summaryrefslogtreecommitdiff
path: root/lib/CodeGen/TargetMachine/Sparc/SparcInstrSelection.cpp
blob: 13384b8edb5d2fe6d76d617fee63d2460d272246 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
// $Id$
//***************************************************************************
// File:
//	SparcInstrSelection.cpp
// 
// Purpose:
//	
// History:
//	7/02/01	 -  Vikram Adve  -  Created
//***************************************************************************


//************************** System Include Files **************************/

#include <assert.h>

//*************************** User Include Files ***************************/

#include "llvm/Type.h"
#include "llvm/DerivedTypes.h"
#include "llvm/SymbolTable.h"
#include "llvm/Value.h"
#include "llvm/Instruction.h"
#include "llvm/InstrTypes.h"
#include "llvm/iTerminators.h"
#include "llvm/iMemory.h"
#include "llvm/iOther.h"
#include "llvm/BasicBlock.h"
#include "llvm/Method.h"
#include "llvm/ConstPoolVals.h"
#include "llvm/LLC/CompileContext.h"
#include "llvm/Codegen/Sparc.h"
#include "llvm/Codegen/MachineInstr.h"
#include "llvm/Codegen/InstrForest.h"
#include "llvm/Codegen/InstrSelection.h"


//******************** Internal Data Declarations ************************/

// to be used later
struct BranchPattern {
  bool	        flipCondition; // should the sense of the test be reversed
  BasicBlock*	targetBB;      // which basic block to branch to
  MachineInstr* extraBranch;   // if neither branch is fall-through, then this
                               // BA must be inserted after the cond'l one
};

//************************* Forward Declarations ***************************/


static MachineOpCode	ChooseBprInstruction	(const InstructionNode* instrNode);

static MachineOpCode	ChooseBccInstruction	(const InstructionNode* instrNode,
						 bool& isFPBranch);

static MachineOpCode	ChooseBpccInstruction	(const InstructionNode* instrNode,
						 const BinaryOperator* setCCInstr);

static MachineOpCode	ChooseBfpccInstruction	(const InstructionNode* instrNode,
						 const BinaryOperator* setCCInstr);

static MachineOpCode	ChooseConvertToFloatInstr(const InstructionNode* instrNode,
						  const Type* opType);

static MachineOpCode	ChooseConvertToIntInstr	(const InstructionNode* instrNode,
						 const Type* opType);

static MachineOpCode	ChooseAddInstruction	(const InstructionNode* instrNode);

static MachineOpCode	ChooseSubInstruction	(const InstructionNode* instrNode);

static MachineOpCode	ChooseFcmpInstruction	(const InstructionNode* instrNode);

static MachineOpCode	ChooseMulInstruction	(const InstructionNode* instrNode,
						 bool checkCasts);

static MachineOpCode	ChooseDivInstruction	(const InstructionNode* instrNode);

static MachineOpCode	ChooseLoadInstruction	(const Type* resultType);

static MachineOpCode	ChooseStoreInstruction	(const Type* valueType);

static void		SetOperandsForMemInstr	(MachineInstr* minstr,
					 const InstructionNode* vmInstrNode,
					 const TargetMachine& targetMachine);

static void		SetMemOperands_Internal	(MachineInstr* minstr,
					 const InstructionNode* vmInstrNode,
					 Value* ptrVal,
					 Value* arrayOffsetVal,
					 const vector<ConstPoolVal*>& idxVec,
					 const TargetMachine& targetMachine);

static unsigned		FixConstantOperands(const InstructionNode* vmInstrNode,
					 MachineInstr** mvec,
					 unsigned numInstr,
					 TargetMachine& targetMachine);

static unsigned		InsertLoadConstInstructions(unsigned loadConstFlags,
				         const InstructionNode* vmInstrNode,
					 MachineInstr** mvec,
					 unsigned numInstr);

static MachineInstr*	MakeOneLoadConstInstr(Instruction* vmInstr,
					      Value* val);


//******************* Externally Visible Functions *************************/


//------------------------------------------------------------------------ 
// External Function: ThisIsAChainRule
//
// Purpose:
//   Check if a given BURG rule is a chain rule.
//------------------------------------------------------------------------ 

extern bool
ThisIsAChainRule(int eruleno)
{
  switch(eruleno)
    {
    case 111:	// stmt:  reg
    case 112:	// stmt:  boolconst
    case 113:	// stmt:  bool
    case 121:
    case 122:
    case 123:
    case 124:
    case 125:
    case 126:
    case 127:
    case 128:
    case 129:
    case 130:
    case 131:
    case 132:
    case 153: return true; break;
      
    default: return false; break;
    }
}

//------------------------------------------------------------------------ 
// External Function: GetInstructionsByRule
//
// Purpose:
//   Choose machine instructions for the SPARC according to the
//   patterns chosen by the BURG-generated parser.
//------------------------------------------------------------------------ 

unsigned
GetInstructionsByRule(InstructionNode* subtreeRoot,
		      int ruleForNode,
		      short* nts,
		      CompileContext& ccontext,
		      MachineInstr** mvec)
{
  int numInstr = 1;			// initialize for common case
  bool checkCast = false;		// initialize here to use fall-through
  Value *leftVal, *rightVal;
  const Type* opType;
  int nextRule;
  BranchPattern brPattern;
  
  mvec[0] = mvec[1] = mvec[2] = mvec[3] = NULL;	// just for safety
  
  switch(ruleForNode) {
  case 1:	// stmt:   Ret
  case 2:	// stmt:   RetValue(reg)
		// NOTE: Prepass of register allocation is responsible
		//	 for moving return value to appropriate register.
		// Mark the return-address register as a hidden virtual reg.
    {		
    Instruction* returnReg = new TmpInstruction(Instruction::UserOp1,
					subtreeRoot->getInstruction(), NULL);
    subtreeRoot->getInstruction()->getMachineInstrVec().addTempValue(returnReg);
    
    mvec[0] = new MachineInstr(RETURN);
    mvec[0]->SetMachineOperand(0, MachineOperand::MO_Register, returnReg);
    mvec[0]->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed,
			          (int64_t) 0);

    mvec[numInstr++] = new MachineInstr(NOP); // delay slot
    break;
    }  
    
  case 3:	// stmt:   Store(reg,reg)
  case 4:	// stmt:   Store(reg,ptrreg)
    mvec[0] = new MachineInstr(ChooseStoreInstruction(subtreeRoot->leftChild()->getValue()->getType()));
    SetOperandsForMemInstr(mvec[0], subtreeRoot, ccontext.getTarget());
    break;
    
  case 5:	// stmt:   BrUncond
    mvec[0] = new MachineInstr(BA);
    mvec[0]->SetMachineOperand(0, MachineOperand::MO_PCRelativeDisp,
	      ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0));
    
    mvec[numInstr++] = new MachineInstr(NOP); // delay slot
    break;
    
  case 6:	// stmt:   BrCond(boolconst)
    // boolconst => boolean was computed with `%b = setCC type reg1 constant'
    // If the constant is ZERO, we can use the branch-on-integer-register
    // instructions and avoid the SUBcc instruction entirely.
    // Otherwise this is just the same as case 5, so just fall through.
    {
    InstrTreeNode* constNode = subtreeRoot->leftChild()->rightChild();
    assert(constNode && constNode->getNodeType() ==InstrTreeNode::NTConstNode);
    ConstPoolVal* constVal = (ConstPoolVal*) constNode->getValue();
    
    if (constVal->getType()->isIntegral()
	&& ((constVal->getType()->isSigned()
	     && ((ConstPoolSInt*) constVal)->getValue()==0)
	    || (constVal->getType()->isUnsigned()
		&& ((ConstPoolUInt*) constVal)->getValue()== 0)))
      {
	// Whew!  Ok, that was zero after all...
	// Use the left child of the setCC instruction as the first argument!
	mvec[0] = new MachineInstr(ChooseBprInstruction(subtreeRoot));
	mvec[0]->SetMachineOperand(0, MachineOperand::MO_Register,
		      subtreeRoot->leftChild()->leftChild()->getValue());
	mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
	      ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0));

	mvec[numInstr++] = new MachineInstr(NOP); // delay slot
	
	mvec[numInstr++] = new MachineInstr(BA); // false branch
	mvec[numInstr-1]->SetMachineOperand(0, MachineOperand::MO_PCRelativeDisp, ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(1));
	break;
      }
    // ELSE FALL THROUGH
    }
    
  case 7:	// stmt:   BrCond(bool)
    // bool => boolean was computed with `%b = setcc type reg1 reg2'
    // Need to check whether the type was a FP, signed int or unsigned int,
    // nad check the branching condition in order to choose the branch to use.
    // Also, for FP branches, an extra operand specifies which FCCn reg to use.
    // 
    {
    bool isFPBranch;
    mvec[0] = new MachineInstr(ChooseBccInstruction(subtreeRoot, isFPBranch));
    
    int opNum = 0;
    if (isFPBranch)
	mvec[0]->SetMachineOperand(opNum++, MachineOperand::MO_CCRegister,
				  subtreeRoot->leftChild()->getValue());
    
    mvec[0]->SetMachineOperand(opNum, MachineOperand::MO_PCRelativeDisp,
	      ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0));
    
    mvec[numInstr++] = new MachineInstr(NOP); // delay slot
    
    mvec[numInstr++] = new MachineInstr(BA); // false branch
    mvec[numInstr-1]->SetMachineOperand(0, MachineOperand::MO_PCRelativeDisp, ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(1));
    break;
    }
  
  case 8:	// stmt:   BrCond(boolreg)
    // bool => boolean is stored in an existing register.
    // Just use the branch-on-integer-register instruction!
    // 
    mvec[0] = new MachineInstr(BRNZ);
    mvec[0]->SetMachineOperand(0, MachineOperand::MO_Register,
			         subtreeRoot->leftChild()->getValue());
    mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
	      ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0));
    mvec[numInstr++] = new MachineInstr(NOP); // delay slot
    break;
    
  case 9:	// stmt:   Switch(reg)
    assert(0 && "*** SWITCH instruction is not implemented yet.");
    numInstr = 0;
    break;
    
  case 10:	// reg:   VRegList(reg, reg)
    assert(0 && "VRegList should never be the topmost non-chain rule");
    break;
    
  case 21:	// reg:   Not(reg):	Implemented as reg = reg XOR-NOT 0
    mvec[0] = new MachineInstr(XNOR);
    mvec[0]->SetMachineOperand(0, MachineOperand::MO_Register,
			          subtreeRoot->leftChild()->getValue());
    mvec[0]->SetMachineOperand(1, /*regNum %g0*/ (unsigned int) 0);
    mvec[0]->SetMachineOperand(2, MachineOperand::MO_Register,
				 subtreeRoot->getValue());
    break;
    
  case 22:	// reg:   ToBoolTy(reg):
    opType = subtreeRoot->leftChild()->getValue()->getType();
    assert(opType->isIntegral() || opType == Type::BoolTy);
    numInstr = 0;
    break;
    
  case 23:	// reg:   ToUByteTy(reg)
  case 25:	// reg:   ToUShortTy(reg)
  case 27:	// reg:   ToUIntTy(reg)
  case 29:	// reg:   ToULongTy(reg)
    opType = subtreeRoot->leftChild()->getValue()->getType();
    assert(opType->isIntegral() || opType == Type::BoolTy);
    numInstr = 0;
    break;
    
  case 24:	// reg:   ToSByteTy(reg)
  case 26:	// reg:   ToShortTy(reg)
  case 28:	// reg:   ToIntTy(reg)
  case 30:	// reg:   ToLongTy(reg)
    opType = subtreeRoot->leftChild()->getValue()->getType();
    if (opType->isIntegral() || opType == Type::BoolTy)
      numInstr = 0;
    else
      {
	mvec[0] =new MachineInstr(ChooseConvertToIntInstr(subtreeRoot,opType));
	Set2OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget());
      }
    break;
    
  case 31:	// reg:   ToFloatTy(reg):
  case 32:	// reg:   ToDoubleTy(reg):
    
    // If this instruction has a parent (a user) in the tree 
    // and the user is translated as an FsMULd instruction,
    // then the cast is unnecessary.  So check that first.
    // In the future, we'll want to do the same for the FdMULq instruction,
    // so do the check here instead of only for ToFloatTy(reg).
    // 
    if (subtreeRoot->parent() != NULL &&
	((InstructionNode*) subtreeRoot->parent())->getInstruction()->getMachineInstrVec()[0]->getOpCode() == FSMULD)
      {
	numInstr = 0;
      }
    else
      {
	opType = subtreeRoot->leftChild()->getValue()->getType();
	mvec[0] = new MachineInstr(ChooseConvertToFloatInstr(subtreeRoot, opType));
	Set2OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget());
      }
    break;
    
  case 19:	// reg:   ToArrayTy(reg):
  case 20:	// reg:   ToPointerTy(reg):
    numInstr = 0;
    break;
    
  case 33:	// reg:   Add(reg, reg)
    mvec[0] = new MachineInstr(ChooseAddInstruction(subtreeRoot));
    Set3OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget());
    break;
    
  case 34:	// reg:   Sub(reg, reg)
    mvec[0] = new MachineInstr(ChooseSubInstruction(subtreeRoot));
    Set3OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget());
    break;
    
  case 135:	// reg:   Mul(todouble, todouble)
    checkCast = true;
    // FALL THROUGH 
    
  case 35:	// reg:   Mul(reg, reg)
    mvec[0] = new MachineInstr(ChooseMulInstruction(subtreeRoot, checkCast));
    Set3OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget());
    break;
    
  case 36:	// reg:   Div(reg, reg)
    mvec[0] = new MachineInstr(ChooseDivInstruction(subtreeRoot));
    Set3OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget());
    break;
    
  case 37:	// reg:   Rem(reg, reg)
    assert(0 && "REM instruction unimplemented for the SPARC.");
    break;
    
  case 38:	// reg:   And(reg, reg)
    mvec[0] = new MachineInstr(AND);
    Set3OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget());
    break;
    
  case 138:	// reg:   And(reg, not)
    mvec[0] = new MachineInstr(ANDN);
    Set3OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget());
    break;
    
  case 39:	// reg:   Or(reg, reg)
    mvec[0] = new MachineInstr(ORN);
    Set3OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget());
    break;
    
  case 139:	// reg:   Or(reg, not)
    mvec[0] = new MachineInstr(ORN);
    Set3OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget());
    break;
    
  case 40:	// reg:   Xor(reg, reg)
    mvec[0] = new MachineInstr(XOR);
    Set3OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget());
    break;
    
  case 140:	// reg:   Xor(reg, not)
    mvec[0] = new MachineInstr(XNOR);
    Set3OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget());
    break;
    
  case 41:	// boolconst:   SetCC(reg, Constant)
    // Check if this is an integer comparison, and
    // there is a parent, and the parent decided to use
    // a branch-on-integer-register instead of branch-on-condition-code.
    // If so, the SUBcc instruction is not required.
    // (However, we must still check for constants to be loaded from
    // the constant pool so that such a load can be associated with
    // this instruction.)
    // 
    // Otherwise this is just the same as case 7, so just fall through.
    // 
    if (subtreeRoot->leftChild()->getValue()->getType()->isIntegral() &&
	subtreeRoot->parent() != NULL)
      {
	InstructionNode* parentNode = (InstructionNode*) subtreeRoot->parent();
	assert(parentNode->getNodeType() == InstrTreeNode::NTInstructionNode);
	const vector<MachineInstr*>&
	  minstrVec = parentNode->getInstruction()->getMachineInstrVec();
	MachineOpCode parentOpCode;
	if (minstrVec.size() == 1 &&
	    (parentOpCode = minstrVec[0]->getOpCode()) >= BRZ &&
	    parentOpCode <= BRGEZ)
	  {
	    numInstr = 0;
	    break;
	  }
      }
    // ELSE FALL THROUGH
    
  case 42:	// bool:   SetCC(reg, reg):
    if (subtreeRoot->leftChild()->getValue()->getType()->isIntegral())
      {
	// integer condition: destination should be %g0
	mvec[0] = new MachineInstr(SUBcc);
	Set3OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget(),
			      /*canDiscardResult*/ true);
      }
    else
      {
	// FP condition: dest should be a FCCn register chosen by reg-alloc
	mvec[0] = new MachineInstr(ChooseFcmpInstruction(subtreeRoot));
	
	leftVal = subtreeRoot->leftChild()->getValue();
	rightVal = subtreeRoot->rightChild()->getValue();
	mvec[0]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
				     subtreeRoot->getValue());
	mvec[0]->SetMachineOperand(1, MachineOperand::MO_Register, leftVal);
	mvec[0]->SetMachineOperand(2, MachineOperand::MO_Register, rightVal);
      }
    break;
    
  case 43:	// boolreg: VReg
    numInstr = 0;
    break;

  case 51:	// reg:   Load(reg)
  case 52:	// reg:   Load(ptrreg)
  case 53:	// reg:   LoadIdx(reg,reg)
  case 54:	// reg:   LoadIdx(ptrreg,reg)
    mvec[0] = new MachineInstr(ChooseLoadInstruction(subtreeRoot->getValue()->getType()));
    SetOperandsForMemInstr(mvec[0], subtreeRoot, ccontext.getTarget());
    break;
    
  case 55:	// reg:   GetElemPtr(reg)
  case 56:	// reg:   GetElemPtrIdx(reg,reg)
    if (subtreeRoot->parent() != NULL)
      {
	// Check if the parent was an array access.
	// If so, we still need to generate this instruction.
	MemAccessInst* memInst =(MemAccessInst*) subtreeRoot->getInstruction();
	const PointerType* ptrType =
	  (const PointerType*) memInst->getPtrOperand()->getType();
	if (! ptrType->getValueType()->isArrayType())
	  {// we don't need a separate instr
	    numInstr = 0;
	    break;
	  }
      }
    // else in all other cases we need to a separate ADD instruction
    mvec[0] = new MachineInstr(ADD);
    SetOperandsForMemInstr(mvec[0], subtreeRoot, ccontext.getTarget());
    break;
    
  case 57:	// reg:   Alloca: Implement as 2 instructions:
    		//	sub %sp, tmp -> %sp
    {		//	add %sp, 0   -> result
    Instruction* instr = subtreeRoot->getInstruction();
    const PointerType* instrType = (const PointerType*) instr->getType();
    assert(instrType->isPointerType());
    int tsize = (int) ccontext.getTarget().findOptimalStorageSize(
						    instrType->getValueType());
    if (tsize == 0)
      {
	numInstr = 0;
	break;
      }
    //else go on to create the instructions needed...
    
    // Create a temporary Value to hold the constant type-size
    ConstPoolSInt* valueForTSize = new ConstPoolSInt(Type::IntTy, tsize);
    ConstantPool &cpool = instr->getParent()->getParent()->getConstantPool();
    if (cpool.find(valueForTSize) == 0)
      cpool.insert(valueForTSize);
    
    // Instruction 1: sub %sp, tsize -> %sp
    // tsize is always constant, but it may have to be put into a
    // register if it doesn't fit in the immediate field.
    // 
    mvec[0] = new MachineInstr(SUB);
    mvec[0]->SetMachineOperand(0, /*regNum %sp = o6 = r[14]*/(unsigned int)14);
    mvec[0]->SetMachineOperand(1, MachineOperand::MO_Register, valueForTSize);
    mvec[0]->SetMachineOperand(2, /*regNum %sp = o6 = r[14]*/(unsigned int)14);
    
    // Instruction 2: add %sp, 0 -> result
    numInstr++;
    mvec[1] = new MachineInstr(ADD);
    mvec[1]->SetMachineOperand(0, /*regNum %sp = o6 = r[14]*/(unsigned int)14);
    mvec[1]->SetMachineOperand(1, /*regNum %g0*/ (unsigned int) 0);
    mvec[1]->SetMachineOperand(2, MachineOperand::MO_Register, instr);
    break;
    }
  
  case 58:	// reg:   Alloca(reg): Implement as 3 instructions:
    		//	mul num, typeSz -> tmp
    		//	sub %sp, tmp    -> %sp
    {		//	add %sp, 0      -> result
    Instruction* instr = subtreeRoot->getInstruction();
    const PointerType* instrType = (const PointerType*) instr->getType();
    assert(instrType->isPointerType() &&
	   instrType->getValueType()->isArrayType());
    const Type* eltType =
      ((ArrayType*) instrType->getValueType())->getElementType();
    int tsize = (int) ccontext.getTarget().findOptimalStorageSize(eltType);
    
    if (tsize == 0)
      {
	numInstr = 0;
	break;
      }
    //else go on to create the instructions needed...

    // Create a temporary Value to hold the constant type-size
    ConstPoolSInt* valueForTSize = new ConstPoolSInt(Type::IntTy, tsize);
    ConstantPool &cpool = instr->getParent()->getParent()->getConstantPool();
    if (cpool.find(valueForTSize) == 0)
      cpool.insert(valueForTSize);
    
    // Create a temporary value to hold `tmp'
    Instruction* tmpInstr = new TmpInstruction(Instruction::UserOp1,
					  subtreeRoot->leftChild()->getValue(),
					  NULL /*could insert tsize here*/);
    subtreeRoot->getInstruction()->getMachineInstrVec().addTempValue(tmpInstr);

    // Instruction 1: mul numElements, typeSize -> tmp
    mvec[0] = new MachineInstr(MULX);
    mvec[0]->SetMachineOperand(0, MachineOperand::MO_Register,
				subtreeRoot->leftChild()->getValue());
    mvec[0]->SetMachineOperand(1, MachineOperand::MO_Register, valueForTSize);
    mvec[0]->SetMachineOperand(2, MachineOperand::MO_Register, tmpInstr);

    // Instruction 2: sub %sp, tmp -> %sp
    numInstr++;
    mvec[1] = new MachineInstr(SUB);
    mvec[1]->SetMachineOperand(0, /*regNum %sp = o6 = r[14]*/(unsigned int)14);
    mvec[1]->SetMachineOperand(1, MachineOperand::MO_Register, tmpInstr);
    mvec[1]->SetMachineOperand(2, /*regNum %sp = o6 = r[14]*/(unsigned int)14);
    
    // Instruction 3: add %sp, 0 -> result
    numInstr++;
    mvec[2] = new MachineInstr(ADD);
    mvec[2]->SetMachineOperand(0, /*regNum %sp = o6 = r[14]*/(unsigned int)14);
    mvec[2]->SetMachineOperand(1, /*regNum %g0*/ (unsigned int) 0);
    mvec[2]->SetMachineOperand(2, MachineOperand::MO_Register, instr);
    break;
    }
    
  case 61:	// reg:   Call
		// Generate a call-indirect (i.e., JMPL) for now to expose
		// the potential need for registers.  If an absolute address
		// is available, replace this with a CALL instruction.
		// Mark both the indirection register and the return-address
    {		// register as hidden virtual registers.
      
    Instruction* targetReg = new TmpInstruction(Instruction::UserOp1,
	((CallInst*) subtreeRoot->getInstruction())->getCalledMethod(), NULL);
    Instruction* returnReg = new TmpInstruction(Instruction::UserOp1,
						subtreeRoot->getValue(), NULL);
    subtreeRoot->getInstruction()->getMachineInstrVec().addTempValue(targetReg);
    subtreeRoot->getInstruction()->getMachineInstrVec().addTempValue(returnReg);
    
    mvec[0] = new MachineInstr(JMPL);
    mvec[0]->SetMachineOperand(0, MachineOperand::MO_Register, targetReg);
    mvec[0]->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed,
			          (int64_t) 0);
    mvec[0]->SetMachineOperand(2, MachineOperand::MO_Register, returnReg);
    
    mvec[numInstr++] = new MachineInstr(NOP); // delay slot
    break;
    }
    
  case 62:	// reg:   Shl(reg, reg)
    opType = subtreeRoot->leftChild()->getValue()->getType();
    assert(opType->isIntegral() || opType == Type::BoolTy); 
    mvec[0] = new MachineInstr((opType == Type::LongTy)? SLLX : SLL);
    Set3OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget());
    break;
    
  case 63:	// reg:   Shr(reg, reg)
    opType = subtreeRoot->leftChild()->getValue()->getType();
    assert(opType->isIntegral() || opType == Type::BoolTy); 
    mvec[0] = new MachineInstr((opType->isSigned()
				? ((opType == Type::LongTy)? SRAX : SRA)
				: ((opType == Type::LongTy)? SRLX : SRL)));
    Set3OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget());
    break;
    
  case 71:	// reg:     VReg
  case 72:	// reg:     Constant
    numInstr = 0;
    break;

  case 111:	// stmt:  reg
  case 112:	// stmt:  boolconst
  case 113:	// stmt:  bool
  case 121:
  case 122:
  case 123:
  case 124:
  case 125:
  case 126:
  case 127:
  case 128:
  case 129:
  case 130:
  case 131:
  case 132:
  case 153:
    // 
    // These are all chain rules, which have a single nonterminal on the RHS.
    // Get the rule that matches the RHS non-terminal and use that instead.
    // 
    assert(ThisIsAChainRule(ruleForNode));
    assert(nts[0] && ! nts[1]
	   && "A chain rule should have only one RHS non-terminal!");
    nextRule = burm_rule(subtreeRoot->getBasicNode()->state, nts[0]);
    nts = burm_nts[nextRule];
    numInstr = GetInstructionsByRule(subtreeRoot, nextRule, nts,ccontext,mvec);
    break;
    
  default:
    numInstr = 0;
    break;
  }
  
  numInstr =
    FixConstantOperands(subtreeRoot, mvec, numInstr, ccontext.getTarget());
  
  return numInstr;
}


//---------------------------------------------------------------------------
// Private helper routines for SPARC instruction selection.
//---------------------------------------------------------------------------


static MachineOpCode 
ChooseBprInstruction(const InstructionNode* instrNode)
{
  MachineOpCode opCode;
  
  Instruction* setCCInstr =
    ((InstructionNode*) instrNode->leftChild())->getInstruction();
  
  switch(setCCInstr->getOpcode())
    {
    case Instruction::SetEQ: opCode = BRZ;   break;
    case Instruction::SetNE: opCode = BRNZ;  break;
    case Instruction::SetLE: opCode = BRLEZ; break;
    case Instruction::SetGE: opCode = BRGEZ; break;
    case Instruction::SetLT: opCode = BRLZ;  break;
    case Instruction::SetGT: opCode = BRGZ;  break;
    default:
      assert(0 && "Unrecognized VM instruction!");
      opCode = INVALID_OPCODE;
      break; 
    }
  
  return opCode;
}


static MachineOpCode 
ChooseBccInstruction(const InstructionNode* instrNode,
		     bool& isFPBranch)
{
  InstructionNode* setCCNode = (InstructionNode*) instrNode->leftChild();
  BinaryOperator* setCCInstr = (BinaryOperator*) setCCNode->getInstruction();
  const Type* setCCType = setCCInstr->getOperand(0)->getType();
  
  isFPBranch = (setCCType == Type::FloatTy || setCCType == Type::DoubleTy); 
  
  if (isFPBranch) 
    return ChooseBfpccInstruction(instrNode, setCCInstr);
  else
    return ChooseBpccInstruction(instrNode, setCCInstr);
}


static MachineOpCode 
ChooseBpccInstruction(const InstructionNode* instrNode,
		      const BinaryOperator* setCCInstr)
{
  MachineOpCode opCode = INVALID_OPCODE;
  
  bool isSigned = setCCInstr->getOperand(0)->getType()->isSigned();
  
  if (isSigned)
    {
      switch(setCCInstr->getOpcode())
	{
	case Instruction::SetEQ: opCode = BE;  break;
	case Instruction::SetNE: opCode = BNE; break;
	case Instruction::SetLE: opCode = BLE; break;
	case Instruction::SetGE: opCode = BGE; break;
	case Instruction::SetLT: opCode = BL;  break;
	case Instruction::SetGT: opCode = BG;  break;
	default:
	  assert(0 && "Unrecognized VM instruction!");
	  break; 
	}
    }
  else
    {
      switch(setCCInstr->getOpcode())
	{
	case Instruction::SetEQ: opCode = BE;   break;
	case Instruction::SetNE: opCode = BNE;  break;
	case Instruction::SetLE: opCode = BLEU; break;
	case Instruction::SetGE: opCode = BCC;  break;
	case Instruction::SetLT: opCode = BCS;  break;
	case Instruction::SetGT: opCode = BGU;  break;
	default:
	  assert(0 && "Unrecognized VM instruction!");
	  break; 
	}
    }
  
  return opCode;
}

static MachineOpCode 
ChooseBfpccInstruction(const InstructionNode* instrNode,
		       const BinaryOperator* setCCInstr)
{
  MachineOpCode opCode = INVALID_OPCODE;
  
  switch(setCCInstr->getOpcode())
    {
    case Instruction::SetEQ: opCode = FBE;  break;
    case Instruction::SetNE: opCode = FBNE; break;
    case Instruction::SetLE: opCode = FBLE; break;
    case Instruction::SetGE: opCode = FBGE; break;
    case Instruction::SetLT: opCode = FBL;  break;
    case Instruction::SetGT: opCode = FBG;  break;
    default:
      assert(0 && "Unrecognized VM instruction!");
      break; 
    }
  
  return opCode;
}

static MachineOpCode 
ChooseConvertToFloatInstr(const InstructionNode* instrNode,
			  const Type* opType)
{
  MachineOpCode opCode = INVALID_OPCODE;
  
  switch(instrNode->getOpLabel())
    {
    case ToFloatTy: 
      if (opType == Type::SByteTy || opType == Type::ShortTy || opType == Type::IntTy)
	opCode = FITOS;
      else if (opType == Type::LongTy)
	opCode = FXTOS;
      else if (opType == Type::DoubleTy)
	opCode = FDTOS;
      else
	  assert(0 && "Cannot convert this type to FLOAT on SPARC");
      break;
      
    case ToDoubleTy: 
      if (opType == Type::SByteTy || opType == Type::ShortTy || opType == Type::IntTy)
	opCode = FITOD;
      else if (opType == Type::LongTy)
	opCode = FXTOD;
      else if (opType == Type::FloatTy)
	opCode = FSTOD;
      else
	assert(0 && "Cannot convert this type to DOUBLE on SPARC");
      break;
      
    default:
      break;
    }
  
  return opCode;
}

static MachineOpCode 
ChooseConvertToIntInstr(const InstructionNode* instrNode,
			const Type* opType)
{
  MachineOpCode opCode = INVALID_OPCODE;;
  
  int instrType = (int) instrNode->getOpLabel();
  
  if (instrType == ToSByteTy || instrType == ToShortTy || instrType == ToIntTy)
    {
      switch (opType->getPrimitiveID())
	{
        case Type::FloatTyID:   opCode = FSTOI; break;
        case Type::DoubleTyID:  opCode = FDTOI; break;
	default:
	  assert(0 && "Non-numeric non-bool type cannot be converted to Int");
	  break;
	}
    }
  else if (instrType == ToLongTy)
    {
      switch (opType->getPrimitiveID())
	{
        case Type::FloatTyID:   opCode = FSTOX; break;
        case Type::DoubleTyID:  opCode = FDTOX; break;
	default:
	  assert(0 && "Non-numeric non-bool type cannot be converted to Long");
	  break;
	}
    }
  else
      assert(0 && "Should not get here, Mo!");
  
  return opCode;
}


static MachineOpCode 
ChooseAddInstruction(const InstructionNode* instrNode)
{
  MachineOpCode opCode = INVALID_OPCODE;
  
  const Type* resultType = instrNode->getInstruction()->getType();
  
  if (resultType->isIntegral() ||
      resultType->isPointerType() ||
      resultType->isMethodType() ||
      resultType->isLabelType())
    {
      opCode = ADD;
    }
  else
    {
      Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue();
      switch(operand->getType()->getPrimitiveID())
	{
	case Type::FloatTyID:  opCode = FADDS; break;
	case Type::DoubleTyID: opCode = FADDD; break;
	default: assert(0 && "Invalid type for ADD instruction"); break; 
	}
    }
  
  return opCode;
}

static MachineOpCode 
ChooseSubInstruction(const InstructionNode* instrNode)
{
  MachineOpCode opCode = INVALID_OPCODE;
  
  const Type* resultType = instrNode->getInstruction()->getType();
  
  if (resultType->isIntegral() ||
      resultType->isPointerType())
    {
      opCode = SUB;
    }
  else
    {
      Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue();
      switch(operand->getType()->getPrimitiveID())
	{
	case Type::FloatTyID:  opCode = FSUBS; break;
	case Type::DoubleTyID: opCode = FSUBD; break;
	default: assert(0 && "Invalid type for SUB instruction"); break; 
	}
    }
  
  return opCode;
}


static MachineOpCode 
ChooseFcmpInstruction(const InstructionNode* instrNode)
{
  MachineOpCode opCode = INVALID_OPCODE;
  
  Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue();
  switch(operand->getType()->getPrimitiveID())
    {
    case Type::FloatTyID:  opCode = FCMPS; break;
    case Type::DoubleTyID: opCode = FCMPD; break;
    default: assert(0 && "Invalid type for ADD instruction"); break; 
    }
  
  return opCode;
}


static MachineOpCode 
ChooseMulInstruction(const InstructionNode* instrNode,
		     bool checkCasts)
{
  MachineOpCode opCode = INVALID_OPCODE;
  
  if (checkCasts)
    {
      // Assume that leftArg and rightArg are both cast instructions.
      //
      InstrTreeNode* leftArg = instrNode->leftChild();
      InstrTreeNode* rightArg = instrNode->rightChild();
      InstrTreeNode* leftArgArg = leftArg->leftChild();
      InstrTreeNode* rightArgArg = rightArg->leftChild();
      assert(leftArg->getValue()->getType() ==rightArg->getValue()->getType());
      
      // If both arguments are floats cast to double, use FsMULd
      if (leftArg->getValue()->getType() == Type::DoubleTy &&
	  leftArgArg->getValue()->getType() == Type::FloatTy &&
	  rightArgArg->getValue()->getType() == Type::FloatTy)
	{
	  return opCode = FSMULD;
	}
      // else fall through and use the regular multiply instructions
    }
  
  const Type* resultType = instrNode->getInstruction()->getType();
  
  if (resultType->isIntegral())
    {
      opCode = MULX;
    }
  else
    {
      switch(instrNode->leftChild()->getValue()->getType()->getPrimitiveID())
	{
	case Type::FloatTyID:  opCode = FMULS; break;
	case Type::DoubleTyID: opCode = FMULD; break;
	default: assert(0 && "Invalid type for MUL instruction"); break; 
	}
    }
  
  return opCode;
}


static MachineOpCode 
ChooseDivInstruction(const InstructionNode* instrNode)
{
  MachineOpCode opCode = INVALID_OPCODE;
  
  const Type* resultType = instrNode->getInstruction()->getType();
  
  if (resultType->isIntegral())
    {
      opCode = resultType->isSigned()? SDIVX : UDIVX;
    }
  else
    {
      Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue();
      switch(operand->getType()->getPrimitiveID())
	{
	case Type::FloatTyID:  opCode = FDIVS; break;
	case Type::DoubleTyID: opCode = FDIVD; break;
	default: assert(0 && "Invalid type for DIV instruction"); break; 
	}
    }
  
  return opCode;
}


static MachineOpCode 
ChooseLoadInstruction(const Type* resultType)
{
  MachineOpCode opCode = INVALID_OPCODE;
  
  switch (resultType->getPrimitiveID())
    {
    case Type::BoolTyID:	opCode = LDUB; break;
    case Type::UByteTyID:	opCode = LDUB; break;
    case Type::SByteTyID:	opCode = LDSB; break;
    case Type::UShortTyID:	opCode = LDUH; break;
    case Type::ShortTyID:	opCode = LDSH; break;
    case Type::UIntTyID:	opCode = LDUW; break;
    case Type::IntTyID:		opCode = LDSW; break;
    case Type::ULongTyID:
    case Type::LongTyID:	opCode = LDX;  break;
    case Type::FloatTyID:	opCode = LD;   break;
    case Type::DoubleTyID:	opCode = LDD;  break;
    default: assert(0 && "Invalid type for Load instruction"); break; 
    }
  
  return opCode;
}


static MachineOpCode 
ChooseStoreInstruction(const Type* valueType)
{
  MachineOpCode opCode = INVALID_OPCODE;
  
  switch (valueType->getPrimitiveID())
    {
    case Type::BoolTyID:
    case Type::UByteTyID:
    case Type::SByteTyID:	opCode = STB; break;
    case Type::UShortTyID:
    case Type::ShortTyID:	opCode = STH; break;
    case Type::UIntTyID:
    case Type::IntTyID:		opCode = STW; break;
    case Type::ULongTyID:
    case Type::LongTyID:	opCode = STX;  break;
    case Type::FloatTyID:	opCode = ST;   break;
    case Type::DoubleTyID:	opCode = STD;  break;
    default: assert(0 && "Invalid type for Store instruction"); break; 
    }
  
  return opCode;
}


//------------------------------------------------------------------------ 
// Function SetOperandsForMemInstr
//
// Choose addressing mode for the given load or store instruction.
// Use [reg+reg] if it is an indexed reference, and the index offset is
//		 not a constant or if it cannot fit in the offset field.
// Use [reg+offset] in all other cases.
// 
// This assumes that all array refs are "lowered" to one of these forms:
//	%x = load (subarray*) ptr, constant	; single constant offset
//	%x = load (subarray*) ptr, offsetVal	; single non-constant offset
// Generally, this should happen via strength reduction + LICM.
// Also, strength reduction should take care of using the same register for
// the loop index variable and an array index, when that is profitable.
//------------------------------------------------------------------------ 

static void
SetOperandsForMemInstr(MachineInstr* minstr,
		       const InstructionNode* vmInstrNode,
		       const TargetMachine& targetMachine)
{
  MemAccessInst* memInst = (MemAccessInst*) vmInstrNode->getInstruction();
  
  // Variables to hold the index vector, ptr value, and offset value.
  // The major work here is to extract these for all 3 instruction types
  // and then call the common function SetMemOperands_Internal().
  // 
  const vector<ConstPoolVal*>* idxVec = & memInst->getIndexVec();
  vector<ConstPoolVal*>* newIdxVec = NULL;
  Value* ptrVal;
  Value* arrayOffsetVal = NULL;
  
  // Test if a GetElemPtr instruction is being folded into this mem instrn.
  // If so, it will be in the left child for Load and GetElemPtr,
  // and in the right child for Store instructions.
  // 
  InstrTreeNode* ptrChild = (vmInstrNode->getOpLabel() == Instruction::Store
			     ? vmInstrNode->rightChild()
			     : vmInstrNode->leftChild()); 
  
  if (ptrChild->getOpLabel() == Instruction::GetElementPtr ||
      ptrChild->getOpLabel() == GetElemPtrIdx)
    {
      // There is a GetElemPtr instruction and there may be a chain of
      // more than one.  Use the pointer value of the last one in the chain.
      // Fold the index vectors from the entire chain and from the mem
      // instruction into one single index vector.
      // Finally, we never fold for an array instruction so make that NULL.
      
      newIdxVec = new vector<ConstPoolVal*>;
      ptrVal = FoldGetElemChain((InstructionNode*) ptrChild, *newIdxVec);
      
      newIdxVec->insert(newIdxVec->end(), idxVec->begin(), idxVec->end());
      idxVec = newIdxVec;
      
      assert(! ((PointerType*)ptrVal->getType())->getValueType()->isArrayType()
	     && "GetElemPtr cannot be folded into array refs in selection");
    }
  else
    {
      // There is no GetElemPtr instruction.
      // Use the pointer value and the index vector from the Mem instruction.
      // If it is an array reference, get the array offset value.
      // 
      ptrVal = memInst->getPtrOperand();

      const Type* opType =
	((const PointerType*) ptrVal->getType())->getValueType();
      if (opType->isArrayType())
	{
	  assert((memInst->getNumOperands()
		  == (unsigned) 1 + memInst->getFirstOffsetIdx())
		 && "Array refs must be lowered before Instruction Selection");
	  
	  arrayOffsetVal = memInst->getOperand(memInst->getFirstOffsetIdx());
	}
    }
  
  SetMemOperands_Internal(minstr, vmInstrNode, ptrVal, arrayOffsetVal,
			  *idxVec, targetMachine);
  
  if (newIdxVec != NULL)
    delete newIdxVec;
}


static void
SetMemOperands_Internal(MachineInstr* minstr,
			const InstructionNode* vmInstrNode,
			Value* ptrVal,
			Value* arrayOffsetVal,
			const vector<ConstPoolVal*>& idxVec,
			const TargetMachine& targetMachine)
{
  MemAccessInst* memInst = (MemAccessInst*) vmInstrNode->getInstruction();
  
  // Initialize so we default to storing the offset in a register.
  int64_t smallConstOffset;
  Value* valueForRegOffset = NULL;
  MachineOperand::MachineOperandType offsetOpType =MachineOperand::MO_Register;

  // Check if there is an index vector and if so, if it translates to
  // a small enough constant to fit in the immediate-offset field.
  // 
  if (idxVec.size() > 0)
    {
      bool isConstantOffset = false;
      unsigned offset;
      
      const PointerType* ptrType = (PointerType*) ptrVal->getType();
      
      if (ptrType->getValueType()->isStructType())
	{
	  // the offset is always constant for structs
	  isConstantOffset = true;
	  
	  // Compute the offset value using the index vector
	  offset = MemAccessInst::getIndexedOfsetForTarget(ptrType,
						       idxVec, targetMachine);
	}
      else
	{
	  // It must be an array ref.  Check if the offset is a constant,
	  // and that the indexing has been lowered to a single offset.
	  // 
	  assert(ptrType->getValueType()->isArrayType());
	  assert(arrayOffsetVal != NULL
		 && "Expect to be given Value* for array offsets");
	  
	  if (arrayOffsetVal->getValueType() == Value::ConstantVal)
	    {
	      isConstantOffset = true;	// always constant for structs
	      assert(arrayOffsetVal->getType()->isIntegral());
	      offset = (arrayOffsetVal->getType()->isSigned())
			? ((ConstPoolSInt*) arrayOffsetVal)->getValue()
			: (int64_t) ((ConstPoolUInt*) arrayOffsetVal)->getValue();
	    }
	  else
	    {
	      valueForRegOffset = arrayOffsetVal;
	    }
	}
      
      if (isConstantOffset)
	{
	  // create a virtual register for the constant
	  valueForRegOffset = new ConstPoolSInt(Type::IntTy, offset);
	}
    }
  else
    {
      offsetOpType = MachineOperand::MO_SignExtendedImmed;
      smallConstOffset = 0;
    }
  
  // Operand 0 is value for STORE, ptr for LOAD or GET_ELEMENT_PTR
  // It is the left child in the instruction tree in all cases.
  Value* leftVal = vmInstrNode->leftChild()->getValue();
  minstr->SetMachineOperand(0, MachineOperand::MO_Register, leftVal);
  
  // Operand 1 is ptr for STORE, offset for LOAD or GET_ELEMENT_PTR
  // Operand 3 is offset for STORE, result reg for LOAD or GET_ELEMENT_PTR
  //
  unsigned offsetOpNum = (memInst->getOpcode() == Instruction::Store)? 2 : 1;
  if (offsetOpType == MachineOperand::MO_Register)
    {
      assert(valueForRegOffset != NULL);
      minstr->SetMachineOperand(offsetOpNum, offsetOpType, valueForRegOffset); 
    }
  else
    minstr->SetMachineOperand(offsetOpNum, offsetOpType, smallConstOffset);
  
  if (memInst->getOpcode() == Instruction::Store)
    minstr->SetMachineOperand(1, MachineOperand::MO_Register, ptrVal);
  else
    minstr->SetMachineOperand(2, MachineOperand::MO_Register,
			         vmInstrNode->getValue());
}


// Create one or two load instructions to load constants from the
// constant pool.  The first instructions is stored in instrA;
// the second (if any) in instrB.
//
static unsigned
FixConstantOperands(const InstructionNode* vmInstrNode,
		    MachineInstr** mvec,
		    unsigned numInstr,
		    TargetMachine& targetMachine)
{
  static MachineInstr* loadConstVec[MAX_INSTR_PER_VMINSTR];

  unsigned numNew = 0;
  Instruction* vmInstr = vmInstrNode->getInstruction();
  
  for (unsigned i=0; i < numInstr; i++)
    {
      MachineInstr* minstr = mvec[i];
      const MachineInstrInfo& instrInfo =
	targetMachine.machineInstrInfo[minstr->getOpCode()];
      
      for (unsigned op=0; op < instrInfo.numOperands; op++)
	{
	  const MachineOperand& mop = minstr->getOperand(op);
	  Value* opValue = mop.value;
	  
	  // skip the result position and any other positions already
	  // marked as not a virtual register
	  if (instrInfo.resultPos == (int) op || 
	      opValue == NULL ||
	      ! (mop.machineOperandType == MachineOperand::MO_Register &&
	         mop.vregType == MachineOperand::MO_VirtualReg))
	    {
	      break;
	    }
	  
	  if (opValue->getValueType() == Value::ConstantVal)
	    {
	      MachineOperand::VirtualRegisterType vregType;
	      unsigned int machineRegNum;
	      int64_t immedValue;
	      MachineOperand::MachineOperandType opType =
		ChooseRegOrImmed(opValue, minstr->getOpCode(), targetMachine,
				 /*canUseImmed*/ (op == 1),
				 vregType, machineRegNum, immedValue);
	      
	      if (opType == MachineOperand::MO_Register)
		{
		  if (vregType == MachineOperand::MO_MachineReg)
		    minstr->SetMachineOperand(op, machineRegNum);
		  else
		    { // value is constant and must be loaded into a register
		      loadConstVec[numNew++] =
			MakeOneLoadConstInstr(vmInstr, opValue);
		    }
		}
	      else
		minstr->SetMachineOperand(op, opType, immedValue);
	    }

#if 0
	      // Either put the constant in the immediate field or
	      // create an instruction to "put" it in a register.
	      // Check first if it is 0 and then just use %g0.
	      //

	      bool isValidConstant;
	      int64_t intValue = GetConstantValueAsSignedInt(opValue,
							     isValidConstant);
	      if (intValue == 0 && targetMachine.zeroRegNum >= 0)
		{// put it in register %g0
		  minstr->SetMachineOperand(op, targetMachine.zeroRegNum);
		}
	      else if (op == 1 &&
		       instrInfo.constantFitsInImmedField(intValue))
		{// put it in the immediate field
		  MachineOperand::MachineOperandType opType =
		    (opValue->getType()->isSigned()
		     ? MachineOperand::MO_SignExtendedImmed
		     : MachineOperand::MO_UnextendedImmed);
		  
		  minstr->SetMachineOperand(op, opType, intValue);
		}
	      else
		{// create an instruction to "put" the value in a register.
		  loadConstVec[numNew++] =
		    MakeOneLoadConstInstr(vmInstr, opValue);
		}
#endif
	}
    }
  
  if (numNew > 0)
    {
      // Insert the new instructions *before* the old ones by moving
      // the old ones over `numNew' positions (last-to-first, of course!).
      // 
      for (int i=numInstr-1; i >= ((int) numInstr) - (int) numNew; i--)
	mvec[i+numNew] = mvec[i];
      
      for (unsigned i=0; i < numNew; i++)
	mvec[i] = loadConstVec[i];
    }
  
  return (numInstr + numNew);
}


// Create one or two load instructions to load constants from the
// constant pool.  The first instructions is stored in instrA;
// the second (if any) in instrB.
//
static unsigned
InsertLoadConstInstructions(unsigned loadConstFlags,
			    const InstructionNode* vmInstrNode,
			    MachineInstr** mvec,
			    unsigned numInstr)
{
  MachineInstr *instrA = NULL, *instrB = NULL;
    
  unsigned numNew = 0;
  
  if (loadConstFlags & 0x01)
    {
      instrA = MakeOneLoadConstInstr(vmInstrNode->getInstruction(),
				     vmInstrNode->leftChild()->getValue());
      numNew++;
    }
  
  if (loadConstFlags & 0x02)
    {
      instrB = MakeOneLoadConstInstr(vmInstrNode->getInstruction(),
				     vmInstrNode->rightChild()->getValue());
      numNew++;
    }
  
  // Now insert the new instructions *before* the old ones by
  // moving the old ones over `numNew' positions (last-to-first, of course!).
  // 
  for (int i=numInstr-1; i >= ((int) numInstr) - (int) numNew; i--)
    mvec[i+numNew] = mvec[i];
  
  unsigned whichNew = 0;
  if (instrA != NULL)
    mvec[whichNew++] = instrA; 
  if (instrB != NULL)
    mvec[whichNew++] = instrB; 
  assert(whichNew == numNew);

  return numInstr + numNew;
}


static MachineInstr*
MakeOneLoadConstInstr(Instruction* vmInstr,
		      Value* val)
{
  assert(val->getValueType() == Value::ConstantVal);
  
  MachineInstr* minstr;
  
  // Use a "set" instruction for known constants that can go in an integer reg.
  // Use a "load" instruction for all other constants, in particular,
  // floating point constants.
  // 
  const Type* valType = val->getType();
  if (valType->isIntegral() ||
      valType->isPointerType() ||
      valType == Type::BoolTy)
    {
      bool isValidConstant;
      if (val->getType()->isSigned())
	{
	  minstr = new MachineInstr(SETSW);
	  minstr->SetMachineOperand(0, MachineOperand::MO_SignExtendedImmed,
			    GetSignedIntConstantValue(val, isValidConstant));
	}
      else
	{
	  minstr = new MachineInstr(SETUW);
	  minstr->SetMachineOperand(0, MachineOperand::MO_UnextendedImmed,
			    GetUnsignedIntConstantValue(val, isValidConstant));
	}
      minstr->SetMachineOperand(1, MachineOperand::MO_Register, val);
      assert(isValidConstant && "Unrecognized constant");
    }
  else
    {
      assert(valType == Type::FloatTy || 
	     valType == Type::DoubleTy);
      
      int64_t zeroOffset = 0; // to avoid overloading ambiguity with (Value*) 0
      
      // Make a Load instruction, and make `val' both the ptr value *and*
      // the result value, and set the offset field to 0.  Final code
      // generation will have to generate the base+offset for the constant.
      // 
      minstr = new MachineInstr(ChooseLoadInstruction(val->getType()));
      minstr->SetMachineOperand(0, MachineOperand::MO_Register, val);
      minstr->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed,
				   zeroOffset);
      minstr->SetMachineOperand(2, MachineOperand::MO_Register, val);
      
    }
  
  Instruction* tmpInstr = new TmpInstruction(Instruction::UserOp1, val, NULL);
  vmInstr->getMachineInstrVec().addTempValue(tmpInstr);
  
  return minstr;
}


// This function is currently unused and incomplete but will be 
// used if we have a linear layout of basic blocks in LLVM code.
// It decides which branch should fall-through, and whether an
// extra unconditional branch is needed (when neither falls through).
// 
void
ChooseBranchPattern(Instruction* vmInstr, BranchPattern& brPattern)
{
  BranchInst* brInstr = (BranchInst*) vmInstr;
  
  brPattern.flipCondition = false;
  brPattern.targetBB	  = brInstr->getSuccessor(0);
  brPattern.extraBranch   = NULL;
  
  assert(brInstr->getNumSuccessors() > 1 &&
	 "Unnecessary analysis for unconditional branch");
  
  assert(0 && "Fold branches in peephole optimization");
}