summaryrefslogtreecommitdiff
path: root/lib/ExecutionEngine/Interpreter/Execution.cpp
blob: 69e746d1591bdc90aceb7455f32e2dd03ea2604b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
//===-- Execution.cpp - Implement code to simulate the program ------------===//
// 
//  This file contains the actual instruction interpreter.
//
//===----------------------------------------------------------------------===//

#include "Interpreter.h"
#include "ExecutionAnnotations.h"
#include "llvm/Module.h"
#include "llvm/Instructions.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Constants.h"
#include "llvm/Assembly/Writer.h"
#include "Support/CommandLine.h"
#include "Support/Statistic.h"
#include <cmath>  // For fmod

Interpreter *TheEE = 0;

namespace {
  Statistic<> NumDynamicInsts("lli", "Number of dynamic instructions executed");

  cl::opt<bool>
  QuietMode("quiet", cl::desc("Do not emit any non-program output"),
	    cl::init(true));

  cl::alias 
  QuietModeA("q", cl::desc("Alias for -quiet"), cl::aliasopt(QuietMode));

  cl::opt<bool>
  ArrayChecksEnabled("array-checks", cl::desc("Enable array bound checks"));
}

// Create a TargetData structure to handle memory addressing and size/alignment
// computations
//
CachedWriter CW;     // Object to accelerate printing of LLVM


//===----------------------------------------------------------------------===//
//                     Value Manipulation code
//===----------------------------------------------------------------------===//

static unsigned getOperandSlot(Value *V) {
  SlotNumber *SN = (SlotNumber*)V->getAnnotation(SlotNumberAID);
  assert(SN && "Operand does not have a slot number annotation!");
  return SN->SlotNum;
}

// Operations used by constant expr implementations...
static GenericValue executeCastOperation(Value *Src, const Type *DestTy,
                                         ExecutionContext &SF);
static GenericValue executeAddInst(GenericValue Src1, GenericValue Src2, 
				   const Type *Ty);


GenericValue Interpreter::getOperandValue(Value *V, ExecutionContext &SF) {
  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
    switch (CE->getOpcode()) {
    case Instruction::Cast:
      return executeCastOperation(CE->getOperand(0), CE->getType(), SF);
    case Instruction::GetElementPtr:
      return TheEE->executeGEPOperation(CE->getOperand(0), CE->op_begin()+1,
					CE->op_end(), SF);
    case Instruction::Add:
      return executeAddInst(getOperandValue(CE->getOperand(0), SF),
                            getOperandValue(CE->getOperand(1), SF),
                            CE->getType());
    default:
      std::cerr << "Unhandled ConstantExpr: " << CE << "\n";
      abort();
      return GenericValue();
    }
  } else if (Constant *CPV = dyn_cast<Constant>(V)) {
    return TheEE->getConstantValue(CPV);
  } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
    return PTOGV(TheEE->getPointerToGlobal(GV));
  } else {
    unsigned TyP = V->getType()->getUniqueID();   // TypePlane for value
    unsigned OpSlot = getOperandSlot(V);
    assert(TyP < SF.Values.size() && 
           OpSlot < SF.Values[TyP].size() && "Value out of range!");
    return SF.Values[TyP][getOperandSlot(V)];
  }
}

static void SetValue(Value *V, GenericValue Val, ExecutionContext &SF) {
  unsigned TyP = V->getType()->getUniqueID();   // TypePlane for value

  //std::cout << "Setting value: " << &SF.Values[TyP][getOperandSlot(V)]<< "\n";
  SF.Values[TyP][getOperandSlot(V)] = Val;
}

//===----------------------------------------------------------------------===//
//                    Annotation Wrangling code
//===----------------------------------------------------------------------===//

void Interpreter::initializeExecutionEngine() {
  TheEE = this;
}

//===----------------------------------------------------------------------===//
//                    Binary Instruction Implementations
//===----------------------------------------------------------------------===//

#define IMPLEMENT_BINARY_OPERATOR(OP, TY) \
   case Type::TY##TyID: Dest.TY##Val = Src1.TY##Val OP Src2.TY##Val; break

static GenericValue executeAddInst(GenericValue Src1, GenericValue Src2, 
				   const Type *Ty) {
  GenericValue Dest;
  switch (Ty->getPrimitiveID()) {
    IMPLEMENT_BINARY_OPERATOR(+, UByte);
    IMPLEMENT_BINARY_OPERATOR(+, SByte);
    IMPLEMENT_BINARY_OPERATOR(+, UShort);
    IMPLEMENT_BINARY_OPERATOR(+, Short);
    IMPLEMENT_BINARY_OPERATOR(+, UInt);
    IMPLEMENT_BINARY_OPERATOR(+, Int);
    IMPLEMENT_BINARY_OPERATOR(+, ULong);
    IMPLEMENT_BINARY_OPERATOR(+, Long);
    IMPLEMENT_BINARY_OPERATOR(+, Float);
    IMPLEMENT_BINARY_OPERATOR(+, Double);
  default:
    std::cout << "Unhandled type for Add instruction: " << *Ty << "\n";
    abort();
  }
  return Dest;
}

static GenericValue executeSubInst(GenericValue Src1, GenericValue Src2, 
				   const Type *Ty) {
  GenericValue Dest;
  switch (Ty->getPrimitiveID()) {
    IMPLEMENT_BINARY_OPERATOR(-, UByte);
    IMPLEMENT_BINARY_OPERATOR(-, SByte);
    IMPLEMENT_BINARY_OPERATOR(-, UShort);
    IMPLEMENT_BINARY_OPERATOR(-, Short);
    IMPLEMENT_BINARY_OPERATOR(-, UInt);
    IMPLEMENT_BINARY_OPERATOR(-, Int);
    IMPLEMENT_BINARY_OPERATOR(-, ULong);
    IMPLEMENT_BINARY_OPERATOR(-, Long);
    IMPLEMENT_BINARY_OPERATOR(-, Float);
    IMPLEMENT_BINARY_OPERATOR(-, Double);
  default:
    std::cout << "Unhandled type for Sub instruction: " << *Ty << "\n";
    abort();
  }
  return Dest;
}

static GenericValue executeMulInst(GenericValue Src1, GenericValue Src2, 
				   const Type *Ty) {
  GenericValue Dest;
  switch (Ty->getPrimitiveID()) {
    IMPLEMENT_BINARY_OPERATOR(*, UByte);
    IMPLEMENT_BINARY_OPERATOR(*, SByte);
    IMPLEMENT_BINARY_OPERATOR(*, UShort);
    IMPLEMENT_BINARY_OPERATOR(*, Short);
    IMPLEMENT_BINARY_OPERATOR(*, UInt);
    IMPLEMENT_BINARY_OPERATOR(*, Int);
    IMPLEMENT_BINARY_OPERATOR(*, ULong);
    IMPLEMENT_BINARY_OPERATOR(*, Long);
    IMPLEMENT_BINARY_OPERATOR(*, Float);
    IMPLEMENT_BINARY_OPERATOR(*, Double);
  default:
    std::cout << "Unhandled type for Mul instruction: " << Ty << "\n";
    abort();
  }
  return Dest;
}

static GenericValue executeDivInst(GenericValue Src1, GenericValue Src2, 
				   const Type *Ty) {
  GenericValue Dest;
  switch (Ty->getPrimitiveID()) {
    IMPLEMENT_BINARY_OPERATOR(/, UByte);
    IMPLEMENT_BINARY_OPERATOR(/, SByte);
    IMPLEMENT_BINARY_OPERATOR(/, UShort);
    IMPLEMENT_BINARY_OPERATOR(/, Short);
    IMPLEMENT_BINARY_OPERATOR(/, UInt);
    IMPLEMENT_BINARY_OPERATOR(/, Int);
    IMPLEMENT_BINARY_OPERATOR(/, ULong);
    IMPLEMENT_BINARY_OPERATOR(/, Long);
    IMPLEMENT_BINARY_OPERATOR(/, Float);
    IMPLEMENT_BINARY_OPERATOR(/, Double);
  default:
    std::cout << "Unhandled type for Div instruction: " << *Ty << "\n";
    abort();
  }
  return Dest;
}

static GenericValue executeRemInst(GenericValue Src1, GenericValue Src2, 
				   const Type *Ty) {
  GenericValue Dest;
  switch (Ty->getPrimitiveID()) {
    IMPLEMENT_BINARY_OPERATOR(%, UByte);
    IMPLEMENT_BINARY_OPERATOR(%, SByte);
    IMPLEMENT_BINARY_OPERATOR(%, UShort);
    IMPLEMENT_BINARY_OPERATOR(%, Short);
    IMPLEMENT_BINARY_OPERATOR(%, UInt);
    IMPLEMENT_BINARY_OPERATOR(%, Int);
    IMPLEMENT_BINARY_OPERATOR(%, ULong);
    IMPLEMENT_BINARY_OPERATOR(%, Long);
  case Type::FloatTyID:
    Dest.FloatVal = fmod(Src1.FloatVal, Src2.FloatVal);
    break;
  case Type::DoubleTyID:
    Dest.DoubleVal = fmod(Src1.DoubleVal, Src2.DoubleVal);
    break;
  default:
    std::cout << "Unhandled type for Rem instruction: " << *Ty << "\n";
    abort();
  }
  return Dest;
}

static GenericValue executeAndInst(GenericValue Src1, GenericValue Src2, 
				   const Type *Ty) {
  GenericValue Dest;
  switch (Ty->getPrimitiveID()) {
    IMPLEMENT_BINARY_OPERATOR(&, Bool);
    IMPLEMENT_BINARY_OPERATOR(&, UByte);
    IMPLEMENT_BINARY_OPERATOR(&, SByte);
    IMPLEMENT_BINARY_OPERATOR(&, UShort);
    IMPLEMENT_BINARY_OPERATOR(&, Short);
    IMPLEMENT_BINARY_OPERATOR(&, UInt);
    IMPLEMENT_BINARY_OPERATOR(&, Int);
    IMPLEMENT_BINARY_OPERATOR(&, ULong);
    IMPLEMENT_BINARY_OPERATOR(&, Long);
  default:
    std::cout << "Unhandled type for And instruction: " << *Ty << "\n";
    abort();
  }
  return Dest;
}


static GenericValue executeOrInst(GenericValue Src1, GenericValue Src2, 
                                  const Type *Ty) {
  GenericValue Dest;
  switch (Ty->getPrimitiveID()) {
    IMPLEMENT_BINARY_OPERATOR(|, Bool);
    IMPLEMENT_BINARY_OPERATOR(|, UByte);
    IMPLEMENT_BINARY_OPERATOR(|, SByte);
    IMPLEMENT_BINARY_OPERATOR(|, UShort);
    IMPLEMENT_BINARY_OPERATOR(|, Short);
    IMPLEMENT_BINARY_OPERATOR(|, UInt);
    IMPLEMENT_BINARY_OPERATOR(|, Int);
    IMPLEMENT_BINARY_OPERATOR(|, ULong);
    IMPLEMENT_BINARY_OPERATOR(|, Long);
  default:
    std::cout << "Unhandled type for Or instruction: " << *Ty << "\n";
    abort();
  }
  return Dest;
}


static GenericValue executeXorInst(GenericValue Src1, GenericValue Src2, 
                                   const Type *Ty) {
  GenericValue Dest;
  switch (Ty->getPrimitiveID()) {
    IMPLEMENT_BINARY_OPERATOR(^, Bool);
    IMPLEMENT_BINARY_OPERATOR(^, UByte);
    IMPLEMENT_BINARY_OPERATOR(^, SByte);
    IMPLEMENT_BINARY_OPERATOR(^, UShort);
    IMPLEMENT_BINARY_OPERATOR(^, Short);
    IMPLEMENT_BINARY_OPERATOR(^, UInt);
    IMPLEMENT_BINARY_OPERATOR(^, Int);
    IMPLEMENT_BINARY_OPERATOR(^, ULong);
    IMPLEMENT_BINARY_OPERATOR(^, Long);
  default:
    std::cout << "Unhandled type for Xor instruction: " << *Ty << "\n";
    abort();
  }
  return Dest;
}


#define IMPLEMENT_SETCC(OP, TY) \
   case Type::TY##TyID: Dest.BoolVal = Src1.TY##Val OP Src2.TY##Val; break

// Handle pointers specially because they must be compared with only as much
// width as the host has.  We _do not_ want to be comparing 64 bit values when
// running on a 32-bit target, otherwise the upper 32 bits might mess up
// comparisons if they contain garbage.
#define IMPLEMENT_POINTERSETCC(OP) \
   case Type::PointerTyID: \
        Dest.BoolVal = (void*)(intptr_t)Src1.PointerVal OP \
                       (void*)(intptr_t)Src2.PointerVal; break

static GenericValue executeSetEQInst(GenericValue Src1, GenericValue Src2, 
				     const Type *Ty) {
  GenericValue Dest;
  switch (Ty->getPrimitiveID()) {
    IMPLEMENT_SETCC(==, UByte);
    IMPLEMENT_SETCC(==, SByte);
    IMPLEMENT_SETCC(==, UShort);
    IMPLEMENT_SETCC(==, Short);
    IMPLEMENT_SETCC(==, UInt);
    IMPLEMENT_SETCC(==, Int);
    IMPLEMENT_SETCC(==, ULong);
    IMPLEMENT_SETCC(==, Long);
    IMPLEMENT_SETCC(==, Float);
    IMPLEMENT_SETCC(==, Double);
    IMPLEMENT_POINTERSETCC(==);
  default:
    std::cout << "Unhandled type for SetEQ instruction: " << *Ty << "\n";
    abort();
  }
  return Dest;
}

static GenericValue executeSetNEInst(GenericValue Src1, GenericValue Src2, 
				     const Type *Ty) {
  GenericValue Dest;
  switch (Ty->getPrimitiveID()) {
    IMPLEMENT_SETCC(!=, UByte);
    IMPLEMENT_SETCC(!=, SByte);
    IMPLEMENT_SETCC(!=, UShort);
    IMPLEMENT_SETCC(!=, Short);
    IMPLEMENT_SETCC(!=, UInt);
    IMPLEMENT_SETCC(!=, Int);
    IMPLEMENT_SETCC(!=, ULong);
    IMPLEMENT_SETCC(!=, Long);
    IMPLEMENT_SETCC(!=, Float);
    IMPLEMENT_SETCC(!=, Double);
    IMPLEMENT_POINTERSETCC(!=);

  default:
    std::cout << "Unhandled type for SetNE instruction: " << *Ty << "\n";
    abort();
  }
  return Dest;
}

static GenericValue executeSetLEInst(GenericValue Src1, GenericValue Src2, 
				     const Type *Ty) {
  GenericValue Dest;
  switch (Ty->getPrimitiveID()) {
    IMPLEMENT_SETCC(<=, UByte);
    IMPLEMENT_SETCC(<=, SByte);
    IMPLEMENT_SETCC(<=, UShort);
    IMPLEMENT_SETCC(<=, Short);
    IMPLEMENT_SETCC(<=, UInt);
    IMPLEMENT_SETCC(<=, Int);
    IMPLEMENT_SETCC(<=, ULong);
    IMPLEMENT_SETCC(<=, Long);
    IMPLEMENT_SETCC(<=, Float);
    IMPLEMENT_SETCC(<=, Double);
    IMPLEMENT_POINTERSETCC(<=);
  default:
    std::cout << "Unhandled type for SetLE instruction: " << Ty << "\n";
    abort();
  }
  return Dest;
}

static GenericValue executeSetGEInst(GenericValue Src1, GenericValue Src2, 
				     const Type *Ty) {
  GenericValue Dest;
  switch (Ty->getPrimitiveID()) {
    IMPLEMENT_SETCC(>=, UByte);
    IMPLEMENT_SETCC(>=, SByte);
    IMPLEMENT_SETCC(>=, UShort);
    IMPLEMENT_SETCC(>=, Short);
    IMPLEMENT_SETCC(>=, UInt);
    IMPLEMENT_SETCC(>=, Int);
    IMPLEMENT_SETCC(>=, ULong);
    IMPLEMENT_SETCC(>=, Long);
    IMPLEMENT_SETCC(>=, Float);
    IMPLEMENT_SETCC(>=, Double);
    IMPLEMENT_POINTERSETCC(>=);
  default:
    std::cout << "Unhandled type for SetGE instruction: " << *Ty << "\n";
    abort();
  }
  return Dest;
}

static GenericValue executeSetLTInst(GenericValue Src1, GenericValue Src2, 
				     const Type *Ty) {
  GenericValue Dest;
  switch (Ty->getPrimitiveID()) {
    IMPLEMENT_SETCC(<, UByte);
    IMPLEMENT_SETCC(<, SByte);
    IMPLEMENT_SETCC(<, UShort);
    IMPLEMENT_SETCC(<, Short);
    IMPLEMENT_SETCC(<, UInt);
    IMPLEMENT_SETCC(<, Int);
    IMPLEMENT_SETCC(<, ULong);
    IMPLEMENT_SETCC(<, Long);
    IMPLEMENT_SETCC(<, Float);
    IMPLEMENT_SETCC(<, Double);
    IMPLEMENT_POINTERSETCC(<);
  default:
    std::cout << "Unhandled type for SetLT instruction: " << *Ty << "\n";
    abort();
  }
  return Dest;
}

static GenericValue executeSetGTInst(GenericValue Src1, GenericValue Src2, 
				     const Type *Ty) {
  GenericValue Dest;
  switch (Ty->getPrimitiveID()) {
    IMPLEMENT_SETCC(>, UByte);
    IMPLEMENT_SETCC(>, SByte);
    IMPLEMENT_SETCC(>, UShort);
    IMPLEMENT_SETCC(>, Short);
    IMPLEMENT_SETCC(>, UInt);
    IMPLEMENT_SETCC(>, Int);
    IMPLEMENT_SETCC(>, ULong);
    IMPLEMENT_SETCC(>, Long);
    IMPLEMENT_SETCC(>, Float);
    IMPLEMENT_SETCC(>, Double);
    IMPLEMENT_POINTERSETCC(>);
  default:
    std::cout << "Unhandled type for SetGT instruction: " << *Ty << "\n";
    abort();
  }
  return Dest;
}

void Interpreter::visitBinaryOperator(BinaryOperator &I) {
  ExecutionContext &SF = ECStack.back();
  const Type *Ty    = I.getOperand(0)->getType();
  GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
  GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
  GenericValue R;   // Result

  switch (I.getOpcode()) {
  case Instruction::Add:   R = executeAddInst  (Src1, Src2, Ty); break;
  case Instruction::Sub:   R = executeSubInst  (Src1, Src2, Ty); break;
  case Instruction::Mul:   R = executeMulInst  (Src1, Src2, Ty); break;
  case Instruction::Div:   R = executeDivInst  (Src1, Src2, Ty); break;
  case Instruction::Rem:   R = executeRemInst  (Src1, Src2, Ty); break;
  case Instruction::And:   R = executeAndInst  (Src1, Src2, Ty); break;
  case Instruction::Or:    R = executeOrInst   (Src1, Src2, Ty); break;
  case Instruction::Xor:   R = executeXorInst  (Src1, Src2, Ty); break;
  case Instruction::SetEQ: R = executeSetEQInst(Src1, Src2, Ty); break;
  case Instruction::SetNE: R = executeSetNEInst(Src1, Src2, Ty); break;
  case Instruction::SetLE: R = executeSetLEInst(Src1, Src2, Ty); break;
  case Instruction::SetGE: R = executeSetGEInst(Src1, Src2, Ty); break;
  case Instruction::SetLT: R = executeSetLTInst(Src1, Src2, Ty); break;
  case Instruction::SetGT: R = executeSetGTInst(Src1, Src2, Ty); break;
  default:
    std::cout << "Don't know how to handle this binary operator!\n-->" << I;
    abort();
  }

  SetValue(&I, R, SF);
}

//===----------------------------------------------------------------------===//
//                     Terminator Instruction Implementations
//===----------------------------------------------------------------------===//

void Interpreter::exitCalled(GenericValue GV) {
  if (!QuietMode) {
    std::cout << "Program returned ";
    print(Type::IntTy, GV);
    std::cout << " via 'void exit(int)'\n";
  }

  ExitCode = GV.SByteVal;
  ECStack.clear();
}

void Interpreter::visitReturnInst(ReturnInst &I) {
  ExecutionContext &SF = ECStack.back();
  const Type *RetTy = 0;
  GenericValue Result;

  // Save away the return value... (if we are not 'ret void')
  if (I.getNumOperands()) {
    RetTy  = I.getReturnValue()->getType();
    Result = getOperandValue(I.getReturnValue(), SF);
  }

  // Save previously executing meth
  const Function *M = ECStack.back().CurFunction;

  // Pop the current stack frame... this invalidates SF
  ECStack.pop_back();

  if (ECStack.empty()) {  // Finished main.  Put result into exit code...
    if (RetTy) {          // Nonvoid return type?
      if (!QuietMode) {
        CW << "Function " << M->getType() << " \"" << M->getName()
           << "\" returned ";
        print(RetTy, Result);
        std::cout << "\n";
      }

      if (RetTy->isIntegral())
	ExitCode = Result.IntVal;   // Capture the exit code of the program
    } else {
      ExitCode = 0;
    }
    return;
  }

  // If we have a previous stack frame, and we have a previous call, fill in
  // the return value...
  //
  ExecutionContext &NewSF = ECStack.back();
  if (NewSF.Caller) {
    if (NewSF.Caller->getType() != Type::VoidTy)             // Save result...
      SetValue(NewSF.Caller, Result, NewSF);

    NewSF.Caller = 0;          // We returned from the call...
  } else if (!QuietMode) {
    // This must be a function that is executing because of a user 'call'
    // instruction.
    CW << "Function " << M->getType() << " \"" << M->getName()
       << "\" returned ";
    print(RetTy, Result);
    std::cout << "\n";
  }
}

void Interpreter::visitBranchInst(BranchInst &I) {
  ExecutionContext &SF = ECStack.back();
  BasicBlock *Dest;

  Dest = I.getSuccessor(0);          // Uncond branches have a fixed dest...
  if (!I.isUnconditional()) {
    Value *Cond = I.getCondition();
    if (getOperandValue(Cond, SF).BoolVal == 0) // If false cond...
      Dest = I.getSuccessor(1);    
  }
  SwitchToNewBasicBlock(Dest, SF);
}

void Interpreter::visitSwitchInst(SwitchInst &I) {
  ExecutionContext &SF = ECStack.back();
  GenericValue CondVal = getOperandValue(I.getOperand(0), SF);
  const Type *ElTy = I.getOperand(0)->getType();

  // Check to see if any of the cases match...
  BasicBlock *Dest = 0;
  for (unsigned i = 2, e = I.getNumOperands(); i != e; i += 2)
    if (executeSetEQInst(CondVal,
                         getOperandValue(I.getOperand(i), SF), ElTy).BoolVal) {
      Dest = cast<BasicBlock>(I.getOperand(i+1));
      break;
    }
  
  if (!Dest) Dest = I.getDefaultDest();   // No cases matched: use default
  SwitchToNewBasicBlock(Dest, SF);
}

// SwitchToNewBasicBlock - This method is used to jump to a new basic block.
// This function handles the actual updating of block and instruction iterators
// as well as execution of all of the PHI nodes in the destination block.
//
// This method does this because all of the PHI nodes must be executed
// atomically, reading their inputs before any of the results are updated.  Not
// doing this can cause problems if the PHI nodes depend on other PHI nodes for
// their inputs.  If the input PHI node is updated before it is read, incorrect
// results can happen.  Thus we use a two phase approach.
//
void Interpreter::SwitchToNewBasicBlock(BasicBlock *Dest, ExecutionContext &SF){
  BasicBlock *PrevBB = SF.CurBB;      // Remember where we came from...
  SF.CurBB   = Dest;                  // Update CurBB to branch destination
  SF.CurInst = SF.CurBB->begin();     // Update new instruction ptr...

  if (!isa<PHINode>(SF.CurInst)) return;  // Nothing fancy to do

  // Loop over all of the PHI nodes in the current block, reading their inputs.
  std::vector<GenericValue> ResultValues;

  for (; PHINode *PN = dyn_cast<PHINode>(SF.CurInst); ++SF.CurInst) {
    if (Trace) CW << "Run:" << PN;

    // Search for the value corresponding to this previous bb...
    int i = PN->getBasicBlockIndex(PrevBB);
    assert(i != -1 && "PHINode doesn't contain entry for predecessor??");
    Value *IncomingValue = PN->getIncomingValue(i);
    
    // Save the incoming value for this PHI node...
    ResultValues.push_back(getOperandValue(IncomingValue, SF));
  }

  // Now loop over all of the PHI nodes setting their values...
  SF.CurInst = SF.CurBB->begin();
  for (unsigned i = 0; PHINode *PN = dyn_cast<PHINode>(SF.CurInst);
       ++SF.CurInst, ++i)
    SetValue(PN, ResultValues[i], SF);
}


//===----------------------------------------------------------------------===//
//                     Memory Instruction Implementations
//===----------------------------------------------------------------------===//

void Interpreter::visitAllocationInst(AllocationInst &I) {
  ExecutionContext &SF = ECStack.back();

  const Type *Ty = I.getType()->getElementType();  // Type to be allocated

  // Get the number of elements being allocated by the array...
  unsigned NumElements = getOperandValue(I.getOperand(0), SF).UIntVal;

  // Allocate enough memory to hold the type...
  // FIXME: Don't use CALLOC, use a tainted malloc.
  void *Memory = calloc(NumElements, TD.getTypeSize(Ty));

  GenericValue Result = PTOGV(Memory);
  assert(Result.PointerVal != 0 && "Null pointer returned by malloc!");
  SetValue(&I, Result, SF);

  if (I.getOpcode() == Instruction::Alloca)
    ECStack.back().Allocas.add(Memory);
}

void Interpreter::visitFreeInst(FreeInst &I) {
  ExecutionContext &SF = ECStack.back();
  assert(isa<PointerType>(I.getOperand(0)->getType()) && "Freeing nonptr?");
  GenericValue Value = getOperandValue(I.getOperand(0), SF);
  // TODO: Check to make sure memory is allocated
  free(GVTOP(Value));   // Free memory
}


// getElementOffset - The workhorse for getelementptr.
//
GenericValue Interpreter::executeGEPOperation(Value *Ptr, User::op_iterator I,
					      User::op_iterator E,
					      ExecutionContext &SF) {
  assert(isa<PointerType>(Ptr->getType()) &&
         "Cannot getElementOffset of a nonpointer type!");

  PointerTy Total = 0;
  const Type *Ty = Ptr->getType();

  for (; I != E; ++I) {
    if (const StructType *STy = dyn_cast<StructType>(Ty)) {
      const StructLayout *SLO = TD.getStructLayout(STy);
      
      // Indices must be ubyte constants...
      const ConstantUInt *CPU = cast<ConstantUInt>(*I);
      assert(CPU->getType() == Type::UByteTy);
      unsigned Index = CPU->getValue();
      
      Total += SLO->MemberOffsets[Index];
      Ty = STy->getElementTypes()[Index];
    } else if (const SequentialType *ST = cast<SequentialType>(Ty)) {

      // Get the index number for the array... which must be long type...
      assert((*I)->getType() == Type::LongTy);
      unsigned Idx = getOperandValue(*I, SF).LongVal;
      if (const ArrayType *AT = dyn_cast<ArrayType>(ST))
        if (Idx >= AT->getNumElements() && ArrayChecksEnabled) {
          std::cerr << "Out of range memory access to element #" << Idx
                    << " of a " << AT->getNumElements() << " element array."
                    << " Subscript #" << *I << "\n";
          abort();
        }

      Ty = ST->getElementType();
      unsigned Size = TD.getTypeSize(Ty);
      Total += Size*Idx;
    }  
  }

  GenericValue Result;
  Result.PointerVal = getOperandValue(Ptr, SF).PointerVal + Total;
  return Result;
}

void Interpreter::visitGetElementPtrInst(GetElementPtrInst &I) {
  ExecutionContext &SF = ECStack.back();
  SetValue(&I, TheEE->executeGEPOperation(I.getPointerOperand(),
                                   I.idx_begin(), I.idx_end(), SF), SF);
}

void Interpreter::visitLoadInst(LoadInst &I) {
  ExecutionContext &SF = ECStack.back();
  GenericValue SRC = getOperandValue(I.getPointerOperand(), SF);
  GenericValue *Ptr = (GenericValue*)GVTOP(SRC);
  GenericValue Result = LoadValueFromMemory(Ptr, I.getType());
  SetValue(&I, Result, SF);
}

void Interpreter::visitStoreInst(StoreInst &I) {
  ExecutionContext &SF = ECStack.back();
  GenericValue Val = getOperandValue(I.getOperand(0), SF);
  GenericValue SRC = getOperandValue(I.getPointerOperand(), SF);
  StoreValueToMemory(Val, (GenericValue *)GVTOP(SRC),
                     I.getOperand(0)->getType());
}



//===----------------------------------------------------------------------===//
//                 Miscellaneous Instruction Implementations
//===----------------------------------------------------------------------===//

void Interpreter::visitCallInst(CallInst &I) {
  ExecutionContext &SF = ECStack.back();
  SF.Caller = &I;
  std::vector<GenericValue> ArgVals;
  ArgVals.reserve(I.getNumOperands()-1);
  for (unsigned i = 1; i < I.getNumOperands(); ++i) {
    ArgVals.push_back(getOperandValue(I.getOperand(i), SF));
    // Promote all integral types whose size is < sizeof(int) into ints.  We do
    // this by zero or sign extending the value as appropriate according to the
    // source type.
    if (I.getOperand(i)->getType()->isIntegral() &&
	I.getOperand(i)->getType()->getPrimitiveSize() < 4) {
      const Type *Ty = I.getOperand(i)->getType();
      if (Ty == Type::ShortTy)
	ArgVals.back().IntVal = ArgVals.back().ShortVal;
      else if (Ty == Type::UShortTy)
	ArgVals.back().UIntVal = ArgVals.back().UShortVal;
      else if (Ty == Type::SByteTy)
	ArgVals.back().IntVal = ArgVals.back().SByteVal;
      else if (Ty == Type::UByteTy)
	ArgVals.back().UIntVal = ArgVals.back().UByteVal;
      else if (Ty == Type::BoolTy)
	ArgVals.back().UIntVal = ArgVals.back().BoolVal;
      else
	assert(0 && "Unknown type!");
    }
  }

  // To handle indirect calls, we must get the pointer value from the argument 
  // and treat it as a function pointer.
  GenericValue SRC = getOperandValue(I.getCalledValue(), SF);  
  callFunction((Function*)GVTOP(SRC), ArgVals);
}

#define IMPLEMENT_SHIFT(OP, TY) \
   case Type::TY##TyID: Dest.TY##Val = Src1.TY##Val OP Src2.UByteVal; break

void Interpreter::visitShl(ShiftInst &I) {
  ExecutionContext &SF = ECStack.back();
  const Type *Ty    = I.getOperand(0)->getType();
  GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
  GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
  GenericValue Dest;

  switch (Ty->getPrimitiveID()) {
    IMPLEMENT_SHIFT(<<, UByte);
    IMPLEMENT_SHIFT(<<, SByte);
    IMPLEMENT_SHIFT(<<, UShort);
    IMPLEMENT_SHIFT(<<, Short);
    IMPLEMENT_SHIFT(<<, UInt);
    IMPLEMENT_SHIFT(<<, Int);
    IMPLEMENT_SHIFT(<<, ULong);
    IMPLEMENT_SHIFT(<<, Long);
  default:
    std::cout << "Unhandled type for Shl instruction: " << *Ty << "\n";
  }
  SetValue(&I, Dest, SF);
}

void Interpreter::visitShr(ShiftInst &I) {
  ExecutionContext &SF = ECStack.back();
  const Type *Ty    = I.getOperand(0)->getType();
  GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
  GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
  GenericValue Dest;

  switch (Ty->getPrimitiveID()) {
    IMPLEMENT_SHIFT(>>, UByte);
    IMPLEMENT_SHIFT(>>, SByte);
    IMPLEMENT_SHIFT(>>, UShort);
    IMPLEMENT_SHIFT(>>, Short);
    IMPLEMENT_SHIFT(>>, UInt);
    IMPLEMENT_SHIFT(>>, Int);
    IMPLEMENT_SHIFT(>>, ULong);
    IMPLEMENT_SHIFT(>>, Long);
  default:
    std::cout << "Unhandled type for Shr instruction: " << *Ty << "\n";
    abort();
  }
  SetValue(&I, Dest, SF);
}

#define IMPLEMENT_CAST(DTY, DCTY, STY) \
   case Type::STY##TyID: Dest.DTY##Val = DCTY Src.STY##Val; break;

#define IMPLEMENT_CAST_CASE_START(DESTTY, DESTCTY)    \
  case Type::DESTTY##TyID:                      \
    switch (SrcTy->getPrimitiveID()) {          \
      IMPLEMENT_CAST(DESTTY, DESTCTY, Bool);    \
      IMPLEMENT_CAST(DESTTY, DESTCTY, UByte);   \
      IMPLEMENT_CAST(DESTTY, DESTCTY, SByte);   \
      IMPLEMENT_CAST(DESTTY, DESTCTY, UShort);  \
      IMPLEMENT_CAST(DESTTY, DESTCTY, Short);   \
      IMPLEMENT_CAST(DESTTY, DESTCTY, UInt);    \
      IMPLEMENT_CAST(DESTTY, DESTCTY, Int);     \
      IMPLEMENT_CAST(DESTTY, DESTCTY, ULong);   \
      IMPLEMENT_CAST(DESTTY, DESTCTY, Long);    \
      IMPLEMENT_CAST(DESTTY, DESTCTY, Pointer);

#define IMPLEMENT_CAST_CASE_FP_IMP(DESTTY, DESTCTY) \
      IMPLEMENT_CAST(DESTTY, DESTCTY, Float);   \
      IMPLEMENT_CAST(DESTTY, DESTCTY, Double)

#define IMPLEMENT_CAST_CASE_END()    \
    default: std::cout << "Unhandled cast: " << SrcTy << " to " << Ty << "\n"; \
      abort();                                  \
    }                                           \
    break

#define IMPLEMENT_CAST_CASE(DESTTY, DESTCTY) \
   IMPLEMENT_CAST_CASE_START(DESTTY, DESTCTY);   \
   IMPLEMENT_CAST_CASE_FP_IMP(DESTTY, DESTCTY); \
   IMPLEMENT_CAST_CASE_END()

GenericValue Interpreter::executeCastOperation(Value *SrcVal, const Type *Ty,
					       ExecutionContext &SF) {
  const Type *SrcTy = SrcVal->getType();
  GenericValue Dest, Src = getOperandValue(SrcVal, SF);

  switch (Ty->getPrimitiveID()) {
    IMPLEMENT_CAST_CASE(UByte  , (unsigned char));
    IMPLEMENT_CAST_CASE(SByte  , (  signed char));
    IMPLEMENT_CAST_CASE(UShort , (unsigned short));
    IMPLEMENT_CAST_CASE(Short  , (  signed short));
    IMPLEMENT_CAST_CASE(UInt   , (unsigned int ));
    IMPLEMENT_CAST_CASE(Int    , (  signed int ));
    IMPLEMENT_CAST_CASE(ULong  , (uint64_t));
    IMPLEMENT_CAST_CASE(Long   , ( int64_t));
    IMPLEMENT_CAST_CASE(Pointer, (PointerTy));
    IMPLEMENT_CAST_CASE(Float  , (float));
    IMPLEMENT_CAST_CASE(Double , (double));
    IMPLEMENT_CAST_CASE(Bool   , (bool));
  default:
    std::cout << "Unhandled dest type for cast instruction: " << *Ty << "\n";
    abort();
  }

  return Dest;
}


void Interpreter::visitCastInst(CastInst &I) {
  ExecutionContext &SF = ECStack.back();
  SetValue(&I, executeCastOperation(I.getOperand(0), I.getType(), SF), SF);
}

void Interpreter::visitVANextInst(VANextInst &I) {
  ExecutionContext &SF = ECStack.back();

  // Get the incoming valist element.  LLI treats the valist as an integer.
  GenericValue VAList = getOperandValue(I.getOperand(0), SF);
  
  // Move to the next operand.
  unsigned Argument = VAList.IntVal++;
  assert(Argument < SF.VarArgs.size() &&
         "Accessing past the last vararg argument!");
  SetValue(&I, VAList, SF);
}

//===----------------------------------------------------------------------===//
//                        Dispatch and Execution Code
//===----------------------------------------------------------------------===//

FunctionInfo::FunctionInfo(Function *F) {
  // Assign slot numbers to the function arguments...
  for (Function::const_aiterator AI = F->abegin(), E = F->aend(); AI != E; ++AI)
    AI->addAnnotation(new SlotNumber(getValueSlot(AI)));

  // Iterate over all of the instructions...
  unsigned InstNum = 0;
  for (Function::iterator BB = F->begin(), BBE = F->end(); BB != BBE; ++BB)
    for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE; ++II)
      // For each instruction... Add Annote
      II->addAnnotation(new InstNumber(++InstNum, getValueSlot(II)));
}

unsigned FunctionInfo::getValueSlot(const Value *V) {
  unsigned Plane = V->getType()->getUniqueID();
  if (Plane >= NumPlaneElements.size())
    NumPlaneElements.resize(Plane+1, 0);
  return NumPlaneElements[Plane]++;
}


//===----------------------------------------------------------------------===//
// callFunction - Execute the specified function...
//
void Interpreter::callFunction(Function *F,
                               const std::vector<GenericValue> &ArgVals) {
  assert((ECStack.empty() || ECStack.back().Caller == 0 || 
	  ECStack.back().Caller->getNumOperands()-1 == ArgVals.size()) &&
	 "Incorrect number of arguments passed into function call!");
  if (F->isExternal()) {
    GenericValue Result = callExternalFunction(F, ArgVals);
    const Type *RetTy = F->getReturnType();

    // Copy the result back into the result variable if we are not returning
    // void.
    if (RetTy != Type::VoidTy) {
      if (!ECStack.empty() && ECStack.back().Caller) {
        ExecutionContext &SF = ECStack.back();
        SetValue(SF.Caller, Result, SF);
      
        SF.Caller = 0;          // We returned from the call...
      } else if (!QuietMode) {
        // print it.
        CW << "Function " << F->getType() << " \"" << F->getName()
           << "\" returned ";
        print(RetTy, Result); 
        std::cout << "\n";
        
        if (RetTy->isIntegral())
          ExitCode = Result.IntVal;   // Capture the exit code of the program
      }
    }

    return;
  }

  // Process the function, assigning instruction numbers to the instructions in
  // the function.  Also calculate the number of values for each type slot
  // active.
  //
  FunctionInfo *&FuncInfo = FunctionInfoMap[F];
  if (!FuncInfo) FuncInfo = new FunctionInfo(F);

  // Make a new stack frame... and fill it in.
  ECStack.push_back(ExecutionContext());
  ExecutionContext &StackFrame = ECStack.back();
  StackFrame.CurFunction = F;
  StackFrame.CurBB     = F->begin();
  StackFrame.CurInst   = StackFrame.CurBB->begin();
  StackFrame.FuncInfo  = FuncInfo;

  // Initialize the values to nothing...
  StackFrame.Values.resize(FuncInfo->NumPlaneElements.size());
  for (unsigned i = 0; i < FuncInfo->NumPlaneElements.size(); ++i) {
    StackFrame.Values[i].resize(FuncInfo->NumPlaneElements[i]);

    // Taint the initial values of stuff
    memset(&StackFrame.Values[i][0], 42,
           FuncInfo->NumPlaneElements[i]*sizeof(GenericValue));
  }


  // Run through the function arguments and initialize their values...
  assert((ArgVals.size() == F->asize() ||
         (ArgVals.size() > F->asize() && F->getFunctionType()->isVarArg())) &&
         "Invalid number of values passed to function invocation!");

  // Handle non-varargs arguments...
  unsigned i = 0;
  for (Function::aiterator AI = F->abegin(), E = F->aend(); AI != E; ++AI, ++i)
    SetValue(AI, ArgVals[i], StackFrame);

  // Handle varargs arguments...
  StackFrame.VarArgs.assign(ArgVals.begin()+i, ArgVals.end());
}

// executeInstruction - Interpret a single instruction & increment the "PC".
//
void Interpreter::executeInstruction() {
  assert(!ECStack.empty() && "No program running, cannot execute inst!");

  ExecutionContext &SF = ECStack.back();  // Current stack frame
  Instruction &I = *SF.CurInst++;         // Increment before execute

  if (Trace) CW << "Run:" << I;

  // Track the number of dynamic instructions executed.
  ++NumDynamicInsts;

  visit(I);   // Dispatch to one of the visit* methods...
  
  // Reset the current frame location to the top of stack
  CurFrame = ECStack.size()-1;
}

void Interpreter::run() {
  while (!ECStack.empty()) {
    // Run an instruction...
    executeInstruction();
  }
}

void Interpreter::printValue(const Type *Ty, GenericValue V) {
  switch (Ty->getPrimitiveID()) {
  case Type::BoolTyID:   std::cout << (V.BoolVal?"true":"false"); break;
  case Type::SByteTyID:
    std::cout << (int)V.SByteVal << " '" << V.SByteVal << "'";  break;
  case Type::UByteTyID:
    std::cout << (unsigned)V.UByteVal << " '" << V.UByteVal << "'";  break;
  case Type::ShortTyID:  std::cout << V.ShortVal;  break;
  case Type::UShortTyID: std::cout << V.UShortVal; break;
  case Type::IntTyID:    std::cout << V.IntVal;    break;
  case Type::UIntTyID:   std::cout << V.UIntVal;   break;
  case Type::LongTyID:   std::cout << (long)V.LongVal;   break;
  case Type::ULongTyID:  std::cout << (unsigned long)V.ULongVal;  break;
  case Type::FloatTyID:  std::cout << V.FloatVal;  break;
  case Type::DoubleTyID: std::cout << V.DoubleVal; break;
  case Type::PointerTyID:std::cout << (void*)GVTOP(V); break;
  default:
    std::cout << "- Don't know how to print value of this type!";
    break;
  }
}

void Interpreter::print(const Type *Ty, GenericValue V) {
  CW << Ty << " ";
  printValue(Ty, V);
}