summaryrefslogtreecommitdiff
path: root/lib/Target/ARM/ARMFastISel.cpp
blob: d199e7327469fe5078747bc2ee5de47d413e98b2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
//===-- ARMFastISel.cpp - ARM FastISel implementation ---------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the ARM-specific support for the FastISel class. Some
// of the target-specific code is generated by tablegen in the file
// ARMGenFastISel.inc, which is #included here.
//
//===----------------------------------------------------------------------===//

#include "ARM.h"
#include "ARMBaseInstrInfo.h"
#include "ARMCallingConv.h"
#include "ARMRegisterInfo.h"
#include "ARMTargetMachine.h"
#include "ARMSubtarget.h"
#include "llvm/CallingConv.h"
#include "llvm/DerivedTypes.h"
#include "llvm/GlobalVariable.h"
#include "llvm/Instructions.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/Module.h"
#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/FastISel.h"
#include "llvm/CodeGen/FunctionLoweringInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
using namespace llvm;

static cl::opt<bool>
EnableARMFastISel("arm-fast-isel",
                  cl::desc("Turn on experimental ARM fast-isel support"),
                  cl::init(false), cl::Hidden);

namespace {

class ARMFastISel : public FastISel {

  /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
  /// make the right decision when generating code for different targets.
  const ARMSubtarget *Subtarget;
  const TargetMachine &TM;
  const TargetInstrInfo &TII;
  const TargetLowering &TLI;
  const ARMFunctionInfo *AFI;

  // Convenience variable to avoid checking all the time.
  bool isThumb;

  public:
    explicit ARMFastISel(FunctionLoweringInfo &funcInfo)
    : FastISel(funcInfo),
      TM(funcInfo.MF->getTarget()),
      TII(*TM.getInstrInfo()),
      TLI(*TM.getTargetLowering()) {
      Subtarget = &TM.getSubtarget<ARMSubtarget>();
      AFI = funcInfo.MF->getInfo<ARMFunctionInfo>();
      isThumb = AFI->isThumbFunction();
    }

    // Code from FastISel.cpp.
    virtual unsigned FastEmitInst_(unsigned MachineInstOpcode,
                                   const TargetRegisterClass *RC);
    virtual unsigned FastEmitInst_r(unsigned MachineInstOpcode,
                                    const TargetRegisterClass *RC,
                                    unsigned Op0, bool Op0IsKill);
    virtual unsigned FastEmitInst_rr(unsigned MachineInstOpcode,
                                     const TargetRegisterClass *RC,
                                     unsigned Op0, bool Op0IsKill,
                                     unsigned Op1, bool Op1IsKill);
    virtual unsigned FastEmitInst_ri(unsigned MachineInstOpcode,
                                     const TargetRegisterClass *RC,
                                     unsigned Op0, bool Op0IsKill,
                                     uint64_t Imm);
    virtual unsigned FastEmitInst_rf(unsigned MachineInstOpcode,
                                     const TargetRegisterClass *RC,
                                     unsigned Op0, bool Op0IsKill,
                                     const ConstantFP *FPImm);
    virtual unsigned FastEmitInst_i(unsigned MachineInstOpcode,
                                    const TargetRegisterClass *RC,
                                    uint64_t Imm);
    virtual unsigned FastEmitInst_rri(unsigned MachineInstOpcode,
                                      const TargetRegisterClass *RC,
                                      unsigned Op0, bool Op0IsKill,
                                      unsigned Op1, bool Op1IsKill,
                                      uint64_t Imm);
    virtual unsigned FastEmitInst_extractsubreg(MVT RetVT,
                                                unsigned Op0, bool Op0IsKill,
                                                uint32_t Idx);

    // Backend specific FastISel code.
    virtual bool TargetSelectInstruction(const Instruction *I);
    virtual unsigned TargetMaterializeConstant(const Constant *C);

  #include "ARMGenFastISel.inc"

    // Instruction selection routines.
  private:
    virtual bool ARMSelectLoad(const Instruction *I);
    virtual bool ARMSelectStore(const Instruction *I);
    virtual bool ARMSelectBranch(const Instruction *I);
    virtual bool ARMSelectCmp(const Instruction *I);
    virtual bool ARMSelectFPExt(const Instruction *I);
    virtual bool ARMSelectFPTrunc(const Instruction *I);
    virtual bool ARMSelectBinaryOp(const Instruction *I, unsigned ISDOpcode);
    virtual bool ARMSelectSIToFP(const Instruction *I);
    virtual bool ARMSelectFPToSI(const Instruction *I);
    virtual bool ARMSelectSDiv(const Instruction *I);

    // Utility routines.
  private:
    bool isTypeLegal(const Type *Ty, EVT &VT);
    bool isLoadTypeLegal(const Type *Ty, EVT &VT);
    bool ARMEmitLoad(EVT VT, unsigned &ResultReg, unsigned Reg, int Offset);
    bool ARMEmitStore(EVT VT, unsigned SrcReg, unsigned Reg, int Offset);
    bool ARMLoadAlloca(const Instruction *I, EVT VT);
    bool ARMStoreAlloca(const Instruction *I, unsigned SrcReg, EVT VT);
    bool ARMComputeRegOffset(const Value *Obj, unsigned &Reg, int &Offset);
    unsigned ARMMaterializeFP(const ConstantFP *CFP, EVT VT);
    unsigned ARMMaterializeInt(const Constant *C);
    unsigned ARMMoveToFPReg(EVT VT, unsigned SrcReg);
    unsigned ARMMoveToIntReg(EVT VT, unsigned SrcReg);

    // Call handling routines.
  private:
    CCAssignFn *CCAssignFnForCall(CallingConv::ID CC, bool Return);
    bool ARMEmitLibcall(const Instruction *I, Function *F);

    // OptionalDef handling routines.
  private:
    bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR);
    const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB);
};

} // end anonymous namespace

#include "ARMGenCallingConv.inc"

// DefinesOptionalPredicate - This is different from DefinesPredicate in that
// we don't care about implicit defs here, just places we'll need to add a
// default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR.
bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) {
  const TargetInstrDesc &TID = MI->getDesc();
  if (!TID.hasOptionalDef())
    return false;

  // Look to see if our OptionalDef is defining CPSR or CCR.
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    const MachineOperand &MO = MI->getOperand(i);
    if (!MO.isReg() || !MO.isDef()) continue;
    if (MO.getReg() == ARM::CPSR)
      *CPSR = true;
  }
  return true;
}

// If the machine is predicable go ahead and add the predicate operands, if
// it needs default CC operands add those.
const MachineInstrBuilder &
ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) {
  MachineInstr *MI = &*MIB;

  // Do we use a predicate?
  if (TII.isPredicable(MI))
    AddDefaultPred(MIB);

  // Do we optionally set a predicate?  Preds is size > 0 iff the predicate
  // defines CPSR. All other OptionalDefines in ARM are the CCR register.
  bool CPSR = false;
  if (DefinesOptionalPredicate(MI, &CPSR)) {
    if (CPSR)
      AddDefaultT1CC(MIB);
    else
      AddDefaultCC(MIB);
  }
  return MIB;
}

unsigned ARMFastISel::FastEmitInst_(unsigned MachineInstOpcode,
                                    const TargetRegisterClass* RC) {
  unsigned ResultReg = createResultReg(RC);
  const TargetInstrDesc &II = TII.get(MachineInstOpcode);

  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg));
  return ResultReg;
}

unsigned ARMFastISel::FastEmitInst_r(unsigned MachineInstOpcode,
                                     const TargetRegisterClass *RC,
                                     unsigned Op0, bool Op0IsKill) {
  unsigned ResultReg = createResultReg(RC);
  const TargetInstrDesc &II = TII.get(MachineInstOpcode);

  if (II.getNumDefs() >= 1)
    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
                   .addReg(Op0, Op0IsKill * RegState::Kill));
  else {
    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
                   .addReg(Op0, Op0IsKill * RegState::Kill));
    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
                   TII.get(TargetOpcode::COPY), ResultReg)
                   .addReg(II.ImplicitDefs[0]));
  }
  return ResultReg;
}

unsigned ARMFastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
                                      const TargetRegisterClass *RC,
                                      unsigned Op0, bool Op0IsKill,
                                      unsigned Op1, bool Op1IsKill) {
  unsigned ResultReg = createResultReg(RC);
  const TargetInstrDesc &II = TII.get(MachineInstOpcode);

  if (II.getNumDefs() >= 1)
    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
                   .addReg(Op0, Op0IsKill * RegState::Kill)
                   .addReg(Op1, Op1IsKill * RegState::Kill));
  else {
    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
                   .addReg(Op0, Op0IsKill * RegState::Kill)
                   .addReg(Op1, Op1IsKill * RegState::Kill));
    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
                           TII.get(TargetOpcode::COPY), ResultReg)
                   .addReg(II.ImplicitDefs[0]));
  }
  return ResultReg;
}

unsigned ARMFastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
                                      const TargetRegisterClass *RC,
                                      unsigned Op0, bool Op0IsKill,
                                      uint64_t Imm) {
  unsigned ResultReg = createResultReg(RC);
  const TargetInstrDesc &II = TII.get(MachineInstOpcode);

  if (II.getNumDefs() >= 1)
    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
                   .addReg(Op0, Op0IsKill * RegState::Kill)
                   .addImm(Imm));
  else {
    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
                   .addReg(Op0, Op0IsKill * RegState::Kill)
                   .addImm(Imm));
    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
                           TII.get(TargetOpcode::COPY), ResultReg)
                   .addReg(II.ImplicitDefs[0]));
  }
  return ResultReg;
}

unsigned ARMFastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
                                      const TargetRegisterClass *RC,
                                      unsigned Op0, bool Op0IsKill,
                                      const ConstantFP *FPImm) {
  unsigned ResultReg = createResultReg(RC);
  const TargetInstrDesc &II = TII.get(MachineInstOpcode);

  if (II.getNumDefs() >= 1)
    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
                   .addReg(Op0, Op0IsKill * RegState::Kill)
                   .addFPImm(FPImm));
  else {
    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
                   .addReg(Op0, Op0IsKill * RegState::Kill)
                   .addFPImm(FPImm));
    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
                           TII.get(TargetOpcode::COPY), ResultReg)
                   .addReg(II.ImplicitDefs[0]));
  }
  return ResultReg;
}

unsigned ARMFastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
                                       const TargetRegisterClass *RC,
                                       unsigned Op0, bool Op0IsKill,
                                       unsigned Op1, bool Op1IsKill,
                                       uint64_t Imm) {
  unsigned ResultReg = createResultReg(RC);
  const TargetInstrDesc &II = TII.get(MachineInstOpcode);

  if (II.getNumDefs() >= 1)
    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
                   .addReg(Op0, Op0IsKill * RegState::Kill)
                   .addReg(Op1, Op1IsKill * RegState::Kill)
                   .addImm(Imm));
  else {
    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
                   .addReg(Op0, Op0IsKill * RegState::Kill)
                   .addReg(Op1, Op1IsKill * RegState::Kill)
                   .addImm(Imm));
    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
                           TII.get(TargetOpcode::COPY), ResultReg)
                   .addReg(II.ImplicitDefs[0]));
  }
  return ResultReg;
}

unsigned ARMFastISel::FastEmitInst_i(unsigned MachineInstOpcode,
                                     const TargetRegisterClass *RC,
                                     uint64_t Imm) {
  unsigned ResultReg = createResultReg(RC);
  const TargetInstrDesc &II = TII.get(MachineInstOpcode);

  if (II.getNumDefs() >= 1)
    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
                   .addImm(Imm));
  else {
    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
                   .addImm(Imm));
    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
                           TII.get(TargetOpcode::COPY), ResultReg)
                   .addReg(II.ImplicitDefs[0]));
  }
  return ResultReg;
}

unsigned ARMFastISel::FastEmitInst_extractsubreg(MVT RetVT,
                                                 unsigned Op0, bool Op0IsKill,
                                                 uint32_t Idx) {
  unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
  assert(TargetRegisterInfo::isVirtualRegister(Op0) &&
         "Cannot yet extract from physregs");
  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
                         DL, TII.get(TargetOpcode::COPY), ResultReg)
                 .addReg(Op0, getKillRegState(Op0IsKill), Idx));
  return ResultReg;
}

// TODO: Don't worry about 64-bit now, but when this is fixed remove the
// checks from the various callers.
unsigned ARMFastISel::ARMMoveToFPReg(EVT VT, unsigned SrcReg) {
  if (VT.getSimpleVT().SimpleTy == MVT::f64) return 0;
  
  unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
                          TII.get(ARM::VMOVRS), MoveReg)
                  .addReg(SrcReg));
  return MoveReg;
}

unsigned ARMFastISel::ARMMoveToIntReg(EVT VT, unsigned SrcReg) {
  if (VT.getSimpleVT().SimpleTy == MVT::i64) return 0;
  
  unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
                          TII.get(ARM::VMOVSR), MoveReg)
                  .addReg(SrcReg));
  return MoveReg;
}

// For double width floating point we need to materialize two constants
// (the high and the low) into integer registers then use a move to get
// the combined constant into an FP reg.
unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, EVT VT) {
  const APFloat Val = CFP->getValueAPF();
  bool is64bit = VT.getSimpleVT().SimpleTy == MVT::f64;

  // This checks to see if we can use VFP3 instructions to materialize
  // a constant, otherwise we have to go through the constant pool.
  if (TLI.isFPImmLegal(Val, VT)) {
    unsigned Opc = is64bit ? ARM::FCONSTD : ARM::FCONSTS;
    unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
                            DestReg)
                    .addFPImm(CFP));
    return DestReg;
  }
  
  // Require VFP2 for loading fp constants.
  if (!Subtarget->hasVFP2()) return false;
  
  // MachineConstantPool wants an explicit alignment.
  unsigned Align = TD.getPrefTypeAlignment(CFP->getType());
  if (Align == 0) {
    // TODO: Figure out if this is correct.
    Align = TD.getTypeAllocSize(CFP->getType());
  }
  unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
  unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
  unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS;
  
  // The extra reg is for addrmode5.
  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc))
                  .addReg(DestReg).addConstantPoolIndex(Idx)
                  .addReg(0));
  return DestReg;
}

// TODO: Verify 64-bit.
unsigned ARMFastISel::ARMMaterializeInt(const Constant *C) {
  // MachineConstantPool wants an explicit alignment.
  unsigned Align = TD.getPrefTypeAlignment(C->getType());
  if (Align == 0) {
    // TODO: Figure out if this is correct.
    Align = TD.getTypeAllocSize(C->getType());
  }
  unsigned Idx = MCP.getConstantPoolIndex(C, Align);
  unsigned DestReg = createResultReg(TLI.getRegClassFor(MVT::i32));
  
  if (isThumb)
    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
                            TII.get(ARM::t2LDRpci))
                    .addReg(DestReg).addConstantPoolIndex(Idx));
  else
    // The extra reg and immediate are for addrmode2.
    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
                            TII.get(ARM::LDRcp))
                            .addReg(DestReg).addConstantPoolIndex(Idx)
                    .addReg(0).addImm(0));

  return DestReg;
}

unsigned ARMFastISel::TargetMaterializeConstant(const Constant *C) {
  EVT VT = TLI.getValueType(C->getType(), true);

  // Only handle simple types.
  if (!VT.isSimple()) return 0;

  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
    return ARMMaterializeFP(CFP, VT);
  return ARMMaterializeInt(C);
}

bool ARMFastISel::isTypeLegal(const Type *Ty, EVT &VT) {
  VT = TLI.getValueType(Ty, true);

  // Only handle simple types.
  if (VT == MVT::Other || !VT.isSimple()) return false;

  // Handle all legal types, i.e. a register that will directly hold this
  // value.
  return TLI.isTypeLegal(VT);
}

bool ARMFastISel::isLoadTypeLegal(const Type *Ty, EVT &VT) {
  if (isTypeLegal(Ty, VT)) return true;

  // If this is a type than can be sign or zero-extended to a basic operation
  // go ahead and accept it now.
  if (VT == MVT::i8 || VT == MVT::i16)
    return true;

  return false;
}

// Computes the Reg+Offset to get to an object.
bool ARMFastISel::ARMComputeRegOffset(const Value *Obj, unsigned &Reg,
                                      int &Offset) {
  // Some boilerplate from the X86 FastISel.
  const User *U = NULL;
  unsigned Opcode = Instruction::UserOp1;
  if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
    // Don't walk into other basic blocks; it's possible we haven't
    // visited them yet, so the instructions may not yet be assigned
    // virtual registers.
    if (FuncInfo.MBBMap[I->getParent()] != FuncInfo.MBB)
      return false;
    Opcode = I->getOpcode();
    U = I;
  } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
    Opcode = C->getOpcode();
    U = C;
  }

  if (const PointerType *Ty = dyn_cast<PointerType>(Obj->getType()))
    if (Ty->getAddressSpace() > 255)
      // Fast instruction selection doesn't support the special
      // address spaces.
      return false;

  switch (Opcode) {
    default:
    break;
    case Instruction::Alloca: {
      assert(false && "Alloca should have been handled earlier!");
      return false;
    }
  }

  // FIXME: Handle global variables.
  if (const GlobalValue *GV = dyn_cast<GlobalValue>(Obj)) {
    (void)GV;
    return false;
  }

  // Try to get this in a register if nothing else has worked.
  Reg = getRegForValue(Obj);
  if (Reg == 0) return false;

  // Since the offset may be too large for the load instruction
  // get the reg+offset into a register.
  // TODO: Verify the additions work, otherwise we'll need to add the
  // offset instead of 0 to the instructions and do all sorts of operand
  // munging.
  // TODO: Optimize this somewhat.
  if (Offset != 0) {
    ARMCC::CondCodes Pred = ARMCC::AL;
    unsigned PredReg = 0;

    if (!isThumb)
      emitARMRegPlusImmediate(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
                              Reg, Reg, Offset, Pred, PredReg,
                              static_cast<const ARMBaseInstrInfo&>(TII));
    else {
      assert(AFI->isThumb2Function());
      emitT2RegPlusImmediate(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
                             Reg, Reg, Offset, Pred, PredReg,
                             static_cast<const ARMBaseInstrInfo&>(TII));
    }
  }
  return true;
}

bool ARMFastISel::ARMLoadAlloca(const Instruction *I, EVT VT) {
  Value *Op0 = I->getOperand(0);

  // Verify it's an alloca.
  if (const AllocaInst *AI = dyn_cast<AllocaInst>(Op0)) {
    DenseMap<const AllocaInst*, int>::iterator SI =
      FuncInfo.StaticAllocaMap.find(AI);

    if (SI != FuncInfo.StaticAllocaMap.end()) {
      TargetRegisterClass* RC = TLI.getRegClassFor(VT);
      unsigned ResultReg = createResultReg(RC);
      TII.loadRegFromStackSlot(*FuncInfo.MBB, *FuncInfo.InsertPt,
                               ResultReg, SI->second, RC,
                               TM.getRegisterInfo());
      UpdateValueMap(I, ResultReg);
      return true;
    }
  }
  return false;
}

bool ARMFastISel::ARMEmitLoad(EVT VT, unsigned &ResultReg,
                              unsigned Reg, int Offset) {

  assert(VT.isSimple() && "Non-simple types are invalid here!");
  unsigned Opc;
  bool isFloat = false;
  switch (VT.getSimpleVT().SimpleTy) {
    default:
      assert(false && "Trying to emit for an unhandled type!");
      return false;
    case MVT::i16:
      Opc = isThumb ? ARM::tLDRH : ARM::LDRH;
      VT = MVT::i32;
      break;
    case MVT::i8:
      Opc = isThumb ? ARM::tLDRB : ARM::LDRB;
      VT = MVT::i32;
      break;
    case MVT::i32:
      Opc = isThumb ? ARM::tLDR : ARM::LDR;
      break;
    case MVT::f32:
      Opc = ARM::VLDRS;
      isFloat = true;
      break;
    case MVT::f64:
      Opc = ARM::VLDRD;
      isFloat = true;
      break;
  }

  ResultReg = createResultReg(TLI.getRegClassFor(VT));

  // TODO: Fix the Addressing modes so that these can share some code.
  // Since this is a Thumb1 load this will work in Thumb1 or 2 mode.
  // The thumb addressing mode has operands swapped from the arm addressing
  // mode, the floating point one only has two operands.
  if (isFloat)
    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
                            TII.get(Opc), ResultReg)
                    .addReg(Reg).addImm(Offset));
  else if (isThumb)
    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
                            TII.get(Opc), ResultReg)
                    .addReg(Reg).addImm(Offset).addReg(0));
  else
    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
                            TII.get(Opc), ResultReg)
                    .addReg(Reg).addReg(0).addImm(Offset));
  return true;
}

bool ARMFastISel::ARMSelectLoad(const Instruction *I) {
  // Verify we have a legal type before going any further.
  EVT VT;
  if (!isLoadTypeLegal(I->getType(), VT))
    return false;

  // If we're an alloca we know we have a frame index and can emit the load
  // directly in short order.
  if (ARMLoadAlloca(I, VT))
    return true;

  // Our register and offset with innocuous defaults.
  unsigned Reg = 0;
  int Offset = 0;

  // See if we can handle this as Reg + Offset
  if (!ARMComputeRegOffset(I->getOperand(0), Reg, Offset))
    return false;

  unsigned ResultReg;
  if (!ARMEmitLoad(VT, ResultReg, Reg, Offset /* 0 */)) return false;

  UpdateValueMap(I, ResultReg);
  return true;
}

bool ARMFastISel::ARMStoreAlloca(const Instruction *I, unsigned SrcReg, EVT VT){
  Value *Op1 = I->getOperand(1);

  // Verify it's an alloca.
  if (const AllocaInst *AI = dyn_cast<AllocaInst>(Op1)) {
    DenseMap<const AllocaInst*, int>::iterator SI =
      FuncInfo.StaticAllocaMap.find(AI);

    if (SI != FuncInfo.StaticAllocaMap.end()) {
      TargetRegisterClass* RC = TLI.getRegClassFor(VT);
      assert(SrcReg != 0 && "Nothing to store!");
      TII.storeRegToStackSlot(*FuncInfo.MBB, *FuncInfo.InsertPt,
                              SrcReg, true /*isKill*/, SI->second, RC,
                              TM.getRegisterInfo());
      return true;
    }
  }
  return false;
}

bool ARMFastISel::ARMEmitStore(EVT VT, unsigned SrcReg,
                               unsigned DstReg, int Offset) {
  unsigned StrOpc;
  bool isFloat = false;
  switch (VT.getSimpleVT().SimpleTy) {
    default: return false;
    case MVT::i1:
    case MVT::i8: StrOpc = isThumb ? ARM::tSTRB : ARM::STRB; break;
    case MVT::i16: StrOpc = isThumb ? ARM::tSTRH : ARM::STRH; break;
    case MVT::i32: StrOpc = isThumb ? ARM::tSTR : ARM::STR; break;
    case MVT::f32:
      if (!Subtarget->hasVFP2()) return false;
      StrOpc = ARM::VSTRS;
      isFloat = true;
      break;
    case MVT::f64:
      if (!Subtarget->hasVFP2()) return false;
      StrOpc = ARM::VSTRD;
      isFloat = true;
      break;
  }

  // The thumb addressing mode has operands swapped from the arm addressing
  // mode, the floating point one only has two operands.
  if (isFloat)
    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
                            TII.get(StrOpc), SrcReg)
                    .addReg(DstReg).addImm(Offset));
  else if (isThumb)
    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
                            TII.get(StrOpc), SrcReg)
                    .addReg(DstReg).addImm(Offset).addReg(0));

  else
    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
                            TII.get(StrOpc), SrcReg)
                    .addReg(DstReg).addReg(0).addImm(Offset));

  return true;
}

bool ARMFastISel::ARMSelectStore(const Instruction *I) {
  Value *Op0 = I->getOperand(0);
  unsigned SrcReg = 0;

  // Yay type legalization
  EVT VT;
  if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT))
    return false;

  // Get the value to be stored into a register.
  SrcReg = getRegForValue(Op0);
  if (SrcReg == 0)
    return false;

  // If we're an alloca we know we have a frame index and can emit the store
  // quickly.
  if (ARMStoreAlloca(I, SrcReg, VT))
    return true;

  // Our register and offset with innocuous defaults.
  unsigned Reg = 0;
  int Offset = 0;

  // See if we can handle this as Reg + Offset
  if (!ARMComputeRegOffset(I->getOperand(1), Reg, Offset))
    return false;

  if (!ARMEmitStore(VT, SrcReg, Reg, Offset /* 0 */)) return false;

  return true;
}

static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred) {
  switch (Pred) {
    // Needs two compares...
    case CmpInst::FCMP_ONE:
    case CmpInst::FCMP_UEQ:    
    default:
      assert(false && "Unhandled CmpInst::Predicate!");
      return ARMCC::AL;
    case CmpInst::ICMP_EQ:
    case CmpInst::FCMP_OEQ:
      return ARMCC::EQ;
    case CmpInst::ICMP_SGT:
    case CmpInst::FCMP_OGT:
      return ARMCC::GT;
    case CmpInst::ICMP_SGE:
    case CmpInst::FCMP_OGE:
      return ARMCC::GE;
    case CmpInst::ICMP_UGT:
    case CmpInst::FCMP_UGT:
      return ARMCC::HI;
    case CmpInst::FCMP_OLT:
      return ARMCC::MI;
    case CmpInst::ICMP_ULE:
    case CmpInst::FCMP_OLE:
      return ARMCC::LS;
    case CmpInst::FCMP_ORD:
      return ARMCC::VC;
    case CmpInst::FCMP_UNO:
      return ARMCC::VS;
    case CmpInst::FCMP_UGE:
      return ARMCC::PL;
    case CmpInst::ICMP_SLT:
    case CmpInst::FCMP_ULT:
      return ARMCC::LT;  
    case CmpInst::ICMP_SLE:
    case CmpInst::FCMP_ULE:
      return ARMCC::LE;
    case CmpInst::FCMP_UNE:
    case CmpInst::ICMP_NE:
      return ARMCC::NE;
    case CmpInst::ICMP_UGE:
      return ARMCC::HS;
    case CmpInst::ICMP_ULT:
      return ARMCC::LO;
  }
}

bool ARMFastISel::ARMSelectBranch(const Instruction *I) {
  const BranchInst *BI = cast<BranchInst>(I);
  MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
  MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];

  // Simple branch support.
  // TODO: Hopefully we've already handled the condition since we won't
  // have left an update in the value map. See the TODO below in ARMSelectCMP.
  Value *Cond = BI->getCondition();
  unsigned CondReg = getRegForValue(Cond);
  if (CondReg == 0) return false;

  ARMCC::CondCodes ARMPred = ARMCC::NE;
  CmpInst *CI = dyn_cast<CmpInst>(Cond);
  if (!CI) return false;
  
  // Get the compare predicate.
  ARMPred = getComparePred(CI->getPredicate());
    
  // We may not handle every CC for now.
  if (ARMPred == ARMCC::AL) return false;

  unsigned BrOpc = isThumb ? ARM::t2Bcc : ARM::Bcc;
  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
                  .addMBB(TBB).addImm(ARMPred).addReg(CondReg);
  FastEmitBranch(FBB, DL);
  FuncInfo.MBB->addSuccessor(TBB);
  return true;  
}

bool ARMFastISel::ARMSelectCmp(const Instruction *I) {
  const CmpInst *CI = cast<CmpInst>(I);

  EVT VT;
  const Type *Ty = CI->getOperand(0)->getType();
  if (!isTypeLegal(Ty, VT))
    return false;

  bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy());
  if (isFloat && !Subtarget->hasVFP2())
    return false;

  unsigned CmpOpc;
  unsigned DestReg;
  switch (VT.getSimpleVT().SimpleTy) {
    default: return false;
    // TODO: Verify compares.
    case MVT::f32:
      CmpOpc = ARM::VCMPES;
      DestReg = ARM::FPSCR;
      break;
    case MVT::f64:
      CmpOpc = ARM::VCMPED;
      DestReg = ARM::FPSCR;
      break;
    case MVT::i32:
      CmpOpc = isThumb ? ARM::t2CMPrr : ARM::CMPrr;
      DestReg = ARM::CPSR;
      break;
  }

  unsigned Arg1 = getRegForValue(CI->getOperand(0));
  if (Arg1 == 0) return false;

  unsigned Arg2 = getRegForValue(CI->getOperand(1));
  if (Arg2 == 0) return false;

  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc))
                  .addReg(Arg1).addReg(Arg2));

  // For floating point we need to move the result to a comparison register
  // that we can then use for branches.
  if (isFloat)
    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
                            TII.get(ARM::FMSTAT)));

  // Update the value to the implicit def reg.
  UpdateValueMap(I, DestReg);
  return true;
}

bool ARMFastISel::ARMSelectFPExt(const Instruction *I) {
  // Make sure we have VFP and that we're extending float to double.
  if (!Subtarget->hasVFP2()) return false;

  Value *V = I->getOperand(0);
  if (!I->getType()->isDoubleTy() ||
      !V->getType()->isFloatTy()) return false;

  unsigned Op = getRegForValue(V);
  if (Op == 0) return false;

  unsigned Result = createResultReg(ARM::DPRRegisterClass);
  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
                          TII.get(ARM::VCVTDS), Result)
                  .addReg(Op));
  UpdateValueMap(I, Result);
  return true;
}

bool ARMFastISel::ARMSelectFPTrunc(const Instruction *I) {
  // Make sure we have VFP and that we're truncating double to float.
  if (!Subtarget->hasVFP2()) return false;

  Value *V = I->getOperand(0);
  if (!I->getType()->isFloatTy() ||
      !V->getType()->isDoubleTy()) return false;

  unsigned Op = getRegForValue(V);
  if (Op == 0) return false;

  unsigned Result = createResultReg(ARM::SPRRegisterClass);
  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
                          TII.get(ARM::VCVTSD), Result)
                  .addReg(Op));
  UpdateValueMap(I, Result);
  return true;
}

bool ARMFastISel::ARMSelectSIToFP(const Instruction *I) {
  // Make sure we have VFP.
  if (!Subtarget->hasVFP2()) return false;
  
  EVT DstVT;
  const Type *Ty = I->getType();
  if (!isTypeLegal(Ty, DstVT))
    return false;
  
  unsigned Op = getRegForValue(I->getOperand(0));
  if (Op == 0) return false;
  
  // The conversion routine works on fp-reg to fp-reg and the operand above
  // was an integer, move it to the fp registers if possible.
  unsigned FP = ARMMoveToFPReg(DstVT, Op);
  if (FP == 0) return false;
  
  unsigned Opc;
  if (Ty->isFloatTy()) Opc = ARM::VSITOS;
  else if (Ty->isDoubleTy()) Opc = ARM::VSITOD;
  else return 0;
  
  unsigned ResultReg = createResultReg(TLI.getRegClassFor(DstVT));
  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
                          ResultReg)
                  .addReg(FP));
  UpdateValueMap(I, ResultReg);
  return true;
}

bool ARMFastISel::ARMSelectFPToSI(const Instruction *I) {
  // Make sure we have VFP.
  if (!Subtarget->hasVFP2()) return false;
  
  EVT DstVT;
  const Type *RetTy = I->getType();
  if (!isTypeLegal(RetTy, DstVT))
    return false;
  
  unsigned Op = getRegForValue(I->getOperand(0));
  if (Op == 0) return false;
  
  unsigned Opc;
  const Type *OpTy = I->getOperand(0)->getType();
  if (OpTy->isFloatTy()) Opc = ARM::VTOSIZS;
  else if (OpTy->isDoubleTy()) Opc = ARM::VTOSIZD;
  else return 0;
  EVT OpVT = TLI.getValueType(OpTy, true);
  
  unsigned ResultReg = createResultReg(TLI.getRegClassFor(OpVT));
  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
                          ResultReg)
                  .addReg(Op));
        
  // This result needs to be in an integer register, but the conversion only
  // takes place in fp-regs.
  unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg);
  if (IntReg == 0) return false;
  
  UpdateValueMap(I, IntReg);
  return true;
}

bool ARMFastISel::ARMSelectBinaryOp(const Instruction *I, unsigned ISDOpcode) {
  EVT VT  = TLI.getValueType(I->getType(), true);

  // We can get here in the case when we want to use NEON for our fp
  // operations, but can't figure out how to. Just use the vfp instructions
  // if we have them.
  // FIXME: It'd be nice to use NEON instructions.
  const Type *Ty = I->getType();
  bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy());
  if (isFloat && !Subtarget->hasVFP2())
    return false;

  unsigned Op1 = getRegForValue(I->getOperand(0));
  if (Op1 == 0) return false;

  unsigned Op2 = getRegForValue(I->getOperand(1));
  if (Op2 == 0) return false;

  unsigned Opc;
  bool is64bit = VT.getSimpleVT().SimpleTy == MVT::f64 ||
                 VT.getSimpleVT().SimpleTy == MVT::i64;
  switch (ISDOpcode) {
    default: return false;
    case ISD::FADD:
      Opc = is64bit ? ARM::VADDD : ARM::VADDS;
      break;
    case ISD::FSUB:
      Opc = is64bit ? ARM::VSUBD : ARM::VSUBS;
      break;
    case ISD::FMUL:
      Opc = is64bit ? ARM::VMULD : ARM::VMULS;
      break;
  }
  unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
                          TII.get(Opc), ResultReg)
                  .addReg(Op1).addReg(Op2));
  UpdateValueMap(I, ResultReg);
  return true;
}

// Call Handling Code

// This is largely taken directly from CCAssignFnForNode - we don't support
// varargs in FastISel so that part has been removed.
// TODO: We may not support all of this.
CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC, bool Return) {
  switch (CC) {
  default:
    llvm_unreachable("Unsupported calling convention");
  case CallingConv::C:
  case CallingConv::Fast:
    // Use target triple & subtarget features to do actual dispatch.
    if (Subtarget->isAAPCS_ABI()) {
      if (Subtarget->hasVFP2() &&
          FloatABIType == FloatABI::Hard)
        return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
      else
        return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
    } else
        return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
  case CallingConv::ARM_AAPCS_VFP:
    return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
  case CallingConv::ARM_AAPCS:
    return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
  case CallingConv::ARM_APCS:
    return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
  }
}

// A quick function that will emit a call for a named libcall in F with the
// vector of passed arguments for the Instruction in I. We can assume that we
// can emit a call for any libcall we can produce. This is an abridged version 
// of the full call infrastructure since we won't need to worry about things 
// like computed function pointers or strange arguments at call sites.
// TODO: Try to unify this and the normal call bits for ARM, then try to unify
// with X86.
bool ARMFastISel::ARMEmitLibcall(const Instruction *I, Function *F) {
  CallingConv::ID CC = F->getCallingConv();
  
  // Handle *simple* calls for now.
  const Type *RetTy = F->getReturnType();
  EVT RetVT;
  if (RetTy->isVoidTy())
    RetVT = MVT::isVoid;
  else if (!isTypeLegal(RetTy, RetVT))
    return false;
  
  assert(!F->isVarArg() && "Vararg libcall?!");

  // Abridged from the X86 FastISel call selection mechanism
  SmallVector<Value*, 8> Args;
  SmallVector<unsigned, 8> ArgRegs;
  SmallVector<EVT, 8> ArgVTs;
  SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
  Args.reserve(I->getNumOperands());
  ArgRegs.reserve(I->getNumOperands());
  ArgVTs.reserve(I->getNumOperands());
  ArgFlags.reserve(I->getNumOperands());
  for (unsigned i = 0; i < Args.size(); ++i) {
    Value *Op = I->getOperand(i);
    unsigned Arg = getRegForValue(Op);
    if (Arg == 0) return false;
    
    const Type *ArgTy = Op->getType();
    EVT ArgVT;
    if (!isTypeLegal(ArgTy, ArgVT)) return false;
    
    ISD::ArgFlagsTy Flags;
    unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
    Flags.setOrigAlign(OriginalAlignment);
    
    Args.push_back(Op);
    ArgRegs.push_back(Arg);
    ArgVTs.push_back(ArgVT);
    ArgFlags.push_back(Flags);
  }
  
  SmallVector<CCValAssign, 16> ArgLocs;
  CCState CCInfo(CC, false, TM, ArgLocs, F->getContext());
  CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CCAssignFnForCall(CC, false));
  
  // Process the args.
  SmallVector<unsigned, 4> RegArgs;
  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
    CCValAssign &VA = ArgLocs[i];
    unsigned Arg = ArgRegs[VA.getValNo()];
    EVT ArgVT = ArgVTs[VA.getValNo()];
    
    // Should we ever have to promote?
    switch (VA.getLocInfo()) {
      case CCValAssign::Full: break;
      default:
        assert(false && "Handle arg promotion for libcalls?");
        return false;
    }
    
    // Now copy/store arg to correct locations.
    if (VA.isRegLoc()) {
      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
        VA.getLocReg()).addReg(Arg);
      RegArgs.push_back(VA.getLocReg());
    } else {
      // Need to store
      return false;
    }
  }
  
  // Issue the call, BLr9 for darwin, BL otherwise.
  MachineInstrBuilder MIB;
  unsigned CallOpc;
  if(isThumb)
    CallOpc = Subtarget->isTargetDarwin() ? ARM::tBLr9 : ARM::tBL;
  else
    CallOpc = Subtarget->isTargetDarwin() ? ARM::BLr9 : ARM::BL;
  MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CallOpc))
        .addGlobalAddress(F, 0, 0);
  
  // Add implicit physical register uses to the call.
  for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
    MIB.addReg(RegArgs[i]);
    
  // Now the return value.
  SmallVector<unsigned, 4> UsedRegs;
  if (RetVT.getSimpleVT().SimpleTy != MVT::isVoid) {
    SmallVector<CCValAssign, 16> RVLocs;
    CCState CCInfo(CC, false, TM, RVLocs, F->getContext());
    CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true));

    // Copy all of the result registers out of their specified physreg.
    assert(RVLocs.size() == 1 && "Can't handle multi-value calls!");
    EVT CopyVT = RVLocs[0].getValVT();
    TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT);
    
    unsigned ResultReg = createResultReg(DstRC);
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
            ResultReg).addReg(RVLocs[0].getLocReg());
    UsedRegs.push_back(RVLocs[0].getLocReg());
    
    // Finally update the result.        
    UpdateValueMap(I, ResultReg);
  }
  
  // Set all unused physreg defs as dead.
  static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);

  return true;
}

bool ARMFastISel::ARMSelectSDiv(const Instruction *I) {
  EVT VT;
  const Type *Ty = I->getType();
  if (!isTypeLegal(Ty, VT))
    return false;
    
  // If we have integer div support we should have gotten already, emit a
  // libcall.
  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
  if (VT == MVT::i16)
    LC = RTLIB::SDIV_I16;
  else if (VT == MVT::i32)
    LC = RTLIB::SDIV_I32;
  else if (VT == MVT::i64)
    LC = RTLIB::SDIV_I64;
  else if (VT == MVT::i128)
    LC = RTLIB::SDIV_I128;
  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!");
  
  // Binary operand with all the same type.
  std::vector<const Type*> ArgTys;
  ArgTys.push_back(Ty);
  ArgTys.push_back(Ty);
  const FunctionType *FTy = FunctionType::get(Ty, ArgTys, false);
  Function *F = Function::Create(FTy, GlobalValue::ExternalLinkage,
                                 TLI.getLibcallName(LC));
  if (Subtarget->isAAPCS_ABI())
    F->setCallingConv(CallingConv::ARM_AAPCS);
  else
    F->setCallingConv(I->getParent()->getParent()->getCallingConv());
  
  return ARMEmitLibcall(I, F);
}

// TODO: SoftFP support.
bool ARMFastISel::TargetSelectInstruction(const Instruction *I) {
  // No Thumb-1 for now.
  if (isThumb && !AFI->isThumb2Function()) return false;

  switch (I->getOpcode()) {
    case Instruction::Load:
      return ARMSelectLoad(I);
    case Instruction::Store:
      return ARMSelectStore(I);
    case Instruction::Br:
      return ARMSelectBranch(I);
    case Instruction::ICmp:
    case Instruction::FCmp:
      return ARMSelectCmp(I);
    case Instruction::FPExt:
      return ARMSelectFPExt(I);
    case Instruction::FPTrunc:
      return ARMSelectFPTrunc(I);
    case Instruction::SIToFP:
      return ARMSelectSIToFP(I);
    case Instruction::FPToSI:
      return ARMSelectFPToSI(I);
    case Instruction::FAdd:
      return ARMSelectBinaryOp(I, ISD::FADD);
    case Instruction::FSub:
      return ARMSelectBinaryOp(I, ISD::FSUB);
    case Instruction::FMul:
      return ARMSelectBinaryOp(I, ISD::FMUL);
    case Instruction::SDiv:
      return ARMSelectSDiv(I);
    default: break;
  }
  return false;
}

namespace llvm {
  llvm::FastISel *ARM::createFastISel(FunctionLoweringInfo &funcInfo) {
    if (EnableARMFastISel) return new ARMFastISel(funcInfo);
    return 0;
  }
}