summaryrefslogtreecommitdiff
path: root/lib/ExecutionEngine/JIT/JIT.cpp
blob: 311ec4b47db61f5c67d34c18fec2ac929cf3fb49 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
//===-- JIT.cpp - LLVM Just in Time Compiler ------------------------------===//
// 
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
// 
//===----------------------------------------------------------------------===//
//
// This tool implements a just-in-time compiler for LLVM, allowing direct
// execution of LLVM bytecode in an efficient manner.
//
//===----------------------------------------------------------------------===//

#include "JIT.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/GlobalVariable.h"
#include "llvm/Instructions.h"
#include "llvm/ModuleProvider.h"
#include "llvm/CodeGen/MachineCodeEmitter.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/ExecutionEngine/GenericValue.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetJITInfo.h"
#include "llvm/Support/DynamicLinker.h"
#include <iostream>

using namespace llvm;

JIT::JIT(ModuleProvider *MP, TargetMachine &tm, TargetJITInfo &tji)
  : ExecutionEngine(MP), TM(tm), TJI(tji), PM(MP) {
  setTargetData(TM.getTargetData());

  // Initialize MCE
  MCE = createEmitter(*this);
  
  // Add target data
  PM.add(new TargetData(TM.getTargetData()));

  // Compile LLVM Code down to machine code in the intermediate representation
  TJI.addPassesToJITCompile(PM);

  // Turn the machine code intermediate representation into bytes in memory that
  // may be executed.
  if (TM.addPassesToEmitMachineCode(PM, *MCE)) {
    std::cerr << "Target '" << TM.getName()
              << "' doesn't support machine code emission!\n";
    abort();
  }
}

JIT::~JIT() {
  delete MCE;
  delete &TM;
}

/// run - Start execution with the specified function and arguments.
///
GenericValue JIT::runFunction(Function *F,
                              const std::vector<GenericValue> &ArgValues) {
  assert(F && "Function *F was null at entry to run()");

  void *FPtr = getPointerToFunction(F);
  assert(FPtr && "Pointer to fn's code was null after getPointerToFunction");
  const FunctionType *FTy = F->getFunctionType();
  const Type *RetTy = FTy->getReturnType();

  assert((FTy->getNumParams() <= ArgValues.size() || FTy->isVarArg()) &&
         "Too many arguments passed into function!");
  assert(FTy->getNumParams() == ArgValues.size() &&
         "This doesn't support passing arguments through varargs (yet)!");

  // Handle some common cases first.  These cases correspond to common 'main'
  // prototypes.
  if (RetTy == Type::IntTy || RetTy == Type::UIntTy || RetTy == Type::VoidTy) {
    switch (ArgValues.size()) {
    case 3:
      if ((FTy->getParamType(0) == Type::IntTy || 
           FTy->getParamType(0) == Type::UIntTy) &&
          isa<PointerType>(FTy->getParamType(1)) &&
          isa<PointerType>(FTy->getParamType(2))) {
        int (*PF)(int, char **, const char **) =
          (int(*)(int, char **, const char **))FPtr;
        
        // Call the function.
        GenericValue rv;
        rv.IntVal = PF(ArgValues[0].IntVal, (char **)GVTOP(ArgValues[1]),
                       (const char **)GVTOP(ArgValues[2]));
        return rv;
      }
      break;
    case 2:
      if ((FTy->getParamType(0) == Type::IntTy || 
           FTy->getParamType(0) == Type::UIntTy) &&
          isa<PointerType>(FTy->getParamType(1))) {
        int (*PF)(int, char **) = (int(*)(int, char **))FPtr;
        
        // Call the function.
        GenericValue rv;
        rv.IntVal = PF(ArgValues[0].IntVal, (char **)GVTOP(ArgValues[1]));
        return rv;
      }
      break;
    case 1:
      if (FTy->getNumParams() == 1 &&
          (FTy->getParamType(0) == Type::IntTy || 
           FTy->getParamType(0) == Type::UIntTy)) {
        GenericValue rv;
        int (*PF)(int) = (int(*)(int))FPtr;
        rv.IntVal = PF(ArgValues[0].IntVal);
        return rv;
      }
      break;
    }
  }

  // Handle cases where no arguments are passed first.
  if (ArgValues.empty()) {
    GenericValue rv;
    switch (RetTy->getTypeID()) {
    default: assert(0 && "Unknown return type for function call!");
    case Type::BoolTyID:
      rv.BoolVal = ((bool(*)())FPtr)();
      return rv;
    case Type::SByteTyID:
    case Type::UByteTyID:
      rv.SByteVal = ((char(*)())FPtr)();
      return rv;
    case Type::ShortTyID:
    case Type::UShortTyID:
      rv.ShortVal = ((short(*)())FPtr)();
      return rv;
    case Type::VoidTyID:
    case Type::IntTyID:
    case Type::UIntTyID:
      rv.IntVal = ((int(*)())FPtr)();
      return rv;
    case Type::LongTyID:
    case Type::ULongTyID:
      rv.LongVal = ((int64_t(*)())FPtr)();
      return rv;
    case Type::FloatTyID:
      rv.FloatVal = ((float(*)())FPtr)();
      return rv;
    case Type::DoubleTyID:
      rv.DoubleVal = ((double(*)())FPtr)();
      return rv;
    case Type::PointerTyID:
      return PTOGV(((void*(*)())FPtr)());
    }
  }

  // Okay, this is not one of our quick and easy cases.  Because we don't have a
  // full FFI, we have to codegen a nullary stub function that just calls the
  // function we are interested in, passing in constants for all of the
  // arguments.  Make this function and return.

  // First, create the function.
  FunctionType *STy=FunctionType::get(RetTy, std::vector<const Type*>(), false);
  Function *Stub = new Function(STy, Function::InternalLinkage, "",
                                F->getParent());

  // Insert a basic block.
  BasicBlock *StubBB = new BasicBlock("", Stub);

  // Convert all of the GenericValue arguments over to constants.  Note that we
  // currently don't support varargs.
  std::vector<Value*> Args;
  for (unsigned i = 0, e = ArgValues.size(); i != e; ++i) {
    Constant *C = 0;
    const Type *ArgTy = FTy->getParamType(i);
    const GenericValue &AV = ArgValues[i];
    switch (ArgTy->getTypeID()) {
    default: assert(0 && "Unknown argument type for function call!");
    case Type::BoolTyID:   C = ConstantBool::get(AV.BoolVal); break;
    case Type::SByteTyID:  C = ConstantSInt::get(ArgTy, AV.SByteVal);  break;
    case Type::UByteTyID:  C = ConstantUInt::get(ArgTy, AV.UByteVal);  break;
    case Type::ShortTyID:  C = ConstantSInt::get(ArgTy, AV.ShortVal);  break;
    case Type::UShortTyID: C = ConstantUInt::get(ArgTy, AV.UShortVal); break;
    case Type::IntTyID:    C = ConstantSInt::get(ArgTy, AV.IntVal);    break;
    case Type::UIntTyID:   C = ConstantUInt::get(ArgTy, AV.UIntVal);   break;
    case Type::LongTyID:   C = ConstantSInt::get(ArgTy, AV.LongVal);   break;
    case Type::ULongTyID:  C = ConstantUInt::get(ArgTy, AV.ULongVal);  break;
    case Type::FloatTyID:  C = ConstantFP  ::get(ArgTy, AV.FloatVal);  break;
    case Type::DoubleTyID: C = ConstantFP  ::get(ArgTy, AV.DoubleVal); break;
    case Type::PointerTyID:
      void *ArgPtr = GVTOP(AV);
      if (sizeof(void*) == 4) {
        C = ConstantSInt::get(Type::IntTy, (int)(intptr_t)ArgPtr);
      } else {
        C = ConstantSInt::get(Type::LongTy, (intptr_t)ArgPtr);
      }
      C = ConstantExpr::getCast(C, ArgTy);  // Cast the integer to pointer
      break;
    }
    Args.push_back(C);
  }

  Value *TheCall = new CallInst(F, Args, "", StubBB);
  if (TheCall->getType() != Type::VoidTy)
    new ReturnInst(TheCall, StubBB);             // Return result of the call.
  else
    new ReturnInst(StubBB);                      // Just return void.

  // Finally, return the value returned by our nullary stub function.
  return runFunction(Stub, std::vector<GenericValue>());
}

/// runJITOnFunction - Run the FunctionPassManager full of
/// just-in-time compilation passes on F, hopefully filling in
/// GlobalAddress[F] with the address of F's machine code.
///
void JIT::runJITOnFunction(Function *F) {
  static bool isAlreadyCodeGenerating = false;
  assert(!isAlreadyCodeGenerating && "Error: Recursive compilation detected!");

  // JIT the function
  isAlreadyCodeGenerating = true;
  PM.run(*F);
  isAlreadyCodeGenerating = false;

  // If the function referred to a global variable that had not yet been
  // emitted, it allocates memory for the global, but doesn't emit it yet.  Emit
  // all of these globals now.
  while (!PendingGlobals.empty()) {
    const GlobalVariable *GV = PendingGlobals.back();
    PendingGlobals.pop_back();
    EmitGlobalVariable(GV);
  }
}

/// getPointerToFunction - This method is used to get the address of the
/// specified function, compiling it if neccesary.
///
void *JIT::getPointerToFunction(Function *F) {
  if (void *Addr = getPointerToGlobalIfAvailable(F))
    return Addr;   // Check if function already code gen'd

  // Make sure we read in the function if it exists in this Module
  try {
    MP->materializeFunction(F);
  } catch ( std::string& errmsg ) {
    std::cerr << "Error reading bytecode file: " << errmsg << "\n";
    abort();
  } catch (...) {
    std::cerr << "Error reading bytecode file!\n";
    abort();
  }

  if (F->isExternal()) {
    void *Addr = getPointerToNamedFunction(F->getName());
    addGlobalMapping(F, Addr);
    return Addr;
  }

  runJITOnFunction(F);

  void *Addr = getPointerToGlobalIfAvailable(F);
  assert(Addr && "Code generation didn't add function to GlobalAddress table!");
  return Addr;
}

// getPointerToFunctionOrStub - If the specified function has been
// code-gen'd, return a pointer to the function.  If not, compile it, or use
// a stub to implement lazy compilation if available.
//
void *JIT::getPointerToFunctionOrStub(Function *F) {
  // If we have already code generated the function, just return the address.
  if (void *Addr = getPointerToGlobalIfAvailable(F))
    return Addr;

  // If the target supports "stubs" for functions, get a stub now.
  if (void *Ptr = TJI.getJITStubForFunction(F, *MCE))
    return Ptr;

  // Otherwise, if the target doesn't support it, just codegen the function.
  return getPointerToFunction(F);
}

/// getOrEmitGlobalVariable - Return the address of the specified global
/// variable, possibly emitting it to memory if needed.  This is used by the
/// Emitter.
void *JIT::getOrEmitGlobalVariable(const GlobalVariable *GV) {
  void *Ptr = getPointerToGlobalIfAvailable(GV);
  if (Ptr) return Ptr;

  // If the global is external, just remember the address.
  if (GV->isExternal()) {
    Ptr = GetAddressOfSymbol(GV->getName().c_str());
    if (Ptr == 0) {
      std::cerr << "Could not resolve external global address: "
                << GV->getName() << "\n";
      abort();
    }
  } else {
    // If the global hasn't been emitted to memory yet, allocate space.  We will
    // actually initialize the global after current function has finished
    // compilation.
    Ptr =new char[getTargetData().getTypeSize(GV->getType()->getElementType())];
    PendingGlobals.push_back(GV);
  }
  addGlobalMapping(GV, Ptr);
  return Ptr;
}


/// recompileAndRelinkFunction - This method is used to force a function
/// which has already been compiled, to be compiled again, possibly
/// after it has been modified. Then the entry to the old copy is overwritten
/// with a branch to the new copy. If there was no old copy, this acts
/// just like JIT::getPointerToFunction().
///
void *JIT::recompileAndRelinkFunction(Function *F) {
  void *OldAddr = getPointerToGlobalIfAvailable(F);

  // If it's not already compiled there is no reason to patch it up.
  if (OldAddr == 0) { return getPointerToFunction(F); }

  // Delete the old function mapping.
  addGlobalMapping(F, 0);

  // Recodegen the function
  runJITOnFunction(F);

  // Update state, forward the old function to the new function.
  void *Addr = getPointerToGlobalIfAvailable(F);
  assert(Addr && "Code generation didn't add function to GlobalAddress table!");
  TJI.replaceMachineCodeForFunction(OldAddr, Addr);
  return Addr;
}