summaryrefslogtreecommitdiff
path: root/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp
blob: e010785c44672969abd155bc6b6902db5060c327 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
//===-- RuntimeDyldELF.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Implementation of ELF support for the MC-JIT runtime dynamic linker.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "dyld"
#include "llvm/ADT/OwningPtr.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/IntervalMap.h"
#include "RuntimeDyldELF.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Support/ELF.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Object/ELF.h"
#include "JITRegistrar.h"
using namespace llvm;
using namespace llvm::object;

namespace {

template<support::endianness target_endianness, bool is64Bits>
class DyldELFObject : public ELFObjectFile<target_endianness, is64Bits> {
  LLVM_ELF_IMPORT_TYPES(target_endianness, is64Bits)

  typedef Elf_Shdr_Impl<target_endianness, is64Bits> Elf_Shdr;
  typedef Elf_Sym_Impl<target_endianness, is64Bits> Elf_Sym;
  typedef Elf_Rel_Impl<target_endianness, is64Bits, false> Elf_Rel;
  typedef Elf_Rel_Impl<target_endianness, is64Bits, true> Elf_Rela;

  typedef typename ELFObjectFile<target_endianness, is64Bits>::
    Elf_Ehdr Elf_Ehdr;

  typedef typename ELFDataTypeTypedefHelper<
          target_endianness, is64Bits>::value_type addr_type;

protected:
  // This duplicates the 'Data' member in the 'Binary' base class
  // but it is necessary to workaround a bug in gcc 4.2
  MemoryBuffer *InputData;

public:
  DyldELFObject(MemoryBuffer *Object, error_code &ec);

  void updateSectionAddress(const SectionRef &Sec, uint64_t Addr);
  void updateSymbolAddress(const SymbolRef &Sym, uint64_t Addr);

  const MemoryBuffer& getBuffer() const { return *InputData; }

  // Methods for type inquiry through isa, cast, and dyn_cast
  static inline bool classof(const Binary *v) {
    return (isa<ELFObjectFile<target_endianness, is64Bits> >(v)
            && classof(cast<ELFObjectFile<target_endianness, is64Bits> >(v)));
  }
  static inline bool classof(
      const ELFObjectFile<target_endianness, is64Bits> *v) {
    return v->isDyldType();
  }
  static inline bool classof(const DyldELFObject *v) {
    return true;
  }
};

template<support::endianness target_endianness, bool is64Bits>
class ELFObjectImage : public ObjectImage {
  protected:
    DyldELFObject<target_endianness, is64Bits> *DyldObj;
    bool Registered;

  public:
    ELFObjectImage(DyldELFObject<target_endianness, is64Bits> *Obj)
    : ObjectImage(Obj),
      DyldObj(Obj),
      Registered(false) {}

    virtual ~ELFObjectImage() {
      if (Registered)
        deregisterWithDebugger();
    }

    // Subclasses can override these methods to update the image with loaded
    // addresses for sections and common symbols
    virtual void updateSectionAddress(const SectionRef &Sec, uint64_t Addr)
    {
      DyldObj->updateSectionAddress(Sec, Addr);
    }

    virtual void updateSymbolAddress(const SymbolRef &Sym, uint64_t Addr)
    {
      DyldObj->updateSymbolAddress(Sym, Addr);
    }

    virtual void registerWithDebugger()
    {
      JITRegistrar::getGDBRegistrar().registerObject(DyldObj->getBuffer());
      Registered = true;
    }
    virtual void deregisterWithDebugger()
    {
      JITRegistrar::getGDBRegistrar().deregisterObject(DyldObj->getBuffer());
    }
};

template<support::endianness target_endianness, bool is64Bits>
DyldELFObject<target_endianness, is64Bits>::DyldELFObject(MemoryBuffer *Object,
                                                          error_code &ec)
  : ELFObjectFile<target_endianness, is64Bits>(Object, ec),
    InputData(Object) {
  this->isDyldELFObject = true;
}

template<support::endianness target_endianness, bool is64Bits>
void DyldELFObject<target_endianness, is64Bits>::updateSectionAddress(
                                                       const SectionRef &Sec,
                                                       uint64_t Addr) {
  DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
  Elf_Shdr *shdr = const_cast<Elf_Shdr*>(
                          reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));

  // This assumes the address passed in matches the target address bitness
  // The template-based type cast handles everything else.
  shdr->sh_addr = static_cast<addr_type>(Addr);
}

template<support::endianness target_endianness, bool is64Bits>
void DyldELFObject<target_endianness, is64Bits>::updateSymbolAddress(
                                                       const SymbolRef &SymRef,
                                                       uint64_t Addr) {

  Elf_Sym *sym = const_cast<Elf_Sym*>(
                                 ELFObjectFile<target_endianness, is64Bits>::
                                   getSymbol(SymRef.getRawDataRefImpl()));

  // This assumes the address passed in matches the target address bitness
  // The template-based type cast handles everything else.
  sym->st_value = static_cast<addr_type>(Addr);
}

} // namespace


namespace llvm {

ObjectImage *RuntimeDyldELF::createObjectImage(
                                         const MemoryBuffer *ConstInputBuffer) {
  MemoryBuffer *InputBuffer = const_cast<MemoryBuffer*>(ConstInputBuffer);
  std::pair<unsigned char, unsigned char> Ident = getElfArchType(InputBuffer);
  error_code ec;

  if (Ident.first == ELF::ELFCLASS32 && Ident.second == ELF::ELFDATA2LSB) {
    DyldELFObject<support::little, false> *Obj =
           new DyldELFObject<support::little, false>(InputBuffer, ec);
    return new ELFObjectImage<support::little, false>(Obj);
  }
  else if (Ident.first == ELF::ELFCLASS32 && Ident.second == ELF::ELFDATA2MSB) {
    DyldELFObject<support::big, false> *Obj =
           new DyldELFObject<support::big, false>(InputBuffer, ec);
    return new ELFObjectImage<support::big, false>(Obj);
  }
  else if (Ident.first == ELF::ELFCLASS64 && Ident.second == ELF::ELFDATA2MSB) {
    DyldELFObject<support::big, true> *Obj =
           new DyldELFObject<support::big, true>(InputBuffer, ec);
    return new ELFObjectImage<support::big, true>(Obj);
  }
  else if (Ident.first == ELF::ELFCLASS64 && Ident.second == ELF::ELFDATA2LSB) {
    DyldELFObject<support::little, true> *Obj =
           new DyldELFObject<support::little, true>(InputBuffer, ec);
    return new ELFObjectImage<support::little, true>(Obj);
  }
  else
    llvm_unreachable("Unexpected ELF format");
}

void RuntimeDyldELF::handleObjectLoaded(ObjectImage *Obj)
{
  Obj->registerWithDebugger();
  // Save the loaded object.  It will deregister itself when deleted
  LoadedObject = Obj;
}

RuntimeDyldELF::~RuntimeDyldELF() {
  if (LoadedObject)
    delete LoadedObject;
}

void RuntimeDyldELF::resolveX86_64Relocation(uint8_t *LocalAddress,
                                             uint64_t FinalAddress,
                                             uint64_t Value,
                                             uint32_t Type,
                                             int64_t Addend) {
  switch (Type) {
  default:
    llvm_unreachable("Relocation type not implemented yet!");
  break;
  case ELF::R_X86_64_64: {
    uint64_t *Target = (uint64_t*)(LocalAddress);
    *Target = Value + Addend;
    break;
  }
  case ELF::R_X86_64_32:
  case ELF::R_X86_64_32S: {
    Value += Addend;
    // FIXME: Handle the possibility of this assertion failing
    assert((Type == ELF::R_X86_64_32 && !(Value & 0xFFFFFFFF00000000ULL)) ||
           (Type == ELF::R_X86_64_32S &&
            (Value & 0xFFFFFFFF00000000ULL) == 0xFFFFFFFF00000000ULL));
    uint32_t TruncatedAddr = (Value & 0xFFFFFFFF);
    uint32_t *Target = reinterpret_cast<uint32_t*>(LocalAddress);
    *Target = TruncatedAddr;
    break;
  }
  case ELF::R_X86_64_PC32: {
    uint32_t *Placeholder = reinterpret_cast<uint32_t*>(LocalAddress);
    int64_t RealOffset = *Placeholder + Value + Addend - FinalAddress;
    assert(RealOffset <= 214783647 && RealOffset >= -214783648);
    int32_t TruncOffset = (RealOffset & 0xFFFFFFFF);
    *Placeholder = TruncOffset;
    break;
  }
  }
}

void RuntimeDyldELF::resolveX86Relocation(uint8_t *LocalAddress,
                                          uint32_t FinalAddress,
                                          uint32_t Value,
                                          uint32_t Type,
                                          int32_t Addend) {
  switch (Type) {
  case ELF::R_386_32: {
    uint32_t *Target = (uint32_t*)(LocalAddress);
    uint32_t Placeholder = *Target;
    *Target = Placeholder + Value + Addend;
    break;
  }
  case ELF::R_386_PC32: {
    uint32_t *Placeholder = reinterpret_cast<uint32_t*>(LocalAddress);
    uint32_t RealOffset = *Placeholder + Value + Addend - FinalAddress;
    *Placeholder = RealOffset;
    break;
    }
    default:
      // There are other relocation types, but it appears these are the
      //  only ones currently used by the LLVM ELF object writer
      llvm_unreachable("Relocation type not implemented yet!");
      break;
  }
}

void RuntimeDyldELF::resolveARMRelocation(uint8_t *LocalAddress,
                                          uint32_t FinalAddress,
                                          uint32_t Value,
                                          uint32_t Type,
                                          int32_t Addend) {
  // TODO: Add Thumb relocations.
  uint32_t* TargetPtr = (uint32_t*)LocalAddress;
  Value += Addend;

  DEBUG(dbgs() << "resolveARMRelocation, LocalAddress: " << LocalAddress
               << " FinalAddress: " << format("%p",FinalAddress)
               << " Value: " << format("%x",Value)
               << " Type: " << format("%x",Type)
               << " Addend: " << format("%x",Addend)
               << "\n");

  switch(Type) {
  default:
    llvm_unreachable("Not implemented relocation type!");

  // Just write 32bit value to relocation address
  case ELF::R_ARM_ABS32 :
    *TargetPtr = Value;
    break;

  // Write first 16 bit of 32 bit value to the mov instruction.
  // Last 4 bit should be shifted.
  case ELF::R_ARM_MOVW_ABS_NC :
    Value = Value & 0xFFFF;
    *TargetPtr |= Value & 0xFFF;
    *TargetPtr |= ((Value >> 12) & 0xF) << 16;
    break;

  // Write last 16 bit of 32 bit value to the mov instruction.
  // Last 4 bit should be shifted.
  case ELF::R_ARM_MOVT_ABS :
    Value = (Value >> 16) & 0xFFFF;
    *TargetPtr |= Value & 0xFFF;
    *TargetPtr |= ((Value >> 12) & 0xF) << 16;
    break;

  // Write 24 bit relative value to the branch instruction.
  case ELF::R_ARM_PC24 :    // Fall through.
  case ELF::R_ARM_CALL :    // Fall through.
  case ELF::R_ARM_JUMP24 :
    int32_t RelValue = static_cast<int32_t>(Value - FinalAddress - 8);
    RelValue = (RelValue & 0x03FFFFFC) >> 2;
    *TargetPtr &= 0xFF000000;
    *TargetPtr |= RelValue;
    break;
  }
}

void RuntimeDyldELF::resolveRelocation(uint8_t *LocalAddress,
                                       uint64_t FinalAddress,
                                       uint64_t Value,
                                       uint32_t Type,
                                       int64_t Addend) {
  switch (Arch) {
  case Triple::x86_64:
    resolveX86_64Relocation(LocalAddress, FinalAddress, Value, Type, Addend);
    break;
  case Triple::x86:
    resolveX86Relocation(LocalAddress, (uint32_t)(FinalAddress & 0xffffffffL),
                         (uint32_t)(Value & 0xffffffffL), Type,
                         (uint32_t)(Addend & 0xffffffffL));
    break;
  case Triple::arm:    // Fall through.
  case Triple::thumb:
    resolveARMRelocation(LocalAddress, (uint32_t)(FinalAddress & 0xffffffffL),
                         (uint32_t)(Value & 0xffffffffL), Type,
                         (uint32_t)(Addend & 0xffffffffL));
    break;
  default: llvm_unreachable("Unsupported CPU type!");
  }
}

void RuntimeDyldELF::processRelocationRef(const ObjRelocationInfo &Rel,
                                          ObjectImage &Obj,
                                          ObjSectionToIDMap &ObjSectionToID,
                                          const SymbolTableMap &Symbols,
                                          StubMap &Stubs) {

  uint32_t RelType = (uint32_t)(Rel.Type & 0xffffffffL);
  intptr_t Addend = (intptr_t)Rel.AdditionalInfo;
  RelocationValueRef Value;
  StringRef TargetName;
  const SymbolRef &Symbol = Rel.Symbol;
  Symbol.getName(TargetName);
  DEBUG(dbgs() << "\t\tRelType: " << RelType
               << " Addend: " << Addend
               << " TargetName: " << TargetName
               << "\n");
  // First look the symbol in object file symbols.
  SymbolTableMap::const_iterator lsi = Symbols.find(TargetName.data());
  if (lsi != Symbols.end()) {
    Value.SectionID = lsi->second.first;
    Value.Addend = lsi->second.second;
  } else {
    // Second look the symbol in global symbol table.
    SymbolTableMap::const_iterator gsi =
        GlobalSymbolTable.find(TargetName.data());
    if (gsi != GlobalSymbolTable.end()) {
      Value.SectionID = gsi->second.first;
      Value.Addend = gsi->second.second;
    } else {
      SymbolRef::Type SymType;
      Symbol.getType(SymType);
      switch (SymType) {
        case SymbolRef::ST_Debug: {
          // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously
          // and can be changed by another developers. Maybe best way is add
          // a new symbol type ST_Section to SymbolRef and use it.
          section_iterator si = Obj.end_sections();
          Symbol.getSection(si);
          if (si == Obj.end_sections())
            llvm_unreachable("Symbol section not found, bad object file format!");
          DEBUG(dbgs() << "\t\tThis is section symbol\n");
          Value.SectionID = findOrEmitSection(Obj, (*si), true, ObjSectionToID);
          Value.Addend = Addend;
          break;
        }
        case SymbolRef::ST_Unknown: {
          Value.SymbolName = TargetName.data();
          Value.Addend = Addend;
          break;
        }
        default:
          llvm_unreachable("Unresolved symbol type!");
          break;
      }
    }
  }
  DEBUG(dbgs() << "\t\tRel.SectionID: " << Rel.SectionID
               << " Rel.Offset: " << Rel.Offset
               << "\n");
  if (Arch == Triple::arm &&
      (RelType == ELF::R_ARM_PC24 ||
       RelType == ELF::R_ARM_CALL ||
       RelType == ELF::R_ARM_JUMP24)) {
    // This is an ARM branch relocation, need to use a stub function.
    DEBUG(dbgs() << "\t\tThis is an ARM branch relocation.");
    SectionEntry &Section = Sections[Rel.SectionID];
    uint8_t *Target = Section.Address + Rel.Offset;

    //  Look up for existing stub.
    StubMap::const_iterator i = Stubs.find(Value);
    if (i != Stubs.end()) {
      resolveRelocation(Target, (uint64_t)Target, (uint64_t)Section.Address +
                        i->second, RelType, 0);
      DEBUG(dbgs() << " Stub function found\n");
    } else {
      // Create a new stub function.
      DEBUG(dbgs() << " Create a new stub function\n");
      Stubs[Value] = Section.StubOffset;
      uint8_t *StubTargetAddr = createStubFunction(Section.Address +
                                                   Section.StubOffset);
      addRelocation(Value, Rel.SectionID,
                    StubTargetAddr - Section.Address, ELF::R_ARM_ABS32);
      resolveRelocation(Target, (uint64_t)Target, (uint64_t)Section.Address +
                        Section.StubOffset, RelType, 0);
      Section.StubOffset += getMaxStubSize();
    }
  } else
    addRelocation(Value, Rel.SectionID, Rel.Offset, RelType);
}

bool RuntimeDyldELF::isCompatibleFormat(const MemoryBuffer *InputBuffer) const {
  StringRef Magic = InputBuffer->getBuffer().slice(0, ELF::EI_NIDENT);
  return (memcmp(Magic.data(), ELF::ElfMagic, strlen(ELF::ElfMagic))) == 0;
}
} // namespace llvm