summaryrefslogtreecommitdiff
path: root/lib/CodeGen/TwoAddressInstructionPass.cpp
blob: f343ff40d812d93ea095814397055c7b6c5a30e7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
//===-- TwoAddressInstructionPass.cpp - Two-Address instruction pass ------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the TwoAddress instruction pass which is used
// by most register allocators. Two-Address instructions are rewritten
// from:
//
//     A = B op C
//
// to:
//
//     A = B
//     A op= C
//
// Note that if a register allocator chooses to use this pass, that it
// has to be capable of handling the non-SSA nature of these rewritten
// virtual registers.
//
// It is also worth noting that the duplicate operand of the two
// address instruction is removed.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "twoaddrinstr"
#include "llvm/CodeGen/Passes.h"
#include "llvm/Function.h"
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
using namespace llvm;

STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions");
STATISTIC(NumCommuted        , "Number of instructions commuted to coalesce");
STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address");
STATISTIC(Num3AddrSunk,        "Number of 3-address instructions sunk");

namespace {
  class VISIBILITY_HIDDEN TwoAddressInstructionPass
    : public MachineFunctionPass {
    const TargetInstrInfo *TII;
    const TargetRegisterInfo *TRI;
    MachineRegisterInfo *MRI;
    LiveVariables *LV;

    bool Sink3AddrInstruction(MachineBasicBlock *MBB, MachineInstr *MI,
                              unsigned Reg,
                              MachineBasicBlock::iterator OldPos);
  public:
    static char ID; // Pass identification, replacement for typeid
    TwoAddressInstructionPass() : MachineFunctionPass((intptr_t)&ID) {}

    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.addRequired<LiveVariables>();
      AU.addPreserved<LiveVariables>();
      AU.addPreservedID(MachineLoopInfoID);
      AU.addPreservedID(MachineDominatorsID);
      AU.addPreservedID(PHIEliminationID);
      MachineFunctionPass::getAnalysisUsage(AU);
    }

    /// runOnMachineFunction - Pass entry point.
    bool runOnMachineFunction(MachineFunction&);
  };
}

char TwoAddressInstructionPass::ID = 0;
static RegisterPass<TwoAddressInstructionPass>
X("twoaddressinstruction", "Two-Address instruction pass");

const PassInfo *llvm::TwoAddressInstructionPassID = X.getPassInfo();

/// Sink3AddrInstruction - A two-address instruction has been converted to a
/// three-address instruction to avoid clobbering a register. Try to sink it
/// past the instruction that would kill the above mentioned register to reduce
/// register pressure.
/// 
bool TwoAddressInstructionPass::Sink3AddrInstruction(MachineBasicBlock *MBB,
                                           MachineInstr *MI, unsigned SavedReg,
                                           MachineBasicBlock::iterator OldPos) {
  // Check if it's safe to move this instruction.
  bool SeenStore = true; // Be conservative.
  if (!MI->isSafeToMove(TII, SeenStore))
    return false;

  unsigned DefReg = 0;
  SmallSet<unsigned, 4> UseRegs;

  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    const MachineOperand &MO = MI->getOperand(i);
    if (!MO.isRegister())
      continue;
    unsigned MOReg = MO.getReg();
    if (!MOReg)
      continue;
    if (MO.isUse() && MOReg != SavedReg)
      UseRegs.insert(MO.getReg());
    if (!MO.isDef())
      continue;
    if (MO.isImplicit())
      // Don't try to move it if it implicitly defines a register.
      return false;
    if (DefReg)
      // For now, don't move any instructions that define multiple registers.
      return false;
    DefReg = MO.getReg();
  }

  // Find the instruction that kills SavedReg.
  MachineInstr *KillMI = NULL;

  for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(SavedReg),
         UE = MRI->use_end(); UI != UE; ++UI) {
    MachineOperand &UseMO = UI.getOperand();
    if (!UseMO.isKill())
      continue;
    KillMI = UseMO.getParent();
    break;
  }

  if (!KillMI || KillMI->getParent() != MBB)
    return false;

  // If any of the definitions are used by another instruction between the
  // position and the kill use, then it's not safe to sink it.
  // 
  // FIXME: This can be sped up if there is an easy way to query whether an
  // instruction if before or after another instruction. Then we can use
  // MachineRegisterInfo def / use instead.
  MachineOperand *KillMO = NULL;
  MachineBasicBlock::iterator KillPos = KillMI;
  ++KillPos;

  for (MachineBasicBlock::iterator I = next(OldPos); I != KillPos; ++I) {
    MachineInstr *OtherMI = I;

    for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
      MachineOperand &MO = OtherMI->getOperand(i);
      if (!MO.isRegister())
        continue;
      unsigned MOReg = MO.getReg();
      if (!MOReg)
        continue;
      if (DefReg == MOReg)
        return false;

      if (MO.isKill()) {
        if (OtherMI == KillMI && MOReg == SavedReg)
          // Save the operand that kills the register. We want unset the kill
          // marker is we can sink MI past it.
          KillMO = &MO;
        else if (UseRegs.count(MOReg))
          // One of the uses is killed before the destination.
          return false;
      }
    }
  }

  // Update kill and LV information.
  KillMO->setIsKill(false);
  KillMO = MI->findRegisterUseOperand(SavedReg, false, TRI);
  KillMO->setIsKill(true);
  LiveVariables::VarInfo& VarInfo = LV->getVarInfo(SavedReg);
  VarInfo.removeKill(KillMI);
  VarInfo.Kills.push_back(MI);

  // Move instruction to its destination.
  MBB->remove(MI);
  MBB->insert(KillPos, MI);

  ++Num3AddrSunk;
  return true;
}

/// runOnMachineFunction - Reduce two-address instructions to two operands.
///
bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) {
  DOUT << "Machine Function\n";
  const TargetMachine &TM = MF.getTarget();
  MRI = &MF.getRegInfo();
  TII = TM.getInstrInfo();
  TRI = TM.getRegisterInfo();
  LV = &getAnalysis<LiveVariables>();

  bool MadeChange = false;

  DOUT << "********** REWRITING TWO-ADDR INSTRS **********\n";
  DOUT << "********** Function: " << MF.getFunction()->getName() << '\n';

  for (MachineFunction::iterator mbbi = MF.begin(), mbbe = MF.end();
       mbbi != mbbe; ++mbbi) {
    for (MachineBasicBlock::iterator mi = mbbi->begin(), me = mbbi->end();
         mi != me; ) {
      MachineBasicBlock::iterator nmi = next(mi);
      const TargetInstrDesc &TID = mi->getDesc();
      bool FirstTied = true;

      for (unsigned si = 1, e = TID.getNumOperands(); si < e; ++si) {
        int ti = TID.getOperandConstraint(si, TOI::TIED_TO);
        if (ti == -1)
          continue;

        if (FirstTied) {
          ++NumTwoAddressInstrs;
          DOUT << '\t'; DEBUG(mi->print(*cerr.stream(), &TM));
        }

        FirstTied = false;

        assert(mi->getOperand(si).isRegister() && mi->getOperand(si).getReg() &&
               mi->getOperand(si).isUse() && "two address instruction invalid");

        // If the two operands are the same we just remove the use
        // and mark the def as def&use, otherwise we have to insert a copy.
        if (mi->getOperand(ti).getReg() != mi->getOperand(si).getReg()) {
          // Rewrite:
          //     a = b op c
          // to:
          //     a = b
          //     a = a op c
          unsigned regA = mi->getOperand(ti).getReg();
          unsigned regB = mi->getOperand(si).getReg();

          assert(TargetRegisterInfo::isVirtualRegister(regA) &&
                 TargetRegisterInfo::isVirtualRegister(regB) &&
                 "cannot update physical register live information");

#ifndef NDEBUG
          // First, verify that we don't have a use of a in the instruction (a =
          // b + a for example) because our transformation will not work. This
          // should never occur because we are in SSA form.
          for (unsigned i = 0; i != mi->getNumOperands(); ++i)
            assert((int)i == ti ||
                   !mi->getOperand(i).isRegister() ||
                   mi->getOperand(i).getReg() != regA);
#endif

          // If this instruction is not the killing user of B, see if we can
          // rearrange the code to make it so.  Making it the killing user will
          // allow us to coalesce A and B together, eliminating the copy we are
          // about to insert.
          if (!mi->killsRegister(regB)) {
            // If this instruction is commutative, check to see if C dies.  If
            // so, swap the B and C operands.  This makes the live ranges of A
            // and C joinable.
            // FIXME: This code also works for A := B op C instructions.
            if (TID.isCommutable() && mi->getNumOperands() >= 3) {
              assert(mi->getOperand(3-si).isRegister() &&
                     "Not a proper commutative instruction!");
              unsigned regC = mi->getOperand(3-si).getReg();

              if (mi->killsRegister(regC)) {
                DOUT << "2addr: COMMUTING  : " << *mi;
                MachineInstr *NewMI = TII->commuteInstruction(mi);

                if (NewMI == 0) {
                  DOUT << "2addr: COMMUTING FAILED!\n";
                } else {
                  DOUT << "2addr: COMMUTED TO: " << *NewMI;
                  // If the instruction changed to commute it, update livevar.
                  if (NewMI != mi) {
                    LV->instructionChanged(mi, NewMI); // Update live variables
                    mbbi->insert(mi, NewMI);           // Insert the new inst
                    mbbi->erase(mi);                   // Nuke the old inst.
                    mi = NewMI;
                  }

                  ++NumCommuted;
                  regB = regC;
                  goto InstructionRearranged;
                }
              }
            }

            // If this instruction is potentially convertible to a true
            // three-address instruction,
            if (TID.isConvertibleTo3Addr()) {
              // FIXME: This assumes there are no more operands which are tied
              // to another register.
#ifndef NDEBUG
              for (unsigned i = si + 1, e = TID.getNumOperands(); i < e; ++i)
                assert(TID.getOperandConstraint(i, TOI::TIED_TO) == -1);
#endif

              if (MachineInstr *New=TII->convertToThreeAddress(mbbi, mi, *LV)) {
                DOUT << "2addr: CONVERTING 2-ADDR: " << *mi;
                DOUT << "2addr:         TO 3-ADDR: " << *New;
                bool Sunk = false;

                if (New->findRegisterUseOperand(regB, false, TRI))
                  // FIXME: Temporary workaround. If the new instruction doesn't
                  // uses regB, convertToThreeAddress must have created more
                  // then one instruction.
                  Sunk = Sink3AddrInstruction(mbbi, New, regB, mi);

                mbbi->erase(mi); // Nuke the old inst.

                if (!Sunk) {
                  mi = New;
                  nmi = next(mi);
                }

                ++NumConvertedTo3Addr;
                break; // Done with this instruction.
              }
            }
          }

        InstructionRearranged:
          const TargetRegisterClass* rc = MF.getRegInfo().getRegClass(regA);
          TII->copyRegToReg(*mbbi, mi, regA, regB, rc, rc);

          MachineBasicBlock::iterator prevMi = prior(mi);
          DOUT << "\t\tprepend:\t"; DEBUG(prevMi->print(*cerr.stream(), &TM));

          // Update live variables for regB.
          LiveVariables::VarInfo& varInfoB = LV->getVarInfo(regB);

          // regB is used in this BB.
          varInfoB.UsedBlocks[mbbi->getNumber()] = true;

          if (LV->removeVirtualRegisterKilled(regB, mbbi, mi))
            LV->addVirtualRegisterKilled(regB, prevMi);

          if (LV->removeVirtualRegisterDead(regB, mbbi, mi))
            LV->addVirtualRegisterDead(regB, prevMi);

          // Replace all occurences of regB with regA.
          for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
            if (mi->getOperand(i).isRegister() &&
                mi->getOperand(i).getReg() == regB)
              mi->getOperand(i).setReg(regA);
          }
        }

        assert(mi->getOperand(ti).isDef() && mi->getOperand(si).isUse());
        mi->getOperand(ti).setReg(mi->getOperand(si).getReg());
        MadeChange = true;

        DOUT << "\t\trewrite to:\t"; DEBUG(mi->print(*cerr.stream(), &TM));
      }

      mi = nmi;
    }
  }

  return MadeChange;
}