIndex s = Start;
  SlotIndex e = End.getPrevSlot().getBaseIndex();
  while (e >= s) {
    // Skip deleted instructions
    MachineInstr *MI = li_->getInstructionFromIndex(e);
    while (e != SlotIndex() && e.getPrevIndex() >= s && !MI) {
      e = e.getPrevIndex();
      MI = li_->getInstructionFromIndex(e);
    }
    if (e < s || MI == NULL)
      return NULL;

    // Ignore identity copies.
    if (!MI->isIdentityCopy())
      for (unsigned i = 0, NumOps = MI->getNumOperands(); i != NumOps; ++i) {
        MachineOperand &Use = MI->getOperand(i);
        if (Use.isReg() && Use.isUse() && Use.getReg() &&
            tri_->regsOverlap(Use.getReg(), Reg)) {
          UseIdx = e.getUseIndex();
          return &Use;
        }
      }

    e = e.getPrevIndex();
  }

  return NULL;
}

void SimpleRegisterCoalescing::releaseMemory() {
  JoinedCopies.clear();
  ReMatCopies.clear();
  ReMatDefs.clear();
}

bool SimpleRegisterCoalescing::runOnMachineFunction(MachineFunction &fn) {
  mf_ = &fn;
  mri_ = &fn.getRegInfo();
  tm_ = &fn.getTarget();
  tri_ = tm_->getRegisterInfo();
  tii_ = tm_->getInstrInfo();
  li_ = &getAnalysis<LiveIntervals>();
  AA = &getAnalysis<AliasAnalysis>();
  loopInfo = &getAnalysis<MachineLoopInfo>();

  DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n"
               << "********** Function: "
               << ((Value*)mf_->getFunction())->getName() << '\n');

  allocatableRegs_ = tri_->getAllocatableSet(fn);
  for (TargetRegisterInfo::regclass_iterator I = tri_->regclass_begin(),
         E = tri_->regclass_end(); I != E; ++I)
    allocatableRCRegs_.insert(std::make_pair(*I,
                                             tri_->getAllocatableSet(fn, *I)));

  // Join (coalesce) intervals if requested.
  if (EnableJoining) {
    joinIntervals();
    DEBUG({
        dbgs() << "********** INTERVALS POST JOINING **********\n";
        for (LiveIntervals::iterator I = li_->begin(), E = li_->end();
             I != E; ++I){
          I->second->print(dbgs(), tri_);
          dbgs() << "\n";
        }
      });
  }

  // Perform a final pass over the instructions and compute spill weights
  // and remove identity moves.
  SmallVector<unsigned, 4> DeadDefs;
  for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
       mbbi != mbbe; ++mbbi) {
    MachineBasicBlock* mbb = mbbi;
    for (MachineBasicBlock::iterator mii = mbb->begin(), mie = mbb->end();
         mii != mie; ) {
      MachineInstr *MI = mii;
      if (JoinedCopies.count(MI)) {
        // Delete all coalesced copies.
        bool DoDelete = true;
        assert(MI->isCopyLike() && "Unrecognized copy instruction");
        unsigned SrcReg = MI->getOperand(MI->isSubregToReg() ? 2 : 1).getReg();
        if (TargetRegisterInfo::isPhysicalRegister(SrcReg) &&
            MI->getNumOperands() > 2)
          // Do not delete extract_subreg, insert_subreg of physical
          // registers unless the definition is dead. e.g.
          // %DO<def> = INSERT_SUBREG %D0<undef>, %S0<kill>, 1
          // or else the scavenger may complain. LowerSubregs will
          // delete them later.
          DoDelete = false;
        
        if (MI->allDefsAreDead()) {
          LiveInterval &li = li_->getInterval(SrcReg);
          if (!ShortenDeadCopySrcLiveRange(li, MI))
            ShortenDeadCopyLiveRange(li, MI);
          DoDelete = true;
        }
        if (!DoDelete) {
          // We need the instruction to adjust liveness, so make it a KILL.
          if (MI->isSubregToReg()) {
            MI->RemoveOperand(3);
            MI->RemoveOperand(1);
          }
          MI->setDesc(tii_->get(TargetOpcode::KILL));
          mii = llvm::next(mii);
        } else {
          li_->RemoveMachineInstrFromMaps(MI);
          mii = mbbi->erase(mii);
          ++numPeep;
        }
        continue;
      }

      // Now check if this is a remat'ed def instruction which is now dead.
      if (ReMatDefs.count(MI)) {
        bool isDead = true;
        for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
          const MachineOperand &MO = MI->getOperand(i);
          if (!MO.isReg())
            continue;
          unsigned Reg = MO.getReg();
          if (!Reg)
            continue;
          if (TargetRegisterInfo::isVirtualRegister(Reg))
            DeadDefs.push_back(Reg);
          if (MO.isDead())
            continue;
          if (TargetRegisterInfo::isPhysicalRegister(Reg) ||
              !mri_->use_nodbg_empty(Reg)) {
            isDead = false;
            break;
          }
        }
        if (isDead) {
          while (!DeadDefs.empty()) {
            unsigned DeadDef = DeadDefs.back();
            DeadDefs.pop_back();
            RemoveDeadDef(li_->getInterval(DeadDef), MI);
          }
          li_->RemoveMachineInstrFromMaps(mii);
          mii = mbbi->erase(mii);
          continue;
        } else
          DeadDefs.clear();
      }

      // If the move will be an identity move delete it
      if (MI->isIdentityCopy()) {
        unsigned SrcReg = MI->getOperand(1).getReg();
        if (li_->hasInterval(SrcReg)) {
          LiveInterval &RegInt = li_->getInterval(SrcReg);
          // If def of this move instruction is dead, remove its live range
          // from the destination register's live interval.
          if (MI->allDefsAreDead()) {
            if (!ShortenDeadCopySrcLiveRange(RegInt, MI))
              ShortenDeadCopyLiveRange(RegInt, MI);
          }
        }
        li_->RemoveMachineInstrFromMaps(MI);
        mii = mbbi->erase(mii);
        ++numPeep;
        continue;
      }

      ++mii;

      // Check for now unnecessary kill flags.
      if (li_->isNotInMIMap(MI)) continue;
      SlotIndex DefIdx = li_->getInstructionIndex(MI).getDefIndex();
      for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
        MachineOperand &MO = MI->getOperand(i);
        if (!MO.isReg() || !MO.isKill()) continue;
        unsigned reg = MO.getReg();
        if (!reg || !li_->hasInterval(reg)) continue;
        if (!li_->getInterval(reg).killedAt(DefIdx))
          MO.setIsKill(false);
      }
    }
  }

  DEBUG(dump());
  return true;
}

/// print - Implement the dump method.
void SimpleRegisterCoalescing::print(raw_ostream &O, const Module* m) const {
   li_->print(O, m);
}

RegisterCoalescer* llvm::createSimpleRegisterCoalescer() {
  return new SimpleRegisterCoalescing();
}

// Make sure that anything that uses RegisterCoalescer pulls in this file...
DEFINING_FILE_FOR(SimpleRegisterCoalescing)