summaryrefslogtreecommitdiff
path: root/lib/Target/AArch64/AArch64FastISel.cpp
blob: cc2a70ee8a2e15e7530e436974312747e2c9d2eb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
//===-- AArch6464FastISel.cpp - AArch64 FastISel implementation -----------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the AArch64-specific support for the FastISel class. Some
// of the target-specific code is generated by tablegen in the file
// AArch64GenFastISel.inc, which is #included here.
//
//===----------------------------------------------------------------------===//

#include "AArch64.h"
#include "AArch64TargetMachine.h"
#include "AArch64Subtarget.h"
#include "MCTargetDesc/AArch64AddressingModes.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/FastISel.h"
#include "llvm/CodeGen/FunctionLoweringInfo.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Operator.h"
#include "llvm/Support/CommandLine.h"
using namespace llvm;

namespace {

class AArch64FastISel : public FastISel {

  class Address {
  public:
    typedef enum {
      RegBase,
      FrameIndexBase
    } BaseKind;

  private:
    BaseKind Kind;
    union {
      unsigned Reg;
      int FI;
    } Base;
    int64_t Offset;

  public:
    Address() : Kind(RegBase), Offset(0) { Base.Reg = 0; }
    void setKind(BaseKind K) { Kind = K; }
    BaseKind getKind() const { return Kind; }
    bool isRegBase() const { return Kind == RegBase; }
    bool isFIBase() const { return Kind == FrameIndexBase; }
    void setReg(unsigned Reg) {
      assert(isRegBase() && "Invalid base register access!");
      Base.Reg = Reg;
    }
    unsigned getReg() const {
      assert(isRegBase() && "Invalid base register access!");
      return Base.Reg;
    }
    void setFI(unsigned FI) {
      assert(isFIBase() && "Invalid base frame index  access!");
      Base.FI = FI;
    }
    unsigned getFI() const {
      assert(isFIBase() && "Invalid base frame index access!");
      return Base.FI;
    }
    void setOffset(int64_t O) { Offset = O; }
    int64_t getOffset() { return Offset; }

    bool isValid() { return isFIBase() || (isRegBase() && getReg() != 0); }
  };

  /// Subtarget - Keep a pointer to the AArch64Subtarget around so that we can
  /// make the right decision when generating code for different targets.
  const AArch64Subtarget *Subtarget;
  LLVMContext *Context;

private:
  // Selection routines.
  bool SelectLoad(const Instruction *I);
  bool SelectStore(const Instruction *I);
  bool SelectBranch(const Instruction *I);
  bool SelectIndirectBr(const Instruction *I);
  bool SelectCmp(const Instruction *I);
  bool SelectSelect(const Instruction *I);
  bool SelectFPExt(const Instruction *I);
  bool SelectFPTrunc(const Instruction *I);
  bool SelectFPToInt(const Instruction *I, bool Signed);
  bool SelectIntToFP(const Instruction *I, bool Signed);
  bool SelectRem(const Instruction *I, unsigned ISDOpcode);
  bool SelectCall(const Instruction *I, const char *IntrMemName);
  bool SelectIntrinsicCall(const IntrinsicInst &I);
  bool SelectRet(const Instruction *I);
  bool SelectTrunc(const Instruction *I);
  bool SelectIntExt(const Instruction *I);
  bool SelectMul(const Instruction *I);

  // Utility helper routines.
  bool isTypeLegal(Type *Ty, MVT &VT);
  bool isLoadStoreTypeLegal(Type *Ty, MVT &VT);
  bool ComputeAddress(const Value *Obj, Address &Addr);
  bool SimplifyAddress(Address &Addr, MVT VT, int64_t ScaleFactor,
                       bool UseUnscaled);
  void AddLoadStoreOperands(Address &Addr, const MachineInstrBuilder &MIB,
                            unsigned Flags, bool UseUnscaled);
  bool IsMemCpySmall(uint64_t Len, unsigned Alignment);
  bool TryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len,
                          unsigned Alignment);
  // Emit functions.
  bool EmitCmp(Value *Src1Value, Value *Src2Value, bool isZExt);
  bool EmitLoad(MVT VT, unsigned &ResultReg, Address Addr,
                bool UseUnscaled = false);
  bool EmitStore(MVT VT, unsigned SrcReg, Address Addr,
                 bool UseUnscaled = false);
  unsigned EmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt);
  unsigned Emiti1Ext(unsigned SrcReg, MVT DestVT, bool isZExt);

  unsigned AArch64MaterializeFP(const ConstantFP *CFP, MVT VT);
  unsigned AArch64MaterializeGV(const GlobalValue *GV);

  // Call handling routines.
private:
  CCAssignFn *CCAssignFnForCall(CallingConv::ID CC) const;
  bool ProcessCallArgs(SmallVectorImpl<Value *> &Args,
                       SmallVectorImpl<unsigned> &ArgRegs,
                       SmallVectorImpl<MVT> &ArgVTs,
                       SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
                       SmallVectorImpl<unsigned> &RegArgs, CallingConv::ID CC,
                       unsigned &NumBytes);
  bool FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
                  const Instruction *I, CallingConv::ID CC, unsigned &NumBytes);

public:
  // Backend specific FastISel code.
  unsigned TargetMaterializeAlloca(const AllocaInst *AI) override;
  unsigned TargetMaterializeConstant(const Constant *C) override;

  explicit AArch64FastISel(FunctionLoweringInfo &funcInfo,
                         const TargetLibraryInfo *libInfo)
      : FastISel(funcInfo, libInfo) {
    Subtarget = &TM.getSubtarget<AArch64Subtarget>();
    Context = &funcInfo.Fn->getContext();
  }

  bool TargetSelectInstruction(const Instruction *I) override;

#include "AArch64GenFastISel.inc"
};

} // end anonymous namespace

#include "AArch64GenCallingConv.inc"

CCAssignFn *AArch64FastISel::CCAssignFnForCall(CallingConv::ID CC) const {
  if (CC == CallingConv::WebKit_JS)
    return CC_AArch64_WebKit_JS;
  return Subtarget->isTargetDarwin() ? CC_AArch64_DarwinPCS : CC_AArch64_AAPCS;
}

unsigned AArch64FastISel::TargetMaterializeAlloca(const AllocaInst *AI) {
  assert(TLI.getValueType(AI->getType(), true) == MVT::i64 &&
         "Alloca should always return a pointer.");

  // Don't handle dynamic allocas.
  if (!FuncInfo.StaticAllocaMap.count(AI))
    return 0;

  DenseMap<const AllocaInst *, int>::iterator SI =
      FuncInfo.StaticAllocaMap.find(AI);

  if (SI != FuncInfo.StaticAllocaMap.end()) {
    unsigned ResultReg = createResultReg(&AArch64::GPR64RegClass);
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADDXri),
            ResultReg)
        .addFrameIndex(SI->second)
        .addImm(0)
        .addImm(0);
    return ResultReg;
  }

  return 0;
}

unsigned AArch64FastISel::AArch64MaterializeFP(const ConstantFP *CFP, MVT VT) {
  if (VT != MVT::f32 && VT != MVT::f64)
    return 0;

  const APFloat Val = CFP->getValueAPF();
  bool is64bit = (VT == MVT::f64);

  // This checks to see if we can use FMOV instructions to materialize
  // a constant, otherwise we have to materialize via the constant pool.
  if (TLI.isFPImmLegal(Val, VT)) {
    int Imm;
    unsigned Opc;
    if (is64bit) {
      Imm = AArch64_AM::getFP64Imm(Val);
      Opc = AArch64::FMOVDi;
    } else {
      Imm = AArch64_AM::getFP32Imm(Val);
      Opc = AArch64::FMOVSi;
    }
    unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
        .addImm(Imm);
    return ResultReg;
  }

  // Materialize via constant pool.  MachineConstantPool wants an explicit
  // alignment.
  unsigned Align = DL.getPrefTypeAlignment(CFP->getType());
  if (Align == 0)
    Align = DL.getTypeAllocSize(CFP->getType());

  unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
  unsigned ADRPReg = createResultReg(&AArch64::GPR64commonRegClass);
  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADRP),
          ADRPReg).addConstantPoolIndex(Idx, 0, AArch64II::MO_PAGE);

  unsigned Opc = is64bit ? AArch64::LDRDui : AArch64::LDRSui;
  unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
      .addReg(ADRPReg)
      .addConstantPoolIndex(Idx, 0, AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
  return ResultReg;
}

unsigned AArch64FastISel::AArch64MaterializeGV(const GlobalValue *GV) {
  // We can't handle thread-local variables quickly yet.
  if (GV->isThreadLocal())
    return 0;

  // MachO still uses GOT for large code-model accesses, but ELF requires
  // movz/movk sequences, which FastISel doesn't handle yet.
  if (TM.getCodeModel() != CodeModel::Small && !Subtarget->isTargetMachO())
    return 0;

  unsigned char OpFlags = Subtarget->ClassifyGlobalReference(GV, TM);

  EVT DestEVT = TLI.getValueType(GV->getType(), true);
  if (!DestEVT.isSimple())
    return 0;

  unsigned ADRPReg = createResultReg(&AArch64::GPR64commonRegClass);
  unsigned ResultReg;

  if (OpFlags & AArch64II::MO_GOT) {
    // ADRP + LDRX
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADRP),
            ADRPReg)
        .addGlobalAddress(GV, 0, AArch64II::MO_GOT | AArch64II::MO_PAGE);

    ResultReg = createResultReg(&AArch64::GPR64RegClass);
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::LDRXui),
            ResultReg)
        .addReg(ADRPReg)
        .addGlobalAddress(GV, 0, AArch64II::MO_GOT | AArch64II::MO_PAGEOFF |
                          AArch64II::MO_NC);
  } else {
    // ADRP + ADDX
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADRP),
            ADRPReg).addGlobalAddress(GV, 0, AArch64II::MO_PAGE);

    ResultReg = createResultReg(&AArch64::GPR64spRegClass);
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADDXri),
            ResultReg)
        .addReg(ADRPReg)
        .addGlobalAddress(GV, 0, AArch64II::MO_PAGEOFF | AArch64II::MO_NC)
        .addImm(0);
  }
  return ResultReg;
}

unsigned AArch64FastISel::TargetMaterializeConstant(const Constant *C) {
  EVT CEVT = TLI.getValueType(C->getType(), true);

  // Only handle simple types.
  if (!CEVT.isSimple())
    return 0;
  MVT VT = CEVT.getSimpleVT();

  // FIXME: Handle ConstantInt.
  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
    return AArch64MaterializeFP(CFP, VT);
  else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
    return AArch64MaterializeGV(GV);

  return 0;
}

// Computes the address to get to an object.
bool AArch64FastISel::ComputeAddress(const Value *Obj, Address &Addr) {
  const User *U = nullptr;
  unsigned Opcode = Instruction::UserOp1;
  if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
    // Don't walk into other basic blocks unless the object is an alloca from
    // another block, otherwise it may not have a virtual register assigned.
    if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
        FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
      Opcode = I->getOpcode();
      U = I;
    }
  } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
    Opcode = C->getOpcode();
    U = C;
  }

  if (const PointerType *Ty = dyn_cast<PointerType>(Obj->getType()))
    if (Ty->getAddressSpace() > 255)
      // Fast instruction selection doesn't support the special
      // address spaces.
      return false;

  switch (Opcode) {
  default:
    break;
  case Instruction::BitCast: {
    // Look through bitcasts.
    return ComputeAddress(U->getOperand(0), Addr);
  }
  case Instruction::IntToPtr: {
    // Look past no-op inttoptrs.
    if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
      return ComputeAddress(U->getOperand(0), Addr);
    break;
  }
  case Instruction::PtrToInt: {
    // Look past no-op ptrtoints.
    if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
      return ComputeAddress(U->getOperand(0), Addr);
    break;
  }
  case Instruction::GetElementPtr: {
    Address SavedAddr = Addr;
    uint64_t TmpOffset = Addr.getOffset();

    // Iterate through the GEP folding the constants into offsets where
    // we can.
    gep_type_iterator GTI = gep_type_begin(U);
    for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e;
         ++i, ++GTI) {
      const Value *Op = *i;
      if (StructType *STy = dyn_cast<StructType>(*GTI)) {
        const StructLayout *SL = DL.getStructLayout(STy);
        unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
        TmpOffset += SL->getElementOffset(Idx);
      } else {
        uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
        for (;;) {
          if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
            // Constant-offset addressing.
            TmpOffset += CI->getSExtValue() * S;
            break;
          }
          if (canFoldAddIntoGEP(U, Op)) {
            // A compatible add with a constant operand. Fold the constant.
            ConstantInt *CI =
                cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
            TmpOffset += CI->getSExtValue() * S;
            // Iterate on the other operand.
            Op = cast<AddOperator>(Op)->getOperand(0);
            continue;
          }
          // Unsupported
          goto unsupported_gep;
        }
      }
    }

    // Try to grab the base operand now.
    Addr.setOffset(TmpOffset);
    if (ComputeAddress(U->getOperand(0), Addr))
      return true;

    // We failed, restore everything and try the other options.
    Addr = SavedAddr;

  unsupported_gep:
    break;
  }
  case Instruction::Alloca: {
    const AllocaInst *AI = cast<AllocaInst>(Obj);
    DenseMap<const AllocaInst *, int>::iterator SI =
        FuncInfo.StaticAllocaMap.find(AI);
    if (SI != FuncInfo.StaticAllocaMap.end()) {
      Addr.setKind(Address::FrameIndexBase);
      Addr.setFI(SI->second);
      return true;
    }
    break;
  }
  }

  // Try to get this in a register if nothing else has worked.
  if (!Addr.isValid())
    Addr.setReg(getRegForValue(Obj));
  return Addr.isValid();
}

bool AArch64FastISel::isTypeLegal(Type *Ty, MVT &VT) {
  EVT evt = TLI.getValueType(Ty, true);

  // Only handle simple types.
  if (evt == MVT::Other || !evt.isSimple())
    return false;
  VT = evt.getSimpleVT();

  // This is a legal type, but it's not something we handle in fast-isel.
  if (VT == MVT::f128)
    return false;

  // Handle all other legal types, i.e. a register that will directly hold this
  // value.
  return TLI.isTypeLegal(VT);
}

bool AArch64FastISel::isLoadStoreTypeLegal(Type *Ty, MVT &VT) {
  if (isTypeLegal(Ty, VT))
    return true;

  // If this is a type than can be sign or zero-extended to a basic operation
  // go ahead and accept it now. For stores, this reflects truncation.
  if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
    return true;

  return false;
}

bool AArch64FastISel::SimplifyAddress(Address &Addr, MVT VT,
                                      int64_t ScaleFactor, bool UseUnscaled) {
  bool needsLowering = false;
  int64_t Offset = Addr.getOffset();
  switch (VT.SimpleTy) {
  default:
    return false;
  case MVT::i1:
  case MVT::i8:
  case MVT::i16:
  case MVT::i32:
  case MVT::i64:
  case MVT::f32:
  case MVT::f64:
    if (!UseUnscaled)
      // Using scaled, 12-bit, unsigned immediate offsets.
      needsLowering = ((Offset & 0xfff) != Offset);
    else
      // Using unscaled, 9-bit, signed immediate offsets.
      needsLowering = (Offset > 256 || Offset < -256);
    break;
  }

  //If this is a stack pointer and the offset needs to be simplified then put
  // the alloca address into a register, set the base type back to register and
  // continue. This should almost never happen.
  if (needsLowering && Addr.getKind() == Address::FrameIndexBase) {
    unsigned ResultReg = createResultReg(&AArch64::GPR64RegClass);
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADDXri),
            ResultReg)
        .addFrameIndex(Addr.getFI())
        .addImm(0)
        .addImm(0);
    Addr.setKind(Address::RegBase);
    Addr.setReg(ResultReg);
  }

  // Since the offset is too large for the load/store instruction get the
  // reg+offset into a register.
  if (needsLowering) {
    uint64_t UnscaledOffset = Addr.getOffset() * ScaleFactor;
    unsigned ResultReg = FastEmit_ri_(MVT::i64, ISD::ADD, Addr.getReg(), false,
                                      UnscaledOffset, MVT::i64);
    if (ResultReg == 0)
      return false;
    Addr.setReg(ResultReg);
    Addr.setOffset(0);
  }
  return true;
}

void AArch64FastISel::AddLoadStoreOperands(Address &Addr,
                                           const MachineInstrBuilder &MIB,
                                           unsigned Flags, bool UseUnscaled) {
  int64_t Offset = Addr.getOffset();
  // Frame base works a bit differently. Handle it separately.
  if (Addr.getKind() == Address::FrameIndexBase) {
    int FI = Addr.getFI();
    // FIXME: We shouldn't be using getObjectSize/getObjectAlignment.  The size
    // and alignment should be based on the VT.
    MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
        MachinePointerInfo::getFixedStack(FI, Offset), Flags,
        MFI.getObjectSize(FI), MFI.getObjectAlignment(FI));
    // Now add the rest of the operands.
    MIB.addFrameIndex(FI).addImm(Offset).addMemOperand(MMO);
  } else {
    // Now add the rest of the operands.
    MIB.addReg(Addr.getReg());
    MIB.addImm(Offset);
  }
}

bool AArch64FastISel::EmitLoad(MVT VT, unsigned &ResultReg, Address Addr,
                               bool UseUnscaled) {
  // Negative offsets require unscaled, 9-bit, signed immediate offsets.
  // Otherwise, we try using scaled, 12-bit, unsigned immediate offsets.
  if (!UseUnscaled && Addr.getOffset() < 0)
    UseUnscaled = true;

  unsigned Opc;
  const TargetRegisterClass *RC;
  bool VTIsi1 = false;
  int64_t ScaleFactor = 0;
  switch (VT.SimpleTy) {
  default:
    return false;
  case MVT::i1:
    VTIsi1 = true;
  // Intentional fall-through.
  case MVT::i8:
    Opc = UseUnscaled ? AArch64::LDURBBi : AArch64::LDRBBui;
    RC = &AArch64::GPR32RegClass;
    ScaleFactor = 1;
    break;
  case MVT::i16:
    Opc = UseUnscaled ? AArch64::LDURHHi : AArch64::LDRHHui;
    RC = &AArch64::GPR32RegClass;
    ScaleFactor = 2;
    break;
  case MVT::i32:
    Opc = UseUnscaled ? AArch64::LDURWi : AArch64::LDRWui;
    RC = &AArch64::GPR32RegClass;
    ScaleFactor = 4;
    break;
  case MVT::i64:
    Opc = UseUnscaled ? AArch64::LDURXi : AArch64::LDRXui;
    RC = &AArch64::GPR64RegClass;
    ScaleFactor = 8;
    break;
  case MVT::f32:
    Opc = UseUnscaled ? AArch64::LDURSi : AArch64::LDRSui;
    RC = TLI.getRegClassFor(VT);
    ScaleFactor = 4;
    break;
  case MVT::f64:
    Opc = UseUnscaled ? AArch64::LDURDi : AArch64::LDRDui;
    RC = TLI.getRegClassFor(VT);
    ScaleFactor = 8;
    break;
  }
  // Scale the offset.
  if (!UseUnscaled) {
    int64_t Offset = Addr.getOffset();
    if (Offset & (ScaleFactor - 1))
      // Retry using an unscaled, 9-bit, signed immediate offset.
      return EmitLoad(VT, ResultReg, Addr, /*UseUnscaled*/ true);

    Addr.setOffset(Offset / ScaleFactor);
  }

  // Simplify this down to something we can handle.
  if (!SimplifyAddress(Addr, VT, UseUnscaled ? 1 : ScaleFactor, UseUnscaled))
    return false;

  // Create the base instruction, then add the operands.
  ResultReg = createResultReg(RC);
  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
                                    TII.get(Opc), ResultReg);
  AddLoadStoreOperands(Addr, MIB, MachineMemOperand::MOLoad, UseUnscaled);

  // Loading an i1 requires special handling.
  if (VTIsi1) {
    MRI.constrainRegClass(ResultReg, &AArch64::GPR32RegClass);
    unsigned ANDReg = createResultReg(&AArch64::GPR32spRegClass);
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ANDWri),
            ANDReg)
        .addReg(ResultReg)
        .addImm(AArch64_AM::encodeLogicalImmediate(1, 32));
    ResultReg = ANDReg;
  }
  return true;
}

bool AArch64FastISel::SelectLoad(const Instruction *I) {
  MVT VT;
  // Verify we have a legal type before going any further.  Currently, we handle
  // simple types that will directly fit in a register (i32/f32/i64/f64) or
  // those that can be sign or zero-extended to a basic operation (i1/i8/i16).
  if (!isLoadStoreTypeLegal(I->getType(), VT) || cast<LoadInst>(I)->isAtomic())
    return false;

  // See if we can handle this address.
  Address Addr;
  if (!ComputeAddress(I->getOperand(0), Addr))
    return false;

  unsigned ResultReg;
  if (!EmitLoad(VT, ResultReg, Addr))
    return false;

  UpdateValueMap(I, ResultReg);
  return true;
}

bool AArch64FastISel::EmitStore(MVT VT, unsigned SrcReg, Address Addr,
                                bool UseUnscaled) {
  // Negative offsets require unscaled, 9-bit, signed immediate offsets.
  // Otherwise, we try using scaled, 12-bit, unsigned immediate offsets.
  if (!UseUnscaled && Addr.getOffset() < 0)
    UseUnscaled = true;

  unsigned StrOpc;
  bool VTIsi1 = false;
  int64_t ScaleFactor = 0;
  // Using scaled, 12-bit, unsigned immediate offsets.
  switch (VT.SimpleTy) {
  default:
    return false;
  case MVT::i1:
    VTIsi1 = true;
  case MVT::i8:
    StrOpc = UseUnscaled ? AArch64::STURBBi : AArch64::STRBBui;
    ScaleFactor = 1;
    break;
  case MVT::i16:
    StrOpc = UseUnscaled ? AArch64::STURHHi : AArch64::STRHHui;
    ScaleFactor = 2;
    break;
  case MVT::i32:
    StrOpc = UseUnscaled ? AArch64::STURWi : AArch64::STRWui;
    ScaleFactor = 4;
    break;
  case MVT::i64:
    StrOpc = UseUnscaled ? AArch64::STURXi : AArch64::STRXui;
    ScaleFactor = 8;
    break;
  case MVT::f32:
    StrOpc = UseUnscaled ? AArch64::STURSi : AArch64::STRSui;
    ScaleFactor = 4;
    break;
  case MVT::f64:
    StrOpc = UseUnscaled ? AArch64::STURDi : AArch64::STRDui;
    ScaleFactor = 8;
    break;
  }
  // Scale the offset.
  if (!UseUnscaled) {
    int64_t Offset = Addr.getOffset();
    if (Offset & (ScaleFactor - 1))
      // Retry using an unscaled, 9-bit, signed immediate offset.
      return EmitStore(VT, SrcReg, Addr, /*UseUnscaled*/ true);

    Addr.setOffset(Offset / ScaleFactor);
  }

  // Simplify this down to something we can handle.
  if (!SimplifyAddress(Addr, VT, UseUnscaled ? 1 : ScaleFactor, UseUnscaled))
    return false;

  // Storing an i1 requires special handling.
  if (VTIsi1) {
    MRI.constrainRegClass(SrcReg, &AArch64::GPR32RegClass);
    unsigned ANDReg = createResultReg(&AArch64::GPR32spRegClass);
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ANDWri),
            ANDReg)
        .addReg(SrcReg)
        .addImm(AArch64_AM::encodeLogicalImmediate(1, 32));
    SrcReg = ANDReg;
  }
  // Create the base instruction, then add the operands.
  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
                                    TII.get(StrOpc)).addReg(SrcReg);
  AddLoadStoreOperands(Addr, MIB, MachineMemOperand::MOStore, UseUnscaled);
  return true;
}

bool AArch64FastISel::SelectStore(const Instruction *I) {
  MVT VT;
  Value *Op0 = I->getOperand(0);
  // Verify we have a legal type before going any further.  Currently, we handle
  // simple types that will directly fit in a register (i32/f32/i64/f64) or
  // those that can be sign or zero-extended to a basic operation (i1/i8/i16).
  if (!isLoadStoreTypeLegal(Op0->getType(), VT) ||
      cast<StoreInst>(I)->isAtomic())
    return false;

  // Get the value to be stored into a register.
  unsigned SrcReg = getRegForValue(Op0);
  if (SrcReg == 0)
    return false;

  // See if we can handle this address.
  Address Addr;
  if (!ComputeAddress(I->getOperand(1), Addr))
    return false;

  if (!EmitStore(VT, SrcReg, Addr))
    return false;
  return true;
}

static AArch64CC::CondCode getCompareCC(CmpInst::Predicate Pred) {
  switch (Pred) {
  case CmpInst::FCMP_ONE:
  case CmpInst::FCMP_UEQ:
  default:
    // AL is our "false" for now. The other two need more compares.
    return AArch64CC::AL;
  case CmpInst::ICMP_EQ:
  case CmpInst::FCMP_OEQ:
    return AArch64CC::EQ;
  case CmpInst::ICMP_SGT:
  case CmpInst::FCMP_OGT:
    return AArch64CC::GT;
  case CmpInst::ICMP_SGE:
  case CmpInst::FCMP_OGE:
    return AArch64CC::GE;
  case CmpInst::ICMP_UGT:
  case CmpInst::FCMP_UGT:
    return AArch64CC::HI;
  case CmpInst::FCMP_OLT:
    return AArch64CC::MI;
  case CmpInst::ICMP_ULE:
  case CmpInst::FCMP_OLE:
    return AArch64CC::LS;
  case CmpInst::FCMP_ORD:
    return AArch64CC::VC;
  case CmpInst::FCMP_UNO:
    return AArch64CC::VS;
  case CmpInst::FCMP_UGE:
    return AArch64CC::PL;
  case CmpInst::ICMP_SLT:
  case CmpInst::FCMP_ULT:
    return AArch64CC::LT;
  case CmpInst::ICMP_SLE:
  case CmpInst::FCMP_ULE:
    return AArch64CC::LE;
  case CmpInst::FCMP_UNE:
  case CmpInst::ICMP_NE:
    return AArch64CC::NE;
  case CmpInst::ICMP_UGE:
    return AArch64CC::HS;
  case CmpInst::ICMP_ULT:
    return AArch64CC::LO;
  }
}

bool AArch64FastISel::SelectBranch(const Instruction *I) {
  const BranchInst *BI = cast<BranchInst>(I);
  MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
  MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];

  if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
    if (CI->hasOneUse() && (CI->getParent() == I->getParent())) {
      // We may not handle every CC for now.
      AArch64CC::CondCode CC = getCompareCC(CI->getPredicate());
      if (CC == AArch64CC::AL)
        return false;

      // Emit the cmp.
      if (!EmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
        return false;

      // Emit the branch.
      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::Bcc))
          .addImm(CC)
          .addMBB(TBB);
      FuncInfo.MBB->addSuccessor(TBB);

      FastEmitBranch(FBB, DbgLoc);
      return true;
    }
  } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
    MVT SrcVT;
    if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
        (isLoadStoreTypeLegal(TI->getOperand(0)->getType(), SrcVT))) {
      unsigned CondReg = getRegForValue(TI->getOperand(0));
      if (CondReg == 0)
        return false;

      // Issue an extract_subreg to get the lower 32-bits.
      if (SrcVT == MVT::i64)
        CondReg = FastEmitInst_extractsubreg(MVT::i32, CondReg, /*Kill=*/true,
                                             AArch64::sub_32);

      MRI.constrainRegClass(CondReg, &AArch64::GPR32RegClass);
      unsigned ANDReg = createResultReg(&AArch64::GPR32spRegClass);
      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
              TII.get(AArch64::ANDWri), ANDReg)
          .addReg(CondReg)
          .addImm(AArch64_AM::encodeLogicalImmediate(1, 32));
      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
              TII.get(AArch64::SUBSWri))
          .addReg(ANDReg)
          .addReg(ANDReg)
          .addImm(0)
          .addImm(0);

      unsigned CC = AArch64CC::NE;
      if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
        std::swap(TBB, FBB);
        CC = AArch64CC::EQ;
      }
      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::Bcc))
          .addImm(CC)
          .addMBB(TBB);
      FuncInfo.MBB->addSuccessor(TBB);
      FastEmitBranch(FBB, DbgLoc);
      return true;
    }
  } else if (const ConstantInt *CI =
                 dyn_cast<ConstantInt>(BI->getCondition())) {
    uint64_t Imm = CI->getZExtValue();
    MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::B))
        .addMBB(Target);
    FuncInfo.MBB->addSuccessor(Target);
    return true;
  }

  unsigned CondReg = getRegForValue(BI->getCondition());
  if (CondReg == 0)
    return false;

  // We've been divorced from our compare!  Our block was split, and
  // now our compare lives in a predecessor block.  We musn't
  // re-compare here, as the children of the compare aren't guaranteed
  // live across the block boundary (we *could* check for this).
  // Regardless, the compare has been done in the predecessor block,
  // and it left a value for us in a virtual register.  Ergo, we test
  // the one-bit value left in the virtual register.
  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::SUBSWri),
          AArch64::WZR)
      .addReg(CondReg)
      .addImm(0)
      .addImm(0);

  unsigned CC = AArch64CC::NE;
  if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
    std::swap(TBB, FBB);
    CC = AArch64CC::EQ;
  }

  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::Bcc))
      .addImm(CC)
      .addMBB(TBB);
  FuncInfo.MBB->addSuccessor(TBB);
  FastEmitBranch(FBB, DbgLoc);
  return true;
}

bool AArch64FastISel::SelectIndirectBr(const Instruction *I) {
  const IndirectBrInst *BI = cast<IndirectBrInst>(I);
  unsigned AddrReg = getRegForValue(BI->getOperand(0));
  if (AddrReg == 0)
    return false;

  // Emit the indirect branch.
  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::BR))
      .addReg(AddrReg);

  // Make sure the CFG is up-to-date.
  for (unsigned i = 0, e = BI->getNumSuccessors(); i != e; ++i)
    FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[BI->getSuccessor(i)]);

  return true;
}

bool AArch64FastISel::EmitCmp(Value *Src1Value, Value *Src2Value, bool isZExt) {
  Type *Ty = Src1Value->getType();
  EVT SrcEVT = TLI.getValueType(Ty, true);
  if (!SrcEVT.isSimple())
    return false;
  MVT SrcVT = SrcEVT.getSimpleVT();

  // Check to see if the 2nd operand is a constant that we can encode directly
  // in the compare.
  uint64_t Imm;
  bool UseImm = false;
  bool isNegativeImm = false;
  if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(Src2Value)) {
    if (SrcVT == MVT::i64 || SrcVT == MVT::i32 || SrcVT == MVT::i16 ||
        SrcVT == MVT::i8 || SrcVT == MVT::i1) {
      const APInt &CIVal = ConstInt->getValue();

      Imm = (isZExt) ? CIVal.getZExtValue() : CIVal.getSExtValue();
      if (CIVal.isNegative()) {
        isNegativeImm = true;
        Imm = -Imm;
      }
      // FIXME: We can handle more immediates using shifts.
      UseImm = ((Imm & 0xfff) == Imm);
    }
  } else if (const ConstantFP *ConstFP = dyn_cast<ConstantFP>(Src2Value)) {
    if (SrcVT == MVT::f32 || SrcVT == MVT::f64)
      if (ConstFP->isZero() && !ConstFP->isNegative())
        UseImm = true;
  }

  unsigned ZReg;
  unsigned CmpOpc;
  bool isICmp = true;
  bool needsExt = false;
  switch (SrcVT.SimpleTy) {
  default:
    return false;
  case MVT::i1:
  case MVT::i8:
  case MVT::i16:
    needsExt = true;
  // Intentional fall-through.
  case MVT::i32:
    ZReg = AArch64::WZR;
    if (UseImm)
      CmpOpc = isNegativeImm ? AArch64::ADDSWri : AArch64::SUBSWri;
    else
      CmpOpc = AArch64::SUBSWrr;
    break;
  case MVT::i64:
    ZReg = AArch64::XZR;
    if (UseImm)
      CmpOpc = isNegativeImm ? AArch64::ADDSXri : AArch64::SUBSXri;
    else
      CmpOpc = AArch64::SUBSXrr;
    break;
  case MVT::f32:
    isICmp = false;
    CmpOpc = UseImm ? AArch64::FCMPSri : AArch64::FCMPSrr;
    break;
  case MVT::f64:
    isICmp = false;
    CmpOpc = UseImm ? AArch64::FCMPDri : AArch64::FCMPDrr;
    break;
  }

  unsigned SrcReg1 = getRegForValue(Src1Value);
  if (SrcReg1 == 0)
    return false;

  unsigned SrcReg2;
  if (!UseImm) {
    SrcReg2 = getRegForValue(Src2Value);
    if (SrcReg2 == 0)
      return false;
  }

  // We have i1, i8, or i16, we need to either zero extend or sign extend.
  if (needsExt) {
    SrcReg1 = EmitIntExt(SrcVT, SrcReg1, MVT::i32, isZExt);
    if (SrcReg1 == 0)
      return false;
    if (!UseImm) {
      SrcReg2 = EmitIntExt(SrcVT, SrcReg2, MVT::i32, isZExt);
      if (SrcReg2 == 0)
        return false;
    }
  }

  if (isICmp) {
    if (UseImm)
      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc))
          .addReg(ZReg)
          .addReg(SrcReg1)
          .addImm(Imm)
          .addImm(0);
    else
      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc))
          .addReg(ZReg)
          .addReg(SrcReg1)
          .addReg(SrcReg2);
  } else {
    if (UseImm)
      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc))
          .addReg(SrcReg1);
    else
      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc))
          .addReg(SrcReg1)
          .addReg(SrcReg2);
  }
  return true;
}

bool AArch64FastISel::SelectCmp(const Instruction *I) {
  const CmpInst *CI = cast<CmpInst>(I);

  // We may not handle every CC for now.
  AArch64CC::CondCode CC = getCompareCC(CI->getPredicate());
  if (CC == AArch64CC::AL)
    return false;

  // Emit the cmp.
  if (!EmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
    return false;

  // Now set a register based on the comparison.
  AArch64CC::CondCode invertedCC = getInvertedCondCode(CC);
  unsigned ResultReg = createResultReg(&AArch64::GPR32RegClass);
  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::CSINCWr),
          ResultReg)
      .addReg(AArch64::WZR)
      .addReg(AArch64::WZR)
      .addImm(invertedCC);

  UpdateValueMap(I, ResultReg);
  return true;
}

bool AArch64FastISel::SelectSelect(const Instruction *I) {
  const SelectInst *SI = cast<SelectInst>(I);

  EVT DestEVT = TLI.getValueType(SI->getType(), true);
  if (!DestEVT.isSimple())
    return false;

  MVT DestVT = DestEVT.getSimpleVT();
  if (DestVT != MVT::i32 && DestVT != MVT::i64 && DestVT != MVT::f32 &&
      DestVT != MVT::f64)
    return false;

  unsigned CondReg = getRegForValue(SI->getCondition());
  if (CondReg == 0)
    return false;
  unsigned TrueReg = getRegForValue(SI->getTrueValue());
  if (TrueReg == 0)
    return false;
  unsigned FalseReg = getRegForValue(SI->getFalseValue());
  if (FalseReg == 0)
    return false;


  MRI.constrainRegClass(CondReg, &AArch64::GPR32RegClass);
  unsigned ANDReg = createResultReg(&AArch64::GPR32spRegClass);
  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ANDWri),
          ANDReg)
      .addReg(CondReg)
      .addImm(AArch64_AM::encodeLogicalImmediate(1, 32));

  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::SUBSWri))
      .addReg(ANDReg)
      .addReg(ANDReg)
      .addImm(0)
      .addImm(0);

  unsigned SelectOpc;
  switch (DestVT.SimpleTy) {
  default:
    return false;
  case MVT::i32:
    SelectOpc = AArch64::CSELWr;
    break;
  case MVT::i64:
    SelectOpc = AArch64::CSELXr;
    break;
  case MVT::f32:
    SelectOpc = AArch64::FCSELSrrr;
    break;
  case MVT::f64:
    SelectOpc = AArch64::FCSELDrrr;
    break;
  }

  unsigned ResultReg = createResultReg(TLI.getRegClassFor(DestVT));
  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SelectOpc),
          ResultReg)
      .addReg(TrueReg)
      .addReg(FalseReg)
      .addImm(AArch64CC::NE);

  UpdateValueMap(I, ResultReg);
  return true;
}

bool AArch64FastISel::SelectFPExt(const Instruction *I) {
  Value *V = I->getOperand(0);
  if (!I->getType()->isDoubleTy() || !V->getType()->isFloatTy())
    return false;

  unsigned Op = getRegForValue(V);
  if (Op == 0)
    return false;

  unsigned ResultReg = createResultReg(&AArch64::FPR64RegClass);
  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::FCVTDSr),
          ResultReg).addReg(Op);
  UpdateValueMap(I, ResultReg);
  return true;
}

bool AArch64FastISel::SelectFPTrunc(const Instruction *I) {
  Value *V = I->getOperand(0);
  if (!I->getType()->isFloatTy() || !V->getType()->isDoubleTy())
    return false;

  unsigned Op = getRegForValue(V);
  if (Op == 0)
    return false;

  unsigned ResultReg = createResultReg(&AArch64::FPR32RegClass);
  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::FCVTSDr),
          ResultReg).addReg(Op);
  UpdateValueMap(I, ResultReg);
  return true;
}

// FPToUI and FPToSI
bool AArch64FastISel::SelectFPToInt(const Instruction *I, bool Signed) {
  MVT DestVT;
  if (!isTypeLegal(I->getType(), DestVT) || DestVT.isVector())
    return false;

  unsigned SrcReg = getRegForValue(I->getOperand(0));
  if (SrcReg == 0)
    return false;

  EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType(), true);
  if (SrcVT == MVT::f128)
    return false;

  unsigned Opc;
  if (SrcVT == MVT::f64) {
    if (Signed)
      Opc = (DestVT == MVT::i32) ? AArch64::FCVTZSUWDr : AArch64::FCVTZSUXDr;
    else
      Opc = (DestVT == MVT::i32) ? AArch64::FCVTZUUWDr : AArch64::FCVTZUUXDr;
  } else {
    if (Signed)
      Opc = (DestVT == MVT::i32) ? AArch64::FCVTZSUWSr : AArch64::FCVTZSUXSr;
    else
      Opc = (DestVT == MVT::i32) ? AArch64::FCVTZUUWSr : AArch64::FCVTZUUXSr;
  }
  unsigned ResultReg = createResultReg(
      DestVT == MVT::i32 ? &AArch64::GPR32RegClass : &AArch64::GPR64RegClass);
  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
      .addReg(SrcReg);
  UpdateValueMap(I, ResultReg);
  return true;
}

bool AArch64FastISel::SelectIntToFP(const Instruction *I, bool Signed) {
  MVT DestVT;
  if (!isTypeLegal(I->getType(), DestVT) || DestVT.isVector())
    return false;
  assert ((DestVT == MVT::f32 || DestVT == MVT::f64) &&
          "Unexpected value type.");

  unsigned SrcReg = getRegForValue(I->getOperand(0));
  if (SrcReg == 0)
    return false;

  EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType(), true);

  // Handle sign-extension.
  if (SrcVT == MVT::i16 || SrcVT == MVT::i8 || SrcVT == MVT::i1) {
    SrcReg =
        EmitIntExt(SrcVT.getSimpleVT(), SrcReg, MVT::i32, /*isZExt*/ !Signed);
    if (SrcReg == 0)
      return false;
  }

  MRI.constrainRegClass(SrcReg, SrcVT == MVT::i64 ? &AArch64::GPR64RegClass
                                                  : &AArch64::GPR32RegClass);

  unsigned Opc;
  if (SrcVT == MVT::i64) {
    if (Signed)
      Opc = (DestVT == MVT::f32) ? AArch64::SCVTFUXSri : AArch64::SCVTFUXDri;
    else
      Opc = (DestVT == MVT::f32) ? AArch64::UCVTFUXSri : AArch64::UCVTFUXDri;
  } else {
    if (Signed)
      Opc = (DestVT == MVT::f32) ? AArch64::SCVTFUWSri : AArch64::SCVTFUWDri;
    else
      Opc = (DestVT == MVT::f32) ? AArch64::UCVTFUWSri : AArch64::UCVTFUWDri;
  }

  unsigned ResultReg = createResultReg(TLI.getRegClassFor(DestVT));
  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
      .addReg(SrcReg);
  UpdateValueMap(I, ResultReg);
  return true;
}

bool AArch64FastISel::ProcessCallArgs(
    SmallVectorImpl<Value *> &Args, SmallVectorImpl<unsigned> &ArgRegs,
    SmallVectorImpl<MVT> &ArgVTs, SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
    SmallVectorImpl<unsigned> &RegArgs, CallingConv::ID CC,
    unsigned &NumBytes) {
  SmallVector<CCValAssign, 16> ArgLocs;
  CCState CCInfo(CC, false, *FuncInfo.MF, TM, ArgLocs, *Context);
  CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CCAssignFnForCall(CC));

  // Get a count of how many bytes are to be pushed on the stack.
  NumBytes = CCInfo.getNextStackOffset();

  // Issue CALLSEQ_START
  unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown))
      .addImm(NumBytes);

  // Process the args.
  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
    CCValAssign &VA = ArgLocs[i];
    unsigned Arg = ArgRegs[VA.getValNo()];
    MVT ArgVT = ArgVTs[VA.getValNo()];

    // Handle arg promotion: SExt, ZExt, AExt.
    switch (VA.getLocInfo()) {
    case CCValAssign::Full:
      break;
    case CCValAssign::SExt: {
      MVT DestVT = VA.getLocVT();
      MVT SrcVT = ArgVT;
      Arg = EmitIntExt(SrcVT, Arg, DestVT, /*isZExt*/ false);
      if (Arg == 0)
        return false;
      break;
    }
    case CCValAssign::AExt:
    // Intentional fall-through.
    case CCValAssign::ZExt: {
      MVT DestVT = VA.getLocVT();
      MVT SrcVT = ArgVT;
      Arg = EmitIntExt(SrcVT, Arg, DestVT, /*isZExt*/ true);
      if (Arg == 0)
        return false;
      break;
    }
    default:
      llvm_unreachable("Unknown arg promotion!");
    }

    // Now copy/store arg to correct locations.
    if (VA.isRegLoc() && !VA.needsCustom()) {
      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
              TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(Arg);
      RegArgs.push_back(VA.getLocReg());
    } else if (VA.needsCustom()) {
      // FIXME: Handle custom args.
      return false;
    } else {
      assert(VA.isMemLoc() && "Assuming store on stack.");

      // Need to store on the stack.
      unsigned ArgSize = (ArgVT.getSizeInBits() + 7) / 8;

      unsigned BEAlign = 0;
      if (ArgSize < 8 && !Subtarget->isLittleEndian())
        BEAlign = 8 - ArgSize;

      Address Addr;
      Addr.setKind(Address::RegBase);
      Addr.setReg(AArch64::SP);
      Addr.setOffset(VA.getLocMemOffset() + BEAlign);

      if (!EmitStore(ArgVT, Arg, Addr))
        return false;
    }
  }
  return true;
}

bool AArch64FastISel::FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
                                 const Instruction *I, CallingConv::ID CC,
                                 unsigned &NumBytes) {
  // Issue CALLSEQ_END
  unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp))
      .addImm(NumBytes)
      .addImm(0);

  // Now the return value.
  if (RetVT != MVT::isVoid) {
    SmallVector<CCValAssign, 16> RVLocs;
    CCState CCInfo(CC, false, *FuncInfo.MF, TM, RVLocs, *Context);
    CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC));

    // Only handle a single return value.
    if (RVLocs.size() != 1)
      return false;

    // Copy all of the result registers out of their specified physreg.
    MVT CopyVT = RVLocs[0].getValVT();
    unsigned ResultReg = createResultReg(TLI.getRegClassFor(CopyVT));
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
            TII.get(TargetOpcode::COPY),
            ResultReg).addReg(RVLocs[0].getLocReg());
    UsedRegs.push_back(RVLocs[0].getLocReg());

    // Finally update the result.
    UpdateValueMap(I, ResultReg);
  }

  return true;
}

bool AArch64FastISel::SelectCall(const Instruction *I,
                                 const char *IntrMemName = nullptr) {
  const CallInst *CI = cast<CallInst>(I);
  const Value *Callee = CI->getCalledValue();

  // Don't handle inline asm or intrinsics.
  if (isa<InlineAsm>(Callee))
    return false;

  // Only handle global variable Callees.
  const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
  if (!GV)
    return false;

  // Check the calling convention.
  ImmutableCallSite CS(CI);
  CallingConv::ID CC = CS.getCallingConv();

  // Let SDISel handle vararg functions.
  PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
  FunctionType *FTy = cast<FunctionType>(PT->getElementType());
  if (FTy->isVarArg())
    return false;

  // Handle *simple* calls for now.
  MVT RetVT;
  Type *RetTy = I->getType();
  if (RetTy->isVoidTy())
    RetVT = MVT::isVoid;
  else if (!isTypeLegal(RetTy, RetVT))
    return false;

  // Set up the argument vectors.
  SmallVector<Value *, 8> Args;
  SmallVector<unsigned, 8> ArgRegs;
  SmallVector<MVT, 8> ArgVTs;
  SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
  Args.reserve(CS.arg_size());
  ArgRegs.reserve(CS.arg_size());
  ArgVTs.reserve(CS.arg_size());
  ArgFlags.reserve(CS.arg_size());

  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
       i != e; ++i) {
    // If we're lowering a memory intrinsic instead of a regular call, skip the
    // last two arguments, which shouldn't be passed to the underlying function.
    if (IntrMemName && e - i <= 2)
      break;

    unsigned Arg = getRegForValue(*i);
    if (Arg == 0)
      return false;

    ISD::ArgFlagsTy Flags;
    unsigned AttrInd = i - CS.arg_begin() + 1;
    if (CS.paramHasAttr(AttrInd, Attribute::SExt))
      Flags.setSExt();
    if (CS.paramHasAttr(AttrInd, Attribute::ZExt))
      Flags.setZExt();

    // FIXME: Only handle *easy* calls for now.
    if (CS.paramHasAttr(AttrInd, Attribute::InReg) ||
        CS.paramHasAttr(AttrInd, Attribute::StructRet) ||
        CS.paramHasAttr(AttrInd, Attribute::Nest) ||
        CS.paramHasAttr(AttrInd, Attribute::ByVal))
      return false;

    MVT ArgVT;
    Type *ArgTy = (*i)->getType();
    if (!isTypeLegal(ArgTy, ArgVT) &&
        !(ArgVT == MVT::i1 || ArgVT == MVT::i8 || ArgVT == MVT::i16))
      return false;

    // We don't handle vector parameters yet.
    if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64)
      return false;

    unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
    Flags.setOrigAlign(OriginalAlignment);

    Args.push_back(*i);
    ArgRegs.push_back(Arg);
    ArgVTs.push_back(ArgVT);
    ArgFlags.push_back(Flags);
  }

  // Handle the arguments now that we've gotten them.
  SmallVector<unsigned, 4> RegArgs;
  unsigned NumBytes;
  if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, RegArgs, CC, NumBytes))
    return false;

  // Issue the call.
  MachineInstrBuilder MIB;
  MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::BL));
  if (!IntrMemName)
    MIB.addGlobalAddress(GV, 0, 0);
  else
    MIB.addExternalSymbol(IntrMemName, 0);

  // Add implicit physical register uses to the call.
  for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
    MIB.addReg(RegArgs[i], RegState::Implicit);

  // Add a register mask with the call-preserved registers.
  // Proper defs for return values will be added by setPhysRegsDeadExcept().
  MIB.addRegMask(TRI.getCallPreservedMask(CS.getCallingConv()));

  // Finish off the call including any return values.
  SmallVector<unsigned, 4> UsedRegs;
  if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes))
    return false;

  // Set all unused physreg defs as dead.
  static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);

  return true;
}

bool AArch64FastISel::IsMemCpySmall(uint64_t Len, unsigned Alignment) {
  if (Alignment)
    return Len / Alignment <= 4;
  else
    return Len < 32;
}

bool AArch64FastISel::TryEmitSmallMemCpy(Address Dest, Address Src,
                                         uint64_t Len, unsigned Alignment) {
  // Make sure we don't bloat code by inlining very large memcpy's.
  if (!IsMemCpySmall(Len, Alignment))
    return false;

  int64_t UnscaledOffset = 0;
  Address OrigDest = Dest;
  Address OrigSrc = Src;

  while (Len) {
    MVT VT;
    if (!Alignment || Alignment >= 8) {
      if (Len >= 8)
        VT = MVT::i64;
      else if (Len >= 4)
        VT = MVT::i32;
      else if (Len >= 2)
        VT = MVT::i16;
      else {
        VT = MVT::i8;
      }
    } else {
      // Bound based on alignment.
      if (Len >= 4 && Alignment == 4)
        VT = MVT::i32;
      else if (Len >= 2 && Alignment == 2)
        VT = MVT::i16;
      else {
        VT = MVT::i8;
      }
    }

    bool RV;
    unsigned ResultReg;
    RV = EmitLoad(VT, ResultReg, Src);
    if (!RV)
      return false;

    RV = EmitStore(VT, ResultReg, Dest);
    if (!RV)
      return false;

    int64_t Size = VT.getSizeInBits() / 8;
    Len -= Size;
    UnscaledOffset += Size;

    // We need to recompute the unscaled offset for each iteration.
    Dest.setOffset(OrigDest.getOffset() + UnscaledOffset);
    Src.setOffset(OrigSrc.getOffset() + UnscaledOffset);
  }

  return true;
}

bool AArch64FastISel::SelectIntrinsicCall(const IntrinsicInst &I) {
  // FIXME: Handle more intrinsics.
  switch (I.getIntrinsicID()) {
  default:
    return false;
  case Intrinsic::memcpy:
  case Intrinsic::memmove: {
    const MemTransferInst &MTI = cast<MemTransferInst>(I);
    // Don't handle volatile.
    if (MTI.isVolatile())
      return false;

    // Disable inlining for memmove before calls to ComputeAddress.  Otherwise,
    // we would emit dead code because we don't currently handle memmoves.
    bool isMemCpy = (I.getIntrinsicID() == Intrinsic::memcpy);
    if (isa<ConstantInt>(MTI.getLength()) && isMemCpy) {
      // Small memcpy's are common enough that we want to do them without a call
      // if possible.
      uint64_t Len = cast<ConstantInt>(MTI.getLength())->getZExtValue();
      unsigned Alignment = MTI.getAlignment();
      if (IsMemCpySmall(Len, Alignment)) {
        Address Dest, Src;
        if (!ComputeAddress(MTI.getRawDest(), Dest) ||
            !ComputeAddress(MTI.getRawSource(), Src))
          return false;
        if (TryEmitSmallMemCpy(Dest, Src, Len, Alignment))
          return true;
      }
    }

    if (!MTI.getLength()->getType()->isIntegerTy(64))
      return false;

    if (MTI.getSourceAddressSpace() > 255 || MTI.getDestAddressSpace() > 255)
      // Fast instruction selection doesn't support the special
      // address spaces.
      return false;

    const char *IntrMemName = isa<MemCpyInst>(I) ? "memcpy" : "memmove";
    return SelectCall(&I, IntrMemName);
  }
  case Intrinsic::memset: {
    const MemSetInst &MSI = cast<MemSetInst>(I);
    // Don't handle volatile.
    if (MSI.isVolatile())
      return false;

    if (!MSI.getLength()->getType()->isIntegerTy(64))
      return false;

    if (MSI.getDestAddressSpace() > 255)
      // Fast instruction selection doesn't support the special
      // address spaces.
      return false;

    return SelectCall(&I, "memset");
  }
  case Intrinsic::trap: {
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::BRK))
        .addImm(1);
    return true;
  }
  }
  return false;
}

bool AArch64FastISel::SelectRet(const Instruction *I) {
  const ReturnInst *Ret = cast<ReturnInst>(I);
  const Function &F = *I->getParent()->getParent();

  if (!FuncInfo.CanLowerReturn)
    return false;

  if (F.isVarArg())
    return false;

  // Build a list of return value registers.
  SmallVector<unsigned, 4> RetRegs;

  if (Ret->getNumOperands() > 0) {
    CallingConv::ID CC = F.getCallingConv();
    SmallVector<ISD::OutputArg, 4> Outs;
    GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI);

    // Analyze operands of the call, assigning locations to each operand.
    SmallVector<CCValAssign, 16> ValLocs;
    CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, TM, ValLocs,
                   I->getContext());
    CCAssignFn *RetCC = CC == CallingConv::WebKit_JS ? RetCC_AArch64_WebKit_JS
                                                     : RetCC_AArch64_AAPCS;
    CCInfo.AnalyzeReturn(Outs, RetCC);

    // Only handle a single return value for now.
    if (ValLocs.size() != 1)
      return false;

    CCValAssign &VA = ValLocs[0];
    const Value *RV = Ret->getOperand(0);

    // Don't bother handling odd stuff for now.
    if (VA.getLocInfo() != CCValAssign::Full)
      return false;
    // Only handle register returns for now.
    if (!VA.isRegLoc())
      return false;
    unsigned Reg = getRegForValue(RV);
    if (Reg == 0)
      return false;

    unsigned SrcReg = Reg + VA.getValNo();
    unsigned DestReg = VA.getLocReg();
    // Avoid a cross-class copy. This is very unlikely.
    if (!MRI.getRegClass(SrcReg)->contains(DestReg))
      return false;

    EVT RVEVT = TLI.getValueType(RV->getType());
    if (!RVEVT.isSimple())
      return false;

    // Vectors (of > 1 lane) in big endian need tricky handling.
    if (RVEVT.isVector() && RVEVT.getVectorNumElements() > 1)
      return false;

    MVT RVVT = RVEVT.getSimpleVT();
    if (RVVT == MVT::f128)
      return false;
    MVT DestVT = VA.getValVT();
    // Special handling for extended integers.
    if (RVVT != DestVT) {
      if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16)
        return false;

      if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt())
        return false;

      bool isZExt = Outs[0].Flags.isZExt();
      SrcReg = EmitIntExt(RVVT, SrcReg, DestVT, isZExt);
      if (SrcReg == 0)
        return false;
    }

    // Make the copy.
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
            TII.get(TargetOpcode::COPY), DestReg).addReg(SrcReg);

    // Add register to return instruction.
    RetRegs.push_back(VA.getLocReg());
  }

  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
                                    TII.get(AArch64::RET_ReallyLR));
  for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
    MIB.addReg(RetRegs[i], RegState::Implicit);
  return true;
}

bool AArch64FastISel::SelectTrunc(const Instruction *I) {
  Type *DestTy = I->getType();
  Value *Op = I->getOperand(0);
  Type *SrcTy = Op->getType();

  EVT SrcEVT = TLI.getValueType(SrcTy, true);
  EVT DestEVT = TLI.getValueType(DestTy, true);
  if (!SrcEVT.isSimple())
    return false;
  if (!DestEVT.isSimple())
    return false;

  MVT SrcVT = SrcEVT.getSimpleVT();
  MVT DestVT = DestEVT.getSimpleVT();

  if (SrcVT != MVT::i64 && SrcVT != MVT::i32 && SrcVT != MVT::i16 &&
      SrcVT != MVT::i8)
    return false;
  if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8 &&
      DestVT != MVT::i1)
    return false;

  unsigned SrcReg = getRegForValue(Op);
  if (!SrcReg)
    return false;

  // If we're truncating from i64 to a smaller non-legal type then generate an
  // AND.  Otherwise, we know the high bits are undefined and a truncate doesn't
  // generate any code.
  if (SrcVT == MVT::i64) {
    uint64_t Mask = 0;
    switch (DestVT.SimpleTy) {
    default:
      // Trunc i64 to i32 is handled by the target-independent fast-isel.
      return false;
    case MVT::i1:
      Mask = 0x1;
      break;
    case MVT::i8:
      Mask = 0xff;
      break;
    case MVT::i16:
      Mask = 0xffff;
      break;
    }
    // Issue an extract_subreg to get the lower 32-bits.
    unsigned Reg32 = FastEmitInst_extractsubreg(MVT::i32, SrcReg, /*Kill=*/true,
                                                AArch64::sub_32);
    MRI.constrainRegClass(Reg32, &AArch64::GPR32RegClass);
    // Create the AND instruction which performs the actual truncation.
    unsigned ANDReg = createResultReg(&AArch64::GPR32spRegClass);
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ANDWri),
            ANDReg)
        .addReg(Reg32)
        .addImm(AArch64_AM::encodeLogicalImmediate(Mask, 32));
    SrcReg = ANDReg;
  }

  UpdateValueMap(I, SrcReg);
  return true;
}

unsigned AArch64FastISel::Emiti1Ext(unsigned SrcReg, MVT DestVT, bool isZExt) {
  assert((DestVT == MVT::i8 || DestVT == MVT::i16 || DestVT == MVT::i32 ||
          DestVT == MVT::i64) &&
         "Unexpected value type.");
  // Handle i8 and i16 as i32.
  if (DestVT == MVT::i8 || DestVT == MVT::i16)
    DestVT = MVT::i32;

  if (isZExt) {
    MRI.constrainRegClass(SrcReg, &AArch64::GPR32RegClass);
    unsigned ResultReg = createResultReg(&AArch64::GPR32spRegClass);
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ANDWri),
            ResultReg)
        .addReg(SrcReg)
        .addImm(AArch64_AM::encodeLogicalImmediate(1, 32));

    if (DestVT == MVT::i64) {
      // We're ZExt i1 to i64.  The ANDWri Wd, Ws, #1 implicitly clears the
      // upper 32 bits.  Emit a SUBREG_TO_REG to extend from Wd to Xd.
      unsigned Reg64 = MRI.createVirtualRegister(&AArch64::GPR64RegClass);
      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
              TII.get(AArch64::SUBREG_TO_REG), Reg64)
          .addImm(0)
          .addReg(ResultReg)
          .addImm(AArch64::sub_32);
      ResultReg = Reg64;
    }
    return ResultReg;
  } else {
    if (DestVT == MVT::i64) {
      // FIXME: We're SExt i1 to i64.
      return 0;
    }
    unsigned ResultReg = createResultReg(&AArch64::GPR32RegClass);
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::SBFMWri),
            ResultReg)
        .addReg(SrcReg)
        .addImm(0)
        .addImm(0);
    return ResultReg;
  }
}

unsigned AArch64FastISel::EmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
                                     bool isZExt) {
  assert(DestVT != MVT::i1 && "ZeroExt/SignExt an i1?");
  unsigned Opc;
  unsigned Imm = 0;

  switch (SrcVT.SimpleTy) {
  default:
    return 0;
  case MVT::i1:
    return Emiti1Ext(SrcReg, DestVT, isZExt);
  case MVT::i8:
    if (DestVT == MVT::i64)
      Opc = isZExt ? AArch64::UBFMXri : AArch64::SBFMXri;
    else
      Opc = isZExt ? AArch64::UBFMWri : AArch64::SBFMWri;
    Imm = 7;
    break;
  case MVT::i16:
    if (DestVT == MVT::i64)
      Opc = isZExt ? AArch64::UBFMXri : AArch64::SBFMXri;
    else
      Opc = isZExt ? AArch64::UBFMWri : AArch64::SBFMWri;
    Imm = 15;
    break;
  case MVT::i32:
    assert(DestVT == MVT::i64 && "IntExt i32 to i32?!?");
    Opc = isZExt ? AArch64::UBFMXri : AArch64::SBFMXri;
    Imm = 31;
    break;
  }

  // Handle i8 and i16 as i32.
  if (DestVT == MVT::i8 || DestVT == MVT::i16)
    DestVT = MVT::i32;
  else if (DestVT == MVT::i64) {
    unsigned Src64 = MRI.createVirtualRegister(&AArch64::GPR64RegClass);
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
            TII.get(AArch64::SUBREG_TO_REG), Src64)
        .addImm(0)
        .addReg(SrcReg)
        .addImm(AArch64::sub_32);
    SrcReg = Src64;
  }

  unsigned ResultReg = createResultReg(TLI.getRegClassFor(DestVT));
  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
      .addReg(SrcReg)
      .addImm(0)
      .addImm(Imm);

  return ResultReg;
}

bool AArch64FastISel::SelectIntExt(const Instruction *I) {
  // On ARM, in general, integer casts don't involve legal types; this code
  // handles promotable integers.  The high bits for a type smaller than
  // the register size are assumed to be undefined.
  Type *DestTy = I->getType();
  Value *Src = I->getOperand(0);
  Type *SrcTy = Src->getType();

  bool isZExt = isa<ZExtInst>(I);
  unsigned SrcReg = getRegForValue(Src);
  if (!SrcReg)
    return false;

  EVT SrcEVT = TLI.getValueType(SrcTy, true);
  EVT DestEVT = TLI.getValueType(DestTy, true);
  if (!SrcEVT.isSimple())
    return false;
  if (!DestEVT.isSimple())
    return false;

  MVT SrcVT = SrcEVT.getSimpleVT();
  MVT DestVT = DestEVT.getSimpleVT();
  unsigned ResultReg = EmitIntExt(SrcVT, SrcReg, DestVT, isZExt);
  if (ResultReg == 0)
    return false;
  UpdateValueMap(I, ResultReg);
  return true;
}

bool AArch64FastISel::SelectRem(const Instruction *I, unsigned ISDOpcode) {
  EVT DestEVT = TLI.getValueType(I->getType(), true);
  if (!DestEVT.isSimple())
    return false;

  MVT DestVT = DestEVT.getSimpleVT();
  if (DestVT != MVT::i64 && DestVT != MVT::i32)
    return false;

  unsigned DivOpc;
  bool is64bit = (DestVT == MVT::i64);
  switch (ISDOpcode) {
  default:
    return false;
  case ISD::SREM:
    DivOpc = is64bit ? AArch64::SDIVXr : AArch64::SDIVWr;
    break;
  case ISD::UREM:
    DivOpc = is64bit ? AArch64::UDIVXr : AArch64::UDIVWr;
    break;
  }
  unsigned MSubOpc = is64bit ? AArch64::MSUBXrrr : AArch64::MSUBWrrr;
  unsigned Src0Reg = getRegForValue(I->getOperand(0));
  if (!Src0Reg)
    return false;

  unsigned Src1Reg = getRegForValue(I->getOperand(1));
  if (!Src1Reg)
    return false;

  unsigned QuotReg = createResultReg(TLI.getRegClassFor(DestVT));
  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(DivOpc), QuotReg)
      .addReg(Src0Reg)
      .addReg(Src1Reg);
  // The remainder is computed as numerator - (quotient * denominator) using the
  // MSUB instruction.
  unsigned ResultReg = createResultReg(TLI.getRegClassFor(DestVT));
  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MSubOpc), ResultReg)
      .addReg(QuotReg)
      .addReg(Src1Reg)
      .addReg(Src0Reg);
  UpdateValueMap(I, ResultReg);
  return true;
}

bool AArch64FastISel::SelectMul(const Instruction *I) {
  EVT SrcEVT = TLI.getValueType(I->getOperand(0)->getType(), true);
  if (!SrcEVT.isSimple())
    return false;
  MVT SrcVT = SrcEVT.getSimpleVT();

  // Must be simple value type.  Don't handle vectors.
  if (SrcVT != MVT::i64 && SrcVT != MVT::i32 && SrcVT != MVT::i16 &&
      SrcVT != MVT::i8)
    return false;

  unsigned Opc;
  unsigned ZReg;
  switch (SrcVT.SimpleTy) {
  default:
    return false;
  case MVT::i8:
  case MVT::i16:
  case MVT::i32:
    ZReg = AArch64::WZR;
    Opc = AArch64::MADDWrrr;
    break;
  case MVT::i64:
    ZReg = AArch64::XZR;
    Opc = AArch64::MADDXrrr;
    break;
  }

  unsigned Src0Reg = getRegForValue(I->getOperand(0));
  if (!Src0Reg)
    return false;

  unsigned Src1Reg = getRegForValue(I->getOperand(1));
  if (!Src1Reg)
    return false;

  // Create the base instruction, then add the operands.
  unsigned ResultReg = createResultReg(TLI.getRegClassFor(SrcVT));
  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
      .addReg(Src0Reg)
      .addReg(Src1Reg)
      .addReg(ZReg);
  UpdateValueMap(I, ResultReg);
  return true;
}

bool AArch64FastISel::TargetSelectInstruction(const Instruction *I) {
  switch (I->getOpcode()) {
  default:
    break;
  case Instruction::Load:
    return SelectLoad(I);
  case Instruction::Store:
    return SelectStore(I);
  case Instruction::Br:
    return SelectBranch(I);
  case Instruction::IndirectBr:
    return SelectIndirectBr(I);
  case Instruction::FCmp:
  case Instruction::ICmp:
    return SelectCmp(I);
  case Instruction::Select:
    return SelectSelect(I);
  case Instruction::FPExt:
    return SelectFPExt(I);
  case Instruction::FPTrunc:
    return SelectFPTrunc(I);
  case Instruction::FPToSI:
    return SelectFPToInt(I, /*Signed=*/true);
  case Instruction::FPToUI:
    return SelectFPToInt(I, /*Signed=*/false);
  case Instruction::SIToFP:
    return SelectIntToFP(I, /*Signed=*/true);
  case Instruction::UIToFP:
    return SelectIntToFP(I, /*Signed=*/false);
  case Instruction::SRem:
    return SelectRem(I, ISD::SREM);
  case Instruction::URem:
    return SelectRem(I, ISD::UREM);
  case Instruction::Call:
    if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
      return SelectIntrinsicCall(*II);
    return SelectCall(I);
  case Instruction::Ret:
    return SelectRet(I);
  case Instruction::Trunc:
    return SelectTrunc(I);
  case Instruction::ZExt:
  case Instruction::SExt:
    return SelectIntExt(I);
  case Instruction::Mul:
    // FIXME: This really should be handled by the target-independent selector.
    return SelectMul(I);
  }
  return false;
  // Silence warnings.
  (void)&CC_AArch64_DarwinPCS_VarArg;
}

namespace llvm {
llvm::FastISel *AArch64::createFastISel(FunctionLoweringInfo &funcInfo,
                                        const TargetLibraryInfo *libInfo) {
  return new AArch64FastISel(funcInfo, libInfo);
}
}