summaryrefslogtreecommitdiff
path: root/lib/Target/ARM/ARMTargetMachine.cpp
blob: d85194b75ecb9507453a6d6ee7d35b673f996419 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
//===-- ARMTargetMachine.cpp - Define TargetMachine for ARM ---------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
//
//===----------------------------------------------------------------------===//

#include "ARM.h"
#include "ARMTargetMachine.h"
#include "ARMFrameLowering.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/PassManager.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Transforms/Scalar.h"
using namespace llvm;

static cl::opt<bool>
DisableA15SDOptimization("disable-a15-sd-optimization", cl::Hidden,
                   cl::desc("Inhibit optimization of S->D register accesses on A15"),
                   cl::init(false));

static cl::opt<bool>
EnableAtomicTidy("arm-atomic-cfg-tidy", cl::Hidden,
                 cl::desc("Run SimplifyCFG after expanding atomic operations"
                          " to make use of cmpxchg flow-based information"),
                 cl::init(true));

extern "C" void LLVMInitializeARMTarget() {
  // Register the target.
  RegisterTargetMachine<ARMLETargetMachine> X(TheARMLETarget);
  RegisterTargetMachine<ARMBETargetMachine> Y(TheARMBETarget);
  RegisterTargetMachine<ThumbLETargetMachine> A(TheThumbLETarget);
  RegisterTargetMachine<ThumbBETargetMachine> B(TheThumbBETarget);
}


/// TargetMachine ctor - Create an ARM architecture model.
///
ARMBaseTargetMachine::ARMBaseTargetMachine(const Target &T, StringRef TT,
                                           StringRef CPU, StringRef FS,
                                           const TargetOptions &Options,
                                           Reloc::Model RM, CodeModel::Model CM,
                                           CodeGenOpt::Level OL, bool isLittle)
    : LLVMTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL),
      Subtarget(TT, CPU, FS, *this, isLittle, Options) {

  // Default to triple-appropriate float ABI
  if (Options.FloatABIType == FloatABI::Default)
    this->Options.FloatABIType =
        Subtarget.isTargetHardFloat() ? FloatABI::Hard : FloatABI::Soft;
}

void ARMBaseTargetMachine::addAnalysisPasses(PassManagerBase &PM) {
  // Add first the target-independent BasicTTI pass, then our ARM pass. This
  // allows the ARM pass to delegate to the target independent layer when
  // appropriate.
  PM.add(createBasicTargetTransformInfoPass(this));
  PM.add(createARMTargetTransformInfoPass(this));
}


void ARMTargetMachine::anchor() { }

ARMTargetMachine::ARMTargetMachine(const Target &T, StringRef TT, StringRef CPU,
                                   StringRef FS, const TargetOptions &Options,
                                   Reloc::Model RM, CodeModel::Model CM,
                                   CodeGenOpt::Level OL, bool isLittle)
    : ARMBaseTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, isLittle) {
  initAsmInfo();
  if (!Subtarget.hasARMOps())
    report_fatal_error("CPU: '" + Subtarget.getCPUString() + "' does not "
                       "support ARM mode execution!");
}

void ARMLETargetMachine::anchor() { }

ARMLETargetMachine::ARMLETargetMachine(const Target &T, StringRef TT,
                                       StringRef CPU, StringRef FS,
                                       const TargetOptions &Options,
                                       Reloc::Model RM, CodeModel::Model CM,
                                       CodeGenOpt::Level OL)
    : ARMTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, true) {}

void ARMBETargetMachine::anchor() { }

ARMBETargetMachine::ARMBETargetMachine(const Target &T, StringRef TT,
                                       StringRef CPU, StringRef FS,
                                       const TargetOptions &Options,
                                       Reloc::Model RM, CodeModel::Model CM,
                                       CodeGenOpt::Level OL)
    : ARMTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, false) {}

void ThumbTargetMachine::anchor() { }

ThumbTargetMachine::ThumbTargetMachine(const Target &T, StringRef TT,
                                       StringRef CPU, StringRef FS,
                                       const TargetOptions &Options,
                                       Reloc::Model RM, CodeModel::Model CM,
                                       CodeGenOpt::Level OL, bool isLittle)
    : ARMBaseTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL,
                           isLittle) {
  initAsmInfo();
}

void ThumbLETargetMachine::anchor() { }

ThumbLETargetMachine::ThumbLETargetMachine(const Target &T, StringRef TT,
                                           StringRef CPU, StringRef FS,
                                           const TargetOptions &Options,
                                           Reloc::Model RM, CodeModel::Model CM,
                                           CodeGenOpt::Level OL)
    : ThumbTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, true) {}

void ThumbBETargetMachine::anchor() { }

ThumbBETargetMachine::ThumbBETargetMachine(const Target &T, StringRef TT,
                                           StringRef CPU, StringRef FS,
                                           const TargetOptions &Options,
                                           Reloc::Model RM, CodeModel::Model CM,
                                           CodeGenOpt::Level OL)
    : ThumbTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, false) {}

namespace {
/// ARM Code Generator Pass Configuration Options.
class ARMPassConfig : public TargetPassConfig {
public:
  ARMPassConfig(ARMBaseTargetMachine *TM, PassManagerBase &PM)
    : TargetPassConfig(TM, PM) {}

  ARMBaseTargetMachine &getARMTargetMachine() const {
    return getTM<ARMBaseTargetMachine>();
  }

  const ARMSubtarget &getARMSubtarget() const {
    return *getARMTargetMachine().getSubtargetImpl();
  }

  void addIRPasses() override;
  bool addPreISel() override;
  bool addInstSelector() override;
  bool addPreRegAlloc() override;
  bool addPreSched2() override;
  bool addPreEmitPass() override;
};
} // namespace

TargetPassConfig *ARMBaseTargetMachine::createPassConfig(PassManagerBase &PM) {
  return new ARMPassConfig(this, PM);
}

void ARMPassConfig::addIRPasses() {
  addPass(createAtomicExpandLoadLinkedPass(TM));

  // Cmpxchg instructions are often used with a subsequent comparison to
  // determine whether it succeeded. We can exploit existing control-flow in
  // ldrex/strex loops to simplify this, but it needs tidying up.
  const ARMSubtarget *Subtarget = &getARMSubtarget();
  if (Subtarget->hasAnyDataBarrier() && !Subtarget->isThumb1Only())
    if (TM->getOptLevel() != CodeGenOpt::None && EnableAtomicTidy)
      addPass(createCFGSimplificationPass());

  TargetPassConfig::addIRPasses();
}

bool ARMPassConfig::addPreISel() {
  if (TM->getOptLevel() != CodeGenOpt::None)
    addPass(createGlobalMergePass(TM));

  return false;
}

bool ARMPassConfig::addInstSelector() {
  addPass(createARMISelDag(getARMTargetMachine(), getOptLevel()));

  const ARMSubtarget *Subtarget = &getARMSubtarget();
  if (Subtarget->isTargetELF() && !Subtarget->isThumb1Only() &&
      TM->Options.EnableFastISel)
    addPass(createARMGlobalBaseRegPass());
  return false;
}

bool ARMPassConfig::addPreRegAlloc() {
  if (getOptLevel() != CodeGenOpt::None)
    addPass(createARMLoadStoreOptimizationPass(true));
  if (getOptLevel() != CodeGenOpt::None && getARMSubtarget().isCortexA9())
    addPass(createMLxExpansionPass());
  // Since the A15SDOptimizer pass can insert VDUP instructions, it can only be
  // enabled when NEON is available.
  if (getOptLevel() != CodeGenOpt::None && getARMSubtarget().isCortexA15() &&
    getARMSubtarget().hasNEON() && !DisableA15SDOptimization) {
    addPass(createA15SDOptimizerPass());
  }
  return true;
}

bool ARMPassConfig::addPreSched2() {
  if (getOptLevel() != CodeGenOpt::None) {
    addPass(createARMLoadStoreOptimizationPass());
    printAndVerify("After ARM load / store optimizer");

    if (getARMSubtarget().hasNEON())
      addPass(createExecutionDependencyFixPass(&ARM::DPRRegClass));
  }

  // Expand some pseudo instructions into multiple instructions to allow
  // proper scheduling.
  addPass(createARMExpandPseudoPass());

  if (getOptLevel() != CodeGenOpt::None) {
    if (!getARMSubtarget().isThumb1Only()) {
      // in v8, IfConversion depends on Thumb instruction widths
      if (getARMSubtarget().restrictIT() &&
          !getARMSubtarget().prefers32BitThumb())
        addPass(createThumb2SizeReductionPass());
      addPass(&IfConverterID);
    }
  }
  if (getARMSubtarget().isThumb2())
    addPass(createThumb2ITBlockPass());

  return true;
}

bool ARMPassConfig::addPreEmitPass() {
  if (getARMSubtarget().isThumb2()) {
    if (!getARMSubtarget().prefers32BitThumb())
      addPass(createThumb2SizeReductionPass());

    // Constant island pass work on unbundled instructions.
    addPass(&UnpackMachineBundlesID);
  }

  addPass(createARMOptimizeBarriersPass());
  addPass(createARMConstantIslandPass());

  return true;
}

bool ARMBaseTargetMachine::addCodeEmitter(PassManagerBase &PM,
                                          JITCodeEmitter &JCE) {
  // Machine code emitter pass for ARM.
  PM.add(createARMJITCodeEmitterPass(*this, JCE));
  return false;
}