summaryrefslogtreecommitdiff
path: root/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.cpp
blob: 0b72b567c30e150736a37f133dc9514917453b99 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
//===-- RuntimeDyldMachO.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-=//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Implementation of the MC-JIT runtime dynamic linker.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "dyld"
#include "llvm/ADT/OwningPtr.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/STLExtras.h"
#include "RuntimeDyldMachO.h"
using namespace llvm;
using namespace llvm::object;

namespace llvm {

bool RuntimeDyldMachO::
resolveRelocation(uint8_t *LocalAddress,
                  uint64_t FinalAddress,
                  uint64_t Value,
                  bool isPCRel,
                  unsigned Type,
                  unsigned Size,
                  int64_t Addend) {
  // This just dispatches to the proper target specific routine.
  switch (CPUType) {
  default: llvm_unreachable("Unsupported CPU type!");
  case mach::CTM_x86_64:
    return resolveX86_64Relocation(LocalAddress,
                                   FinalAddress,
                                   (uintptr_t)Value,
                                   isPCRel,
                                   Type,
                                   Size,
                                   Addend);
  case mach::CTM_ARM:
    return resolveARMRelocation(LocalAddress,
                                FinalAddress,
                                (uintptr_t)Value,
                                isPCRel,
                                Type,
                                Size,
                                Addend);
  }
}

bool RuntimeDyldMachO::
resolveX86_64Relocation(uint8_t *LocalAddress,
                        uint64_t FinalAddress,
                        uint64_t Value,
                        bool isPCRel,
                        unsigned Type,
                        unsigned Size,
                        int64_t Addend) {
  // If the relocation is PC-relative, the value to be encoded is the
  // pointer difference.
  if (isPCRel)
    // FIXME: It seems this value needs to be adjusted by 4 for an effective PC
    // address. Is that expected? Only for branches, perhaps?
    Value -= FinalAddress + 4;

  switch(Type) {
  default:
    llvm_unreachable("Invalid relocation type!");
  case macho::RIT_X86_64_Signed1:
  case macho::RIT_X86_64_Signed2:
  case macho::RIT_X86_64_Signed4:
  case macho::RIT_X86_64_Signed:
  case macho::RIT_X86_64_Unsigned:
  case macho::RIT_X86_64_Branch: {
    Value += Addend;
    // Mask in the target value a byte at a time (we don't have an alignment
    // guarantee for the target address, so this is safest).
    uint8_t *p = (uint8_t*)LocalAddress;
    for (unsigned i = 0; i < Size; ++i) {
      *p++ = (uint8_t)Value;
      Value >>= 8;
    }
    return false;
  }
  case macho::RIT_X86_64_GOTLoad:
  case macho::RIT_X86_64_GOT:
  case macho::RIT_X86_64_Subtractor:
  case macho::RIT_X86_64_TLV:
    return Error("Relocation type not implemented yet!");
  }
}

bool RuntimeDyldMachO::
resolveARMRelocation(uint8_t *LocalAddress,
                     uint64_t FinalAddress,
                     uint64_t Value,
                     bool isPCRel,
                     unsigned Type,
                     unsigned Size,
                     int64_t Addend) {
  // If the relocation is PC-relative, the value to be encoded is the
  // pointer difference.
  if (isPCRel) {
    Value -= FinalAddress;
    // ARM PCRel relocations have an effective-PC offset of two instructions
    // (four bytes in Thumb mode, 8 bytes in ARM mode).
    // FIXME: For now, assume ARM mode.
    Value -= 8;
  }

  switch(Type) {
  default:
    llvm_unreachable("Invalid relocation type!");
  case macho::RIT_Vanilla: {
    // Mask in the target value a byte at a time (we don't have an alignment
    // guarantee for the target address, so this is safest).
    uint8_t *p = (uint8_t*)LocalAddress;
    for (unsigned i = 0; i < Size; ++i) {
      *p++ = (uint8_t)Value;
      Value >>= 8;
    }
    break;
  }
  case macho::RIT_ARM_Branch24Bit: {
    // Mask the value into the target address. We know instructions are
    // 32-bit aligned, so we can do it all at once.
    uint32_t *p = (uint32_t*)LocalAddress;
    // The low two bits of the value are not encoded.
    Value >>= 2;
    // Mask the value to 24 bits.
    Value &= 0xffffff;
    // FIXME: If the destination is a Thumb function (and the instruction
    // is a non-predicated BL instruction), we need to change it to a BLX
    // instruction instead.

    // Insert the value into the instruction.
    *p = (*p & ~0xffffff) | Value;
    break;
  }
  case macho::RIT_ARM_ThumbBranch22Bit:
  case macho::RIT_ARM_ThumbBranch32Bit:
  case macho::RIT_ARM_Half:
  case macho::RIT_ARM_HalfDifference:
  case macho::RIT_Pair:
  case macho::RIT_Difference:
  case macho::RIT_ARM_LocalDifference:
  case macho::RIT_ARM_PreboundLazyPointer:
    return Error("Relocation type not implemented yet!");
  }
  return false;
}

bool RuntimeDyldMachO::
loadSegment32(const MachOObject *Obj,
              const MachOObject::LoadCommandInfo *SegmentLCI,
              const InMemoryStruct<macho::SymtabLoadCommand> &SymtabLC) {
  // FIXME: This should really be combined w/ loadSegment64. Templatized
  // function on the 32/64 datatypes maybe?
  InMemoryStruct<macho::SegmentLoadCommand> SegmentLC;
  Obj->ReadSegmentLoadCommand(*SegmentLCI, SegmentLC);
  if (!SegmentLC)
    return Error("unable to load segment load command");


  SmallVector<unsigned, 16> SectionMap;
  for (unsigned SectNum = 0; SectNum != SegmentLC->NumSections; ++SectNum) {
    InMemoryStruct<macho::Section> Sect;
    Obj->ReadSection(*SegmentLCI, SectNum, Sect);
    if (!Sect)
      return Error("unable to load section: '" + Twine(SectNum) + "'");

    // Allocate memory via the MM for the section.
    uint8_t *Buffer;
    uint32_t SectionID = Sections.size();
    if (Sect->Flags == 0x80000400)
      Buffer = MemMgr->allocateCodeSection(Sect->Size, Sect->Align, SectionID);
    else
      Buffer = MemMgr->allocateDataSection(Sect->Size, Sect->Align, SectionID);

    DEBUG(dbgs() << "Loading "
                 << ((Sect->Flags == 0x80000400) ? "text" : "data")
                 << " (ID #" << SectionID << ")"
                 << " '" << Sect->SegmentName << ","
                 << Sect->Name << "' of size " << Sect->Size
                 << " to address " << Buffer << ".\n");

    // Copy the payload from the object file into the allocated buffer.
    uint8_t *Base = (uint8_t*)Obj->getData(SegmentLC->FileOffset,
                                           SegmentLC->FileSize).data();
    memcpy(Buffer, Base + Sect->Address, Sect->Size);

    // Remember what got allocated for this SectionID.
    Sections.push_back(sys::MemoryBlock(Buffer, Sect->Size));
    SectionLocalMemToID[Buffer] = SectionID;

    // By default, the load address of a section is its memory buffer.
    SectionLoadAddress.push_back((uint64_t)Buffer);

    // Keep a map of object file section numbers to corresponding SectionIDs
    // while processing the file.
    SectionMap.push_back(SectionID);
  }

  // Process the symbol table.
  SmallVector<StringRef, 64> SymbolNames;
  processSymbols32(Obj, SectionMap, SymbolNames, SymtabLC);

  // Process the relocations for each section we're loading.
  Relocations.grow(Relocations.size() + SegmentLC->NumSections);
  Referrers.grow(Referrers.size() + SegmentLC->NumSections);
  for (unsigned SectNum = 0; SectNum != SegmentLC->NumSections; ++SectNum) {
    InMemoryStruct<macho::Section> Sect;
    Obj->ReadSection(*SegmentLCI, SectNum, Sect);
    if (!Sect)
      return Error("unable to load section: '" + Twine(SectNum) + "'");
    for (unsigned j = 0; j != Sect->NumRelocationTableEntries; ++j) {
      InMemoryStruct<macho::RelocationEntry> RE;
      Obj->ReadRelocationEntry(Sect->RelocationTableOffset, j, RE);
      if (RE->Word0 & macho::RF_Scattered)
        return Error("NOT YET IMPLEMENTED: scattered relocations.");
      // Word0 of the relocation is the offset into the section where the
      // relocation should be applied. We need to translate that into an
      // offset into a function since that's our atom.
      uint32_t Offset = RE->Word0;
      bool isExtern = (RE->Word1 >> 27) & 1;

      // FIXME: Get the relocation addend from the target address.
      // FIXME: VERY imporant for internal relocations.

      // Figure out the source symbol of the relocation. If isExtern is true,
      // this relocation references the symbol table, otherwise it references
      // a section in the same object, numbered from 1 through NumSections
      // (SectionBases is [0, NumSections-1]).
      uint32_t SourceNum = RE->Word1 & 0xffffff; // 24-bit value
      if (!isExtern) {
        assert(SourceNum > 0 && "Invalid relocation section number!");
        unsigned SectionID = SectionMap[SourceNum - 1];
        unsigned TargetID = SectionMap[SectNum];
        DEBUG(dbgs() << "Internal relocation at Section #"
                     << TargetID << " + " << Offset
                     << " from Section #"
                     << SectionID << " (Word1: "
                     << format("0x%x", RE->Word1) << ")\n");

        // Store the relocation information. It will get resolved when
        // the section addresses are assigned.
        uint32_t RelocationIndex = Relocations[SectionID].size();
        Relocations[SectionID].push_back(RelocationEntry(TargetID,
                                                         Offset,
                                                         RE->Word1,
                                                         0 /*Addend*/));
        Referrers[TargetID].push_back(Referrer(SectionID, RelocationIndex));
      } else {
        StringRef SourceName = SymbolNames[SourceNum];

        // Now store the relocation information. Associate it with the source
        // symbol. Just add it to the unresolved list and let the general
        // path post-load resolve it if we know where the symbol is.
        UnresolvedRelocations[SourceName].push_back(RelocationEntry(SectNum,
                                                                    Offset,
                                                                    RE->Word1,
                                                                 0 /*Addend*/));
        DEBUG(dbgs() << "Relocation at Section #" << SectNum << " + " << Offset
              << " from '" << SourceName << "(Word1: "
              << format("0x%x", RE->Word1) << ")\n");
      }
    }
  }

  // Resolve the addresses of any symbols that were defined in this segment.
  for (int i = 0, e = SymbolNames.size(); i != e; ++i)
    resolveSymbol(SymbolNames[i]);

  return false;
}


bool RuntimeDyldMachO::
loadSegment64(const MachOObject *Obj,
              const MachOObject::LoadCommandInfo *SegmentLCI,
              const InMemoryStruct<macho::SymtabLoadCommand> &SymtabLC) {
  InMemoryStruct<macho::Segment64LoadCommand> Segment64LC;
  Obj->ReadSegment64LoadCommand(*SegmentLCI, Segment64LC);
  if (!Segment64LC)
    return Error("unable to load segment load command");


  SmallVector<unsigned, 16> SectionMap;
  for (unsigned SectNum = 0; SectNum != Segment64LC->NumSections; ++SectNum) {
    InMemoryStruct<macho::Section64> Sect;
    Obj->ReadSection64(*SegmentLCI, SectNum, Sect);
    if (!Sect)
      return Error("unable to load section: '" + Twine(SectNum) + "'");

    // Allocate memory via the MM for the section.
    uint8_t *Buffer;
    uint32_t SectionID = Sections.size();
    unsigned Align = 1 << Sect->Align; // .o file has log2 alignment.
    if (Sect->Flags == 0x80000400)
      Buffer = MemMgr->allocateCodeSection(Sect->Size, Align, SectionID);
    else
      Buffer = MemMgr->allocateDataSection(Sect->Size, Align, SectionID);

    DEBUG(dbgs() << "Loading "
                 << ((Sect->Flags == 0x80000400) ? "text" : "data")
                 << " (ID #" << SectionID << ")"
                 << " '" << Sect->SegmentName << ","
                 << Sect->Name << "' of size " << Sect->Size
                 << " (align " << Align << ")"
                 << " to address " << Buffer << ".\n");

    // Copy the payload from the object file into the allocated buffer.
    uint8_t *Base = (uint8_t*)Obj->getData(Segment64LC->FileOffset,
                                           Segment64LC->FileSize).data();
    memcpy(Buffer, Base + Sect->Address, Sect->Size);

    // Remember what got allocated for this SectionID.
    Sections.push_back(sys::MemoryBlock(Buffer, Sect->Size));
    SectionLocalMemToID[Buffer] = SectionID;

    // By default, the load address of a section is its memory buffer.
    SectionLoadAddress.push_back((uint64_t)Buffer);

    // Keep a map of object file section numbers to corresponding SectionIDs
    // while processing the file.
    SectionMap.push_back(SectionID);
  }

  // Process the symbol table.
  SmallVector<StringRef, 64> SymbolNames;
  processSymbols64(Obj, SectionMap, SymbolNames, SymtabLC);

  // Process the relocations for each section we're loading.
  Relocations.grow(Relocations.size() + Segment64LC->NumSections);
  Referrers.grow(Referrers.size() + Segment64LC->NumSections);
  for (unsigned SectNum = 0; SectNum != Segment64LC->NumSections; ++SectNum) {
    InMemoryStruct<macho::Section64> Sect;
    Obj->ReadSection64(*SegmentLCI, SectNum, Sect);
    if (!Sect)
      return Error("unable to load section: '" + Twine(SectNum) + "'");
    for (unsigned j = 0; j != Sect->NumRelocationTableEntries; ++j) {
      InMemoryStruct<macho::RelocationEntry> RE;
      Obj->ReadRelocationEntry(Sect->RelocationTableOffset, j, RE);
      if (RE->Word0 & macho::RF_Scattered)
        return Error("NOT YET IMPLEMENTED: scattered relocations.");
      // Word0 of the relocation is the offset into the section where the
      // relocation should be applied. We need to translate that into an
      // offset into a function since that's our atom.
      uint32_t Offset = RE->Word0;
      bool isExtern = (RE->Word1 >> 27) & 1;

      // FIXME: Get the relocation addend from the target address.
      // FIXME: VERY imporant for internal relocations.

      // Figure out the source symbol of the relocation. If isExtern is true,
      // this relocation references the symbol table, otherwise it references
      // a section in the same object, numbered from 1 through NumSections
      // (SectionBases is [0, NumSections-1]).
      uint32_t SourceNum = RE->Word1 & 0xffffff; // 24-bit value
      if (!isExtern) {
        assert(SourceNum > 0 && "Invalid relocation section number!");
        unsigned SectionID = SectionMap[SourceNum - 1];
        unsigned TargetID = SectionMap[SectNum];
        DEBUG(dbgs() << "Internal relocation at Section #"
                     << TargetID << " + " << Offset
                     << " from Section #"
                     << SectionID << " (Word1: "
                     << format("0x%x", RE->Word1) << ")\n");

        // Store the relocation information. It will get resolved when
        // the section addresses are assigned.
        uint32_t RelocationIndex = Relocations[SectionID].size();
        Relocations[SectionID].push_back(RelocationEntry(TargetID,
                                                         Offset,
                                                         RE->Word1,
                                                         0 /*Addend*/));
        Referrers[TargetID].push_back(Referrer(SectionID, RelocationIndex));
      } else {
        StringRef SourceName = SymbolNames[SourceNum];

        // Now store the relocation information. Associate it with the source
        // symbol. Just add it to the unresolved list and let the general
        // path post-load resolve it if we know where the symbol is.
        UnresolvedRelocations[SourceName].push_back(RelocationEntry(SectNum,
                                                                    Offset,
                                                                    RE->Word1,
                                                                 0 /*Addend*/));
        DEBUG(dbgs() << "Relocation at Section #" << SectNum << " + " << Offset
              << " from '" << SourceName << "(Word1: "
              << format("0x%x", RE->Word1) << ")\n");
      }
    }
  }

  // Resolve the addresses of any symbols that were defined in this segment.
  for (int i = 0, e = SymbolNames.size(); i != e; ++i)
    resolveSymbol(SymbolNames[i]);

  return false;
}

bool RuntimeDyldMachO::
processSymbols32(const MachOObject *Obj,
                 SmallVectorImpl<unsigned> &SectionMap,
                 SmallVectorImpl<StringRef> &SymbolNames,
                 const InMemoryStruct<macho::SymtabLoadCommand> &SymtabLC) {
  // FIXME: Combine w/ processSymbols64. Factor 64/32 datatype and such.
  for (unsigned i = 0; i != SymtabLC->NumSymbolTableEntries; ++i) {
    InMemoryStruct<macho::SymbolTableEntry> STE;
    Obj->ReadSymbolTableEntry(SymtabLC->SymbolTableOffset, i, STE);
    if (!STE)
      return Error("unable to read symbol: '" + Twine(i) + "'");
    // Get the symbol name.
    StringRef Name = Obj->getStringAtIndex(STE->StringIndex);
    SymbolNames.push_back(Name);

    // FIXME: Check the symbol type and flags.
    if (STE->Type != 0xF)  // external, defined in this segment.
      continue;
    // Flags in the upper nibble we don't care about.
    if ((STE->Flags & 0xf) != 0x0)
      continue;

    // Remember the symbol.
    uint32_t SectionID = SectionMap[STE->SectionIndex - 1];
    SymbolTable[Name] = SymbolLoc(SectionID, STE->Value);

    DEBUG(dbgs() << "Symbol: '" << Name << "' @ "
                 << (getSectionAddress(SectionID) + STE->Value)
                 << "\n");
  }
  return false;
}

bool RuntimeDyldMachO::
processSymbols64(const MachOObject *Obj,
                 SmallVectorImpl<unsigned> &SectionMap,
                 SmallVectorImpl<StringRef> &SymbolNames,
                 const InMemoryStruct<macho::SymtabLoadCommand> &SymtabLC) {
  for (unsigned i = 0; i != SymtabLC->NumSymbolTableEntries; ++i) {
    InMemoryStruct<macho::Symbol64TableEntry> STE;
    Obj->ReadSymbol64TableEntry(SymtabLC->SymbolTableOffset, i, STE);
    if (!STE)
      return Error("unable to read symbol: '" + Twine(i) + "'");
    // Get the symbol name.
    StringRef Name = Obj->getStringAtIndex(STE->StringIndex);
    SymbolNames.push_back(Name);

    // FIXME: Check the symbol type and flags.
    if (STE->Type != 0xF)  // external, defined in this segment.
      continue;
    // Flags in the upper nibble we don't care about.
    if ((STE->Flags & 0xf) != 0x0)
      continue;

    // Remember the symbol.
    uint32_t SectionID = SectionMap[STE->SectionIndex - 1];
    SymbolTable[Name] = SymbolLoc(SectionID, STE->Value);

    DEBUG(dbgs() << "Symbol: '" << Name << "' @ "
                 << (getSectionAddress(SectionID) + STE->Value)
                 << "\n");
  }
  return false;
}

// resolveSymbol - Resolve any relocations to the specified symbol if
// we know where it lives.
void RuntimeDyldMachO::resolveSymbol(StringRef Name) {
  StringMap<SymbolLoc>::const_iterator Loc = SymbolTable.find(Name);
  if (Loc == SymbolTable.end())
    return;

  RelocationList &Relocs = UnresolvedRelocations[Name];
  DEBUG(dbgs() << "Resolving symbol '" << Name << "'\n");
  for (int i = 0, e = Relocs.size(); i != e; ++i) {
    // Change the relocation to be section relative rather than symbol
    // relative and move it to the resolved relocation list.
    RelocationEntry Entry = Relocs[i];
    Entry.Addend += Loc->second.second;
    uint32_t RelocationIndex = Relocations[Loc->second.first].size();
    Relocations[Loc->second.first].push_back(Entry);
    Referrers[Entry.SectionID].push_back(Referrer(Loc->second.first, RelocationIndex));
  }
  // FIXME: Keep a worklist of the relocations we've added so that we can
  // resolve more selectively later.
  Relocs.clear();
}

bool RuntimeDyldMachO::loadObject(MemoryBuffer *InputBuffer) {
  // If the linker is in an error state, don't do anything.
  if (hasError())
    return true;
  // Load the Mach-O wrapper object.
  std::string ErrorStr;
  OwningPtr<MachOObject> Obj(
    MachOObject::LoadFromBuffer(InputBuffer, &ErrorStr));
  if (!Obj)
    return Error("unable to load object: '" + ErrorStr + "'");

  // Get the CPU type information from the header.
  const macho::Header &Header = Obj->getHeader();

  // FIXME: Error checking that the loaded object is compatible with
  //        the system we're running on.
  CPUType = Header.CPUType;
  CPUSubtype = Header.CPUSubtype;

  // Validate that the load commands match what we expect.
  const MachOObject::LoadCommandInfo *SegmentLCI = 0, *SymtabLCI = 0,
    *DysymtabLCI = 0;
  for (unsigned i = 0; i != Header.NumLoadCommands; ++i) {
    const MachOObject::LoadCommandInfo &LCI = Obj->getLoadCommandInfo(i);
    switch (LCI.Command.Type) {
    case macho::LCT_Segment:
    case macho::LCT_Segment64:
      if (SegmentLCI)
        return Error("unexpected input object (multiple segments)");
      SegmentLCI = &LCI;
      break;
    case macho::LCT_Symtab:
      if (SymtabLCI)
        return Error("unexpected input object (multiple symbol tables)");
      SymtabLCI = &LCI;
      break;
    case macho::LCT_Dysymtab:
      if (DysymtabLCI)
        return Error("unexpected input object (multiple symbol tables)");
      DysymtabLCI = &LCI;
      break;
    default:
      return Error("unexpected input object (unexpected load command");
    }
  }

  if (!SymtabLCI)
    return Error("no symbol table found in object");
  if (!SegmentLCI)
    return Error("no segments found in object");

  // Read and register the symbol table data.
  InMemoryStruct<macho::SymtabLoadCommand> SymtabLC;
  Obj->ReadSymtabLoadCommand(*SymtabLCI, SymtabLC);
  if (!SymtabLC)
    return Error("unable to load symbol table load command");
  Obj->RegisterStringTable(*SymtabLC);

  // Read the dynamic link-edit information, if present (not present in static
  // objects).
  if (DysymtabLCI) {
    InMemoryStruct<macho::DysymtabLoadCommand> DysymtabLC;
    Obj->ReadDysymtabLoadCommand(*DysymtabLCI, DysymtabLC);
    if (!DysymtabLC)
      return Error("unable to load dynamic link-exit load command");

    // FIXME: We don't support anything interesting yet.
//    if (DysymtabLC->LocalSymbolsIndex != 0)
//      return Error("NOT YET IMPLEMENTED: local symbol entries");
//    if (DysymtabLC->ExternalSymbolsIndex != 0)
//      return Error("NOT YET IMPLEMENTED: non-external symbol entries");
//    if (DysymtabLC->UndefinedSymbolsIndex != SymtabLC->NumSymbolTableEntries)
//      return Error("NOT YET IMPLEMENTED: undefined symbol entries");
  }

  // Load the segment load command.
  if (SegmentLCI->Command.Type == macho::LCT_Segment) {
    if (loadSegment32(Obj.get(), SegmentLCI, SymtabLC))
      return true;
  } else {
    if (loadSegment64(Obj.get(), SegmentLCI, SymtabLC))
      return true;
  }

  // Assign the addresses of the sections from the object so that any
  // relocations to them get set properly.
  // FIXME: This is done directly from the client at the moment. We should
  // default the values to the local storage, at least when the target arch
  // is the same as the host arch.

  return false;
}

// Assign an address to a symbol name and resolve all the relocations
// associated with it.
void RuntimeDyldMachO::reassignSectionAddress(unsigned SectionID,
                                              uint64_t Addr) {
  // The address to use for relocation resolution is not
  // the address of the local section buffer. We must be doing
  // a remote execution environment of some sort. Re-apply any
  // relocations referencing this section with the given address.
  //
  // Addr is a uint64_t because we can't assume the pointer width
  // of the target is the same as that of the host. Just use a generic
  // "big enough" type.

  SectionLoadAddress[SectionID] = Addr;

  RelocationList &Relocs = Relocations[SectionID];
  for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
    RelocationEntry &RE = Relocs[i];
    uint8_t *Target = (uint8_t*)Sections[RE.SectionID].base() + RE.Offset;
    uint64_t FinalTarget = (uint64_t)SectionLoadAddress[RE.SectionID] + RE.Offset;
    bool isPCRel = (RE.Data >> 24) & 1;
    unsigned Type = (RE.Data >> 28) & 0xf;
    unsigned Size = 1 << ((RE.Data >> 25) & 3);

    DEBUG(dbgs() << "Resolving relocation at Section #" << RE.SectionID
          << " + " << RE.Offset << " (" << format("%p", Target) << ")"
          << " from Section #" << SectionID << " (" << format("%p", Addr) << ")"
          << "(" << (isPCRel ? "pcrel" : "absolute")
          << ", type: " << Type << ", Size: " << Size << ", Addend: "
          << RE.Addend << ").\n");

    resolveRelocation(Target,
                      FinalTarget,
                      Addr,
                      isPCRel,
                      Type,
                      Size,
                      RE.Addend);
  }
  ReferrerList &Refers = Referrers[SectionID];
  for (unsigned i = 0, e = Refers.size(); i != e; ++i) {
    Referrer &R = Refers[i];
    RelocationEntry &RE = Relocations[R.SectionID][R.Index];
    uint8_t *Target = (uint8_t*)Sections[RE.SectionID].base() + RE.Offset;
    uint64_t FinalTarget = (uint64_t)SectionLoadAddress[RE.SectionID] + RE.Offset;
    bool isPCRel = (RE.Data >> 24) & 1;
    unsigned Type = (RE.Data >> 28) & 0xf;
    unsigned Size = 1 << ((RE.Data >> 25) & 3);

    DEBUG(dbgs() << "Resolving relocation at Section #" << RE.SectionID
          << " + " << RE.Offset << " (" << format("%p", Target) << ")"
          << " from Section #" << SectionID << " (" << format("%p", Addr) << ")"
          << "(" << (isPCRel ? "pcrel" : "absolute")
          << ", type: " << Type << ", Size: " << Size << ", Addend: "
          << RE.Addend << ").\n");

    resolveRelocation(Target,
                      FinalTarget,
                      Addr,
                      isPCRel,
                      Type,
                      Size,
                      RE.Addend);
  }
}

bool RuntimeDyldMachO::isKnownFormat(const MemoryBuffer *InputBuffer) {
  StringRef Magic = InputBuffer->getBuffer().slice(0, 4);
  if (Magic == "\xFE\xED\xFA\xCE") return true;
  if (Magic == "\xCE\xFA\xED\xFE") return true;
  if (Magic == "\xFE\xED\xFA\xCF") return true;
  if (Magic == "\xCF\xFA\xED\xFE") return true;
  return false;
}

} // end namespace llvm