summaryrefslogtreecommitdiff
path: root/lib/CodeGen/TwoAddressInstructionPass.cpp
blob: dfbc4a730faf25e224849cb6a832fff0926e4b80 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
//===-- TwoAddressInstructionPass.cpp - Two-Address instruction pass ------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the TwoAddress instruction pass which is used
// by most register allocators. Two-Address instructions are rewritten
// from:
//
//     A = B op C
//
// to:
//
//     A = B
//     A op= C
//
// Note that if a register allocator chooses to use this pass, that it
// has to be capable of handling the non-SSA nature of these rewritten
// virtual registers.
//
// It is also worth noting that the duplicate operand of the two
// address instruction is removed.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "twoaddrinstr"
#include "llvm/CodeGen/Passes.h"
#include "llvm/Function.h"
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/Target/MRegisterInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Compiler.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
using namespace llvm;

STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions");
STATISTIC(NumCommuted        , "Number of instructions commuted to coalesce");
STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address");

namespace {
  struct VISIBILITY_HIDDEN TwoAddressInstructionPass
   : public MachineFunctionPass {
    static const char ID; // Pass identifcation, replacement for typeid
    TwoAddressInstructionPass() : MachineFunctionPass((intptr_t)&ID) {}

    virtual void getAnalysisUsage(AnalysisUsage &AU) const;

    /// runOnMachineFunction - pass entry point
    bool runOnMachineFunction(MachineFunction&);
  };

  const char TwoAddressInstructionPass::ID = 0;
  RegisterPass<TwoAddressInstructionPass>
  X("twoaddressinstruction", "Two-Address instruction pass");
}

const PassInfo *llvm::TwoAddressInstructionPassID = X.getPassInfo();

void TwoAddressInstructionPass::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.addRequired<LiveVariables>();
  AU.addPreserved<LiveVariables>();
  AU.addPreservedID(PHIEliminationID);
  MachineFunctionPass::getAnalysisUsage(AU);
}

/// runOnMachineFunction - Reduce two-address instructions to two
/// operands.
///
bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) {
  DOUT << "Machine Function\n";
  const TargetMachine &TM = MF.getTarget();
  const TargetInstrInfo &TII = *TM.getInstrInfo();
  const MRegisterInfo &MRI = *TM.getRegisterInfo();
  LiveVariables &LV = getAnalysis<LiveVariables>();

  bool MadeChange = false;

  DOUT << "********** REWRITING TWO-ADDR INSTRS **********\n";
  DOUT << "********** Function: " << MF.getFunction()->getName() << '\n';

  for (MachineFunction::iterator mbbi = MF.begin(), mbbe = MF.end();
       mbbi != mbbe; ++mbbi) {
    for (MachineBasicBlock::iterator mi = mbbi->begin(), me = mbbi->end();
         mi != me; ++mi) {
      const TargetInstrDescriptor *TID = mi->getInstrDescriptor();

      bool FirstTied = true;
      for (unsigned si = 1, e = TID->numOperands; si < e; ++si) {
        int ti = TID->getOperandConstraint(si, TOI::TIED_TO);
        if (ti == -1)
          continue;

        if (FirstTied) {
          ++NumTwoAddressInstrs;
          DOUT << '\t'; DEBUG(mi->print(*cerr.stream(), &TM));
        }
        FirstTied = false;

        assert(mi->getOperand(si).isRegister() && mi->getOperand(si).getReg() &&
               mi->getOperand(si).isUse() && "two address instruction invalid");

        // if the two operands are the same we just remove the use
        // and mark the def as def&use, otherwise we have to insert a copy.
        if (mi->getOperand(ti).getReg() != mi->getOperand(si).getReg()) {
          // rewrite:
          //     a = b op c
          // to:
          //     a = b
          //     a = a op c
          unsigned regA = mi->getOperand(ti).getReg();
          unsigned regB = mi->getOperand(si).getReg();

          assert(MRegisterInfo::isVirtualRegister(regA) &&
                 MRegisterInfo::isVirtualRegister(regB) &&
                 "cannot update physical register live information");

#ifndef NDEBUG
          // First, verify that we don't have a use of a in the instruction (a =
          // b + a for example) because our transformation will not work. This
          // should never occur because we are in SSA form.
          for (unsigned i = 0; i != mi->getNumOperands(); ++i)
            assert((int)i == ti ||
                   !mi->getOperand(i).isRegister() ||
                   mi->getOperand(i).getReg() != regA);
#endif

          // If this instruction is not the killing user of B, see if we can
          // rearrange the code to make it so.  Making it the killing user will
          // allow us to coalesce A and B together, eliminating the copy we are
          // about to insert.
          if (!LV.KillsRegister(mi, regB)) {
            // If this instruction is commutative, check to see if C dies.  If
            // so, swap the B and C operands.  This makes the live ranges of A
            // and C joinable.
            // FIXME: This code also works for A := B op C instructions.
            if ((TID->Flags & M_COMMUTABLE) && mi->getNumOperands() == 3) {
              assert(mi->getOperand(3-si).isRegister() &&
                     "Not a proper commutative instruction!");
              unsigned regC = mi->getOperand(3-si).getReg();
              if (LV.KillsRegister(mi, regC)) {
                DOUT << "2addr: COMMUTING  : " << *mi;
                MachineInstr *NewMI = TII.commuteInstruction(mi);
                if (NewMI == 0) {
                  DOUT << "2addr: COMMUTING FAILED!\n";
                } else {
                  DOUT << "2addr: COMMUTED TO: " << *NewMI;
                  // If the instruction changed to commute it, update livevar.
                  if (NewMI != mi) {
                    LV.instructionChanged(mi, NewMI);  // Update live variables
                    mbbi->insert(mi, NewMI);           // Insert the new inst
                    mbbi->erase(mi);                   // Nuke the old inst.
                    mi = NewMI;
                  }

                  ++NumCommuted;
                  regB = regC;
                  goto InstructionRearranged;
                }
              }
            }

            // If this instruction is potentially convertible to a true
            // three-address instruction,
            if (TID->Flags & M_CONVERTIBLE_TO_3_ADDR)
              // FIXME: This assumes there are no more operands which are tied
              // to another register.
#ifndef NDEBUG
              for (unsigned i = si+1, e = TID->numOperands; i < e; ++i)
                assert(TID->getOperandConstraint(i, TOI::TIED_TO) == -1);
#endif

              if (MachineInstr *New = TII.convertToThreeAddress(mbbi, mi, LV)) {
                DOUT << "2addr: CONVERTING 2-ADDR: " << *mi;
                DOUT << "2addr:         TO 3-ADDR: " << *New;
                mbbi->erase(mi);                 // Nuke the old inst.
                mi = New;
                ++NumConvertedTo3Addr;
                // Done with this instruction.
                break;
              }
          }

        InstructionRearranged:
          const TargetRegisterClass* rc = MF.getSSARegMap()->getRegClass(regA);
          MRI.copyRegToReg(*mbbi, mi, regA, regB, rc);

          MachineBasicBlock::iterator prevMi = prior(mi);
          DOUT << "\t\tprepend:\t"; DEBUG(prevMi->print(*cerr.stream(), &TM));

          // Update live variables for regA
          LiveVariables::VarInfo& varInfo = LV.getVarInfo(regA);
          varInfo.DefInst = prevMi;

          if (LV.removeVirtualRegisterKilled(regB, mbbi, mi))
            LV.addVirtualRegisterKilled(regB, prevMi);

          if (LV.removeVirtualRegisterDead(regB, mbbi, mi))
            LV.addVirtualRegisterDead(regB, prevMi);

          // replace all occurences of regB with regA
          for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
            if (mi->getOperand(i).isRegister() &&
                mi->getOperand(i).getReg() == regB)
              mi->getOperand(i).setReg(regA);
          }
        }

        assert(mi->getOperand(ti).isDef() && mi->getOperand(si).isUse());
        mi->getOperand(ti).setReg(mi->getOperand(si).getReg());
        MadeChange = true;

        DOUT << "\t\trewrite to:\t"; DEBUG(mi->print(*cerr.stream(), &TM));
      }
    }
  }

  return MadeChange;
}