summaryrefslogtreecommitdiff
path: root/lib/MC/MCExpr.cpp
blob: 10759687b2fd444556d7b2765848f321955c3dc8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
//===- MCExpr.cpp - Assembly Level Expression Implementation --------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/MC/MCValue.h"
using namespace llvm;

const MCBinaryExpr * MCBinaryExpr::Create(Opcode Opc,
                                          const MCExpr *LHS,
                                          const MCExpr *RHS,
                                          MCContext &Ctx) {
  return new (Ctx) MCBinaryExpr(Opc, LHS, RHS);
}

const MCUnaryExpr * MCUnaryExpr::Create(Opcode Opc,
                                        const MCExpr *Expr,
                                        MCContext &Ctx) {
  return new (Ctx) MCUnaryExpr(Opc, Expr);
}

const MCConstantExpr *MCConstantExpr::Create(int64_t Value, MCContext &Ctx) {
  return new (Ctx) MCConstantExpr(Value);
}

const MCSymbolRefExpr *MCSymbolRefExpr::Create(const MCSymbol *Sym,
                                               MCContext &Ctx) {
  return new (Ctx) MCSymbolRefExpr(Sym);
}

/* *** */

bool MCExpr::EvaluateAsAbsolute(MCContext &Ctx, int64_t &Res) const {
  MCValue Value;
  
  if (!EvaluateAsRelocatable(Ctx, Value) || !Value.isAbsolute())
    return false;

  Res = Value.getConstant();
  return true;
}

static bool EvaluateSymbolicAdd(const MCValue &LHS, const MCSymbol *RHS_A, 
                                const MCSymbol *RHS_B, int64_t RHS_Cst,
                                MCValue &Res) {
  // We can't add or subtract two symbols.
  if ((LHS.getSymA() && RHS_A) ||
      (LHS.getSymB() && RHS_B))
    return false;

  const MCSymbol *A = LHS.getSymA() ? LHS.getSymA() : RHS_A;
  const MCSymbol *B = LHS.getSymB() ? LHS.getSymB() : RHS_B;
  if (B) {
    // If we have a negated symbol, then we must have also have a non-negated
    // symbol in order to encode the expression. We can do this check later to
    // permit expressions which eventually fold to a representable form -- such
    // as (a + (0 - b)) -- if necessary.
    if (!A)
      return false;
  }
  Res = MCValue::get(A, B, LHS.getConstant() + RHS_Cst);
  return true;
}

bool MCExpr::EvaluateAsRelocatable(MCContext &Ctx, MCValue &Res) const {
  switch (getKind()) {
  case Constant:
    Res = MCValue::get(cast<MCConstantExpr>(this)->getValue());
    return true;

  case SymbolRef: {
    const MCSymbol &Sym = cast<MCSymbolRefExpr>(this)->getSymbol();
    if (const MCValue *Value = Ctx.GetSymbolValue(&Sym))
      Res = *Value;
    else
      Res = MCValue::get(&Sym, 0, 0);
    return true;
  }

  case Unary: {
    const MCUnaryExpr *AUE = cast<MCUnaryExpr>(this);
    MCValue Value;

    if (!AUE->getSubExpr()->EvaluateAsRelocatable(Ctx, Value))
      return false;

    switch (AUE->getOpcode()) {
    case MCUnaryExpr::LNot:
      if (!Value.isAbsolute())
        return false;
      Res = MCValue::get(!Value.getConstant());
      break;
    case MCUnaryExpr::Minus:
      /// -(a - b + const) ==> (b - a - const)
      if (Value.getSymA() && !Value.getSymB())
        return false;
      Res = MCValue::get(Value.getSymB(), Value.getSymA(), 
                         -Value.getConstant()); 
      break;
    case MCUnaryExpr::Not:
      if (!Value.isAbsolute())
        return false;
      Res = MCValue::get(~Value.getConstant()); 
      break;
    case MCUnaryExpr::Plus:
      Res = Value;
      break;
    }

    return true;
  }

  case Binary: {
    const MCBinaryExpr *ABE = cast<MCBinaryExpr>(this);
    MCValue LHSValue, RHSValue;
    
    if (!ABE->getLHS()->EvaluateAsRelocatable(Ctx, LHSValue) ||
        !ABE->getRHS()->EvaluateAsRelocatable(Ctx, RHSValue))
      return false;

    // We only support a few operations on non-constant expressions, handle
    // those first.
    if (!LHSValue.isAbsolute() || !RHSValue.isAbsolute()) {
      switch (ABE->getOpcode()) {
      default:
        return false;
      case MCBinaryExpr::Sub:
        // Negate RHS and add.
        return EvaluateSymbolicAdd(LHSValue,
                                   RHSValue.getSymB(), RHSValue.getSymA(),
                                   -RHSValue.getConstant(),
                                   Res);

      case MCBinaryExpr::Add:
        return EvaluateSymbolicAdd(LHSValue,
                                   RHSValue.getSymA(), RHSValue.getSymB(),
                                   RHSValue.getConstant(),
                                   Res);
      }
    }

    // FIXME: We need target hooks for the evaluation. It may be limited in
    // width, and gas defines the result of comparisons differently from Apple
    // as (the result is sign extended).
    int64_t LHS = LHSValue.getConstant(), RHS = RHSValue.getConstant();
    int64_t Result = 0;
    switch (ABE->getOpcode()) {
    case MCBinaryExpr::Add:  Result = LHS + RHS; break;
    case MCBinaryExpr::And:  Result = LHS & RHS; break;
    case MCBinaryExpr::Div:  Result = LHS / RHS; break;
    case MCBinaryExpr::EQ:   Result = LHS == RHS; break;
    case MCBinaryExpr::GT:   Result = LHS > RHS; break;
    case MCBinaryExpr::GTE:  Result = LHS >= RHS; break;
    case MCBinaryExpr::LAnd: Result = LHS && RHS; break;
    case MCBinaryExpr::LOr:  Result = LHS || RHS; break;
    case MCBinaryExpr::LT:   Result = LHS < RHS; break;
    case MCBinaryExpr::LTE:  Result = LHS <= RHS; break;
    case MCBinaryExpr::Mod:  Result = LHS % RHS; break;
    case MCBinaryExpr::Mul:  Result = LHS * RHS; break;
    case MCBinaryExpr::NE:   Result = LHS != RHS; break;
    case MCBinaryExpr::Or:   Result = LHS | RHS; break;
    case MCBinaryExpr::Shl:  Result = LHS << RHS; break;
    case MCBinaryExpr::Shr:  Result = LHS >> RHS; break;
    case MCBinaryExpr::Sub:  Result = LHS - RHS; break;
    case MCBinaryExpr::Xor:  Result = LHS ^ RHS; break;
    }

    Res = MCValue::get(Result);
    return true;
  }
  }

  assert(0 && "Invalid assembly expression kind!");
  return false;
}