summaryrefslogtreecommitdiff
path: root/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp
blob: e15b200c5e098d3e260264e62aa876b7f4218586 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
//===-- RuntimeDyldELF.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Implementation of ELF support for the MC-JIT runtime dynamic linker.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "dyld"
#include "llvm/ADT/OwningPtr.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/IntervalMap.h"
#include "RuntimeDyldELF.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Support/ELF.h"
#include "llvm/ADT/Triple.h"
using namespace llvm;
using namespace llvm::object;

namespace llvm {

namespace {

// FIXME: this function should probably not live here...
//
// Returns the name and address of an unrelocated symbol in an ELF section
void getSymbolInfo(symbol_iterator Sym, uint64_t &Addr, StringRef &Name) {
  //FIXME: error checking here required to catch corrupt ELF objects...
  error_code Err = Sym->getName(Name);

  uint64_t AddrInSection;
  Err = Sym->getAddress(AddrInSection);

  SectionRef empty_section;
  section_iterator Section(empty_section);
  Err = Sym->getSection(Section);

  StringRef SectionContents;
  Section->getContents(SectionContents);

  Addr = reinterpret_cast<uint64_t>(SectionContents.data()) + AddrInSection;
}

}

bool RuntimeDyldELF::loadObject(MemoryBuffer *InputBuffer) {
  if (!isCompatibleFormat(InputBuffer))
    return true;

  OwningPtr<ObjectFile> Obj(ObjectFile::createELFObjectFile(InputBuffer));

  Arch = Obj->getArch();

  // Map address in the Object file image to function names
  IntervalMap<uint64_t, StringRef>::Allocator A;
  IntervalMap<uint64_t, StringRef> FuncMap(A);

  // This is a bit of a hack.  The ObjectFile we've just loaded reports
  // section addresses as 0 and doesn't provide access to the section
  // offset (from which we could calculate the address.  Instead,
  // we're storing the address when it comes up in the ST_Debug case
  // below.
  //
  StringMap<uint64_t> DebugSymbolMap;

  symbol_iterator SymEnd = Obj->end_symbols();
  error_code Err;
  for (symbol_iterator Sym = Obj->begin_symbols();
       Sym != SymEnd; Sym.increment(Err)) {
    SymbolRef::Type Type;
    Sym->getType(Type);
    if (Type == SymbolRef::ST_Function) {
      StringRef Name;
      uint64_t Addr;
      getSymbolInfo(Sym, Addr, Name);

      uint64_t Size;
      Err = Sym->getSize(Size);

      uint8_t *Start;
      uint8_t *End;
      Start = reinterpret_cast<uint8_t*>(Addr);
      End   = reinterpret_cast<uint8_t*>(Addr + Size - 1);

      extractFunction(Name, Start, End);
      FuncMap.insert(Addr, Addr + Size - 1, Name);
    } else if (Type == SymbolRef::ST_Debug) {
      // This case helps us find section addresses
      StringRef Name;
      uint64_t Addr;
      getSymbolInfo(Sym, Addr, Name);
      DebugSymbolMap[Name] = Addr;
    }
  }

  // Iterate through the relocations for this object
  section_iterator SecEnd = Obj->end_sections();
  for (section_iterator Sec = Obj->begin_sections();
       Sec != SecEnd; Sec.increment(Err)) {
    StringRef SecName;
    uint64_t  SecAddr;
    Sec->getName(SecName);
    // Ignore sections that aren't in our map
    if (DebugSymbolMap.find(SecName) == DebugSymbolMap.end()) {
      continue;
    }
    SecAddr = DebugSymbolMap[SecName];
    relocation_iterator RelEnd = Sec->end_relocations();
    for (relocation_iterator Rel = Sec->begin_relocations();
         Rel != RelEnd; Rel.increment(Err)) {
      uint64_t RelOffset;
      uint64_t RelType;
      int64_t RelAddend;
      SymbolRef RelSym;
      StringRef SymName;
      uint64_t SymAddr;
      uint64_t SymOffset;

      Rel->getAddress(RelOffset);
      Rel->getType(RelType);
      Rel->getAdditionalInfo(RelAddend);
      Rel->getSymbol(RelSym);
      RelSym.getName(SymName);
      RelSym.getAddress(SymAddr);
      RelSym.getFileOffset(SymOffset);

      // If this relocation is inside a function, we want to store the
      // function name and a function-relative offset
      IntervalMap<uint64_t, StringRef>::iterator ContainingFunc
        = FuncMap.find(SecAddr + RelOffset);
      if (ContainingFunc.valid()) {
        // Re-base the relocation to make it relative to the target function
        RelOffset = (SecAddr + RelOffset) - ContainingFunc.start();
        Relocations[SymName].push_back(RelocationEntry(ContainingFunc.value(),
                                                       RelOffset,
                                                       RelType,
                                                       RelAddend,
                                                       true));
      } else {
        Relocations[SymName].push_back(RelocationEntry(SecName,
                                                       RelOffset,
                                                       RelType,
                                                       RelAddend,
                                                       false));
      }
    }
  }
  return false;
}

void RuntimeDyldELF::resolveRelocations() {
  // FIXME: deprecated. should be changed to use the by-section
  // allocation and relocation scheme.

  // Just iterate over the symbols in our symbol table and assign their
  // addresses.
  StringMap<SymbolLoc>::iterator i = SymbolTable.begin();
  StringMap<SymbolLoc>::iterator e = SymbolTable.end();
  for (;i != e; ++i) {
    assert (i->getValue().second == 0 && "non-zero offset in by-function sym!");
    reassignSymbolAddress(i->getKey(),
                          (uint8_t*)Sections[i->getValue().first].base());
  }
}

void RuntimeDyldELF::resolveX86_64Relocation(StringRef Name,
                                             uint8_t *Addr,
                                             const RelocationEntry &RE) {
  uint8_t *TargetAddr;
  if (RE.IsFunctionRelative) {
    StringMap<SymbolLoc>::const_iterator Loc = SymbolTable.find(RE.Target);
    assert(Loc != SymbolTable.end() && "Function for relocation not found");
    TargetAddr =
      reinterpret_cast<uint8_t*>(Sections[Loc->second.first].base()) +
      Loc->second.second + RE.Offset;
  } else {
    // FIXME: Get the address of the target section and add that to RE.Offset
    llvm_unreachable("Non-function relocation not implemented yet!");
  }

  switch (RE.Type) {
  default: llvm_unreachable("Relocation type not implemented yet!");
  case ELF::R_X86_64_64: {
    uint8_t **Target = reinterpret_cast<uint8_t**>(TargetAddr);
    *Target = Addr + RE.Addend;
    break;
  }
  case ELF::R_X86_64_32:
  case ELF::R_X86_64_32S: {
    uint64_t Value = reinterpret_cast<uint64_t>(Addr) + RE.Addend;
    // FIXME: Handle the possibility of this assertion failing
    assert((RE.Type == ELF::R_X86_64_32 && !(Value & 0xFFFFFFFF00000000ULL)) ||
           (RE.Type == ELF::R_X86_64_32S &&
            (Value & 0xFFFFFFFF00000000ULL) == 0xFFFFFFFF00000000ULL));
    uint32_t TruncatedAddr = (Value & 0xFFFFFFFF);
    uint32_t *Target = reinterpret_cast<uint32_t*>(TargetAddr);
    *Target = TruncatedAddr;
    break;
  }
  case ELF::R_X86_64_PC32: {
    uint32_t *Placeholder = reinterpret_cast<uint32_t*>(TargetAddr);
    uint64_t RealOffset = *Placeholder +
                           reinterpret_cast<uint64_t>(Addr) +
                           RE.Addend - reinterpret_cast<uint64_t>(TargetAddr);
    assert((RealOffset & 0xFFFFFFFF) == RealOffset);
    uint32_t TruncOffset = (RealOffset & 0xFFFFFFFF);
    *Placeholder = TruncOffset;
    break;
  }
  }
}

void RuntimeDyldELF::resolveX86Relocation(StringRef Name,
                                          uint8_t *Addr,
                                          const RelocationEntry &RE) {
  uint8_t *TargetAddr;
  if (RE.IsFunctionRelative) {
    StringMap<SymbolLoc>::const_iterator Loc = SymbolTable.find(RE.Target);
    assert(Loc != SymbolTable.end() && "Function for relocation not found");
    TargetAddr =
      reinterpret_cast<uint8_t*>(Sections[Loc->second.first].base()) +
      Loc->second.second + RE.Offset;
  } else {
    // FIXME: Get the address of the target section and add that to RE.Offset
    llvm_unreachable("Non-function relocation not implemented yet!");
  }

  switch (RE.Type) {
  case ELF::R_386_32: {
    uint8_t **Target = reinterpret_cast<uint8_t**>(TargetAddr);
    *Target = Addr + RE.Addend;
    break;
  }
  case ELF::R_386_PC32: {
    uint32_t *Placeholder = reinterpret_cast<uint32_t*>(TargetAddr);
    uint32_t RealOffset = *Placeholder + reinterpret_cast<uintptr_t>(Addr) +
                           RE.Addend - reinterpret_cast<uintptr_t>(TargetAddr);
    *Placeholder = RealOffset;
    break;
    }
    default:
      // There are other relocation types, but it appears these are the
      //  only ones currently used by the LLVM ELF object writer
      llvm_unreachable("Relocation type not implemented yet!");
  }
}

void RuntimeDyldELF::resolveArmRelocation(StringRef Name,
                                          uint8_t *Addr,
                                          const RelocationEntry &RE) {
}

void RuntimeDyldELF::resolveRelocation(StringRef Name,
                                       uint8_t *Addr,
                                       const RelocationEntry &RE) {
  switch (Arch) {
  case Triple::x86_64:
    resolveX86_64Relocation(Name, Addr, RE);
    break;
  case Triple::x86:
    resolveX86Relocation(Name, Addr, RE);
    break;
  case Triple::arm:
    resolveArmRelocation(Name, Addr, RE);
    break;
  default: llvm_unreachable("Unsupported CPU type!");
  }
}

void RuntimeDyldELF::reassignSymbolAddress(StringRef Name, uint8_t *Addr) {
  // FIXME: deprecated. switch to reassignSectionAddress() instead.
  //
  // Actually moving the symbol address requires by-section mapping.
  assert(Sections[SymbolTable.lookup(Name).first].base() == (void*)Addr &&
         "Unable to relocate section in by-function JIT allocation model!");

  RelocationList &Relocs = Relocations[Name];
  for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
    RelocationEntry &RE = Relocs[i];
    resolveRelocation(Name, Addr, RE);
  }
}

// Assign an address to a symbol name and resolve all the relocations
// associated with it.
void RuntimeDyldELF::reassignSectionAddress(unsigned SectionID, uint64_t Addr) {
  // The address to use for relocation resolution is not
  // the address of the local section buffer. We must be doing
  // a remote execution environment of some sort. Re-apply any
  // relocations referencing this section with the given address.
  //
  // Addr is a uint64_t because we can't assume the pointer width
  // of the target is the same as that of the host. Just use a generic
  // "big enough" type.
  assert(0);
}

bool RuntimeDyldELF::isCompatibleFormat(const MemoryBuffer *InputBuffer) const {
  StringRef Magic = InputBuffer->getBuffer().slice(0, ELF::EI_NIDENT);
  return (memcmp(Magic.data(), ELF::ElfMagic, strlen(ELF::ElfMagic))) == 0;
}
} // namespace llvm