summaryrefslogtreecommitdiff
path: root/lib/Target/CBackend/CBackend.cpp
blob: b8208d4a4c70f6ef464723db986ef9194ed4c588 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
//===-- Writer.cpp - Library for converting LLVM code to C ----------------===//
// 
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
// 
//===----------------------------------------------------------------------===//
//
// This library converts LLVM code to C code, compilable by GCC and other C
// compilers.
//
//===----------------------------------------------------------------------===//

#include "CTargetMachine.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Module.h"
#include "llvm/Instructions.h"
#include "llvm/Pass.h"
#include "llvm/PassManager.h"
#include "llvm/SymbolTable.h"
#include "llvm/Intrinsics.h"
#include "llvm/Analysis/ConstantsScanner.h"
#include "llvm/Analysis/FindUsedTypes.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/CodeGen/IntrinsicLowering.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Target/TargetMachineRegistry.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/InstVisitor.h"
#include "llvm/Support/Mangler.h"
#include "Support/StringExtras.h"
#include "Support/MathExtras.h"
#include "Config/config.h"
#include <algorithm>
#include <iostream>
#include <sstream>
using namespace llvm;

namespace {
  // Register the target.
  RegisterTarget<CTargetMachine> X("c", "  C backend");

  /// NameAllUsedStructs - This pass inserts names for any unnamed structure
  /// types that are used by the program.
  ///
  class CBackendNameAllUsedStructs : public Pass {
    void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.addRequired<FindUsedTypes>();
    }

    virtual const char *getPassName() const {
      return "C backend type canonicalizer";
    }

    virtual bool run(Module &M);
  };
  
  /// CWriter - This class is the main chunk of code that converts an LLVM
  /// module to a C translation unit.
  class CWriter : public FunctionPass, public InstVisitor<CWriter> {
    std::ostream &Out; 
    IntrinsicLowering &IL;
    Mangler *Mang;
    LoopInfo *LI;
    const Module *TheModule;
    std::map<const Type *, std::string> TypeNames;

    std::map<const ConstantFP *, unsigned> FPConstantMap;
  public:
    CWriter(std::ostream &o, IntrinsicLowering &il) : Out(o), IL(il) {}

    virtual const char *getPassName() const { return "C backend"; }

    void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.addRequired<LoopInfo>();
      AU.setPreservesAll();
    }

    virtual bool doInitialization(Module &M);

    bool runOnFunction(Function &F) {
      LI = &getAnalysis<LoopInfo>();

      // Output all floating point constants that cannot be printed accurately.
      printFloatingPointConstants(F);
  
      lowerIntrinsics(F);
      printFunction(F);
      FPConstantMap.clear();
      return false;
    }

    virtual bool doFinalization(Module &M) {
      // Free memory...
      delete Mang;
      TypeNames.clear();
      return false;
    }

    std::ostream &printType(std::ostream &Out, const Type *Ty,
                            const std::string &VariableName = "",
                            bool IgnoreName = false);

    void writeOperand(Value *Operand);
    void writeOperandInternal(Value *Operand);

  private :
    void lowerIntrinsics(Function &F);

    bool nameAllUsedStructureTypes(Module &M);
    void printModule(Module *M);
    void printModuleTypes(const SymbolTable &ST);
    void printContainedStructs(const Type *Ty, std::set<const StructType *> &);
    void printFloatingPointConstants(Function &F);
    void printFunctionSignature(const Function *F, bool Prototype);

    void printFunction(Function &);
    void printBasicBlock(BasicBlock *BB);
    void printLoop(Loop *L);

    void printConstant(Constant *CPV);
    void printConstantArray(ConstantArray *CPA);

    // isInlinableInst - Attempt to inline instructions into their uses to build
    // trees as much as possible.  To do this, we have to consistently decide
    // what is acceptable to inline, so that variable declarations don't get
    // printed and an extra copy of the expr is not emitted.
    //
    static bool isInlinableInst(const Instruction &I) {
      // Always inline setcc instructions, even if they are shared by multiple
      // expressions.  GCC generates horrible code if we don't.
      if (isa<SetCondInst>(I)) return true;

      // Must be an expression, must be used exactly once.  If it is dead, we
      // emit it inline where it would go.
      if (I.getType() == Type::VoidTy || !I.hasOneUse() ||
          isa<TerminatorInst>(I) || isa<CallInst>(I) || isa<PHINode>(I) || 
          isa<LoadInst>(I) || isa<VAArgInst>(I) || isa<VANextInst>(I))
        // Don't inline a load across a store or other bad things!
        return false;

      // Only inline instruction it it's use is in the same BB as the inst.
      return I.getParent() == cast<Instruction>(I.use_back())->getParent();
    }

    // isDirectAlloca - Define fixed sized allocas in the entry block as direct
    // variables which are accessed with the & operator.  This causes GCC to
    // generate significantly better code than to emit alloca calls directly.
    //
    static const AllocaInst *isDirectAlloca(const Value *V) {
      const AllocaInst *AI = dyn_cast<AllocaInst>(V);
      if (!AI) return false;
      if (AI->isArrayAllocation())
        return 0;   // FIXME: we can also inline fixed size array allocas!
      if (AI->getParent() != &AI->getParent()->getParent()->getEntryBlock())
        return 0;
      return AI;
    }

    // Instruction visitation functions
    friend class InstVisitor<CWriter>;

    void visitReturnInst(ReturnInst &I);
    void visitBranchInst(BranchInst &I);
    void visitSwitchInst(SwitchInst &I);
    void visitInvokeInst(InvokeInst &I) {
      assert(0 && "Lowerinvoke pass didn't work!");
    }

    void visitUnwindInst(UnwindInst &I) {
      assert(0 && "Lowerinvoke pass didn't work!");
    }

    void visitPHINode(PHINode &I);
    void visitBinaryOperator(Instruction &I);

    void visitCastInst (CastInst &I);
    void visitSelectInst(SelectInst &I);
    void visitCallInst (CallInst &I);
    void visitCallSite (CallSite CS);
    void visitShiftInst(ShiftInst &I) { visitBinaryOperator(I); }

    void visitMallocInst(MallocInst &I);
    void visitAllocaInst(AllocaInst &I);
    void visitFreeInst  (FreeInst   &I);
    void visitLoadInst  (LoadInst   &I);
    void visitStoreInst (StoreInst  &I);
    void visitGetElementPtrInst(GetElementPtrInst &I);
    void visitVANextInst(VANextInst &I);
    void visitVAArgInst (VAArgInst &I);

    void visitInstruction(Instruction &I) {
      std::cerr << "C Writer does not know about " << I;
      abort();
    }

    void outputLValue(Instruction *I) {
      Out << "  " << Mang->getValueName(I) << " = ";
    }

    bool isGotoCodeNecessary(BasicBlock *From, BasicBlock *To);
    void printPHICopiesForSuccessors(BasicBlock *CurBlock, 
                                     unsigned Indent);
    void printBranchToBlock(BasicBlock *CurBlock, BasicBlock *SuccBlock,
                            unsigned Indent);
    void printIndexingExpression(Value *Ptr, gep_type_iterator I,
                                 gep_type_iterator E);
  };
}

/// This method inserts names for any unnamed structure types that are used by
/// the program, and removes names from structure types that are not used by the
/// program.
///
bool CBackendNameAllUsedStructs::run(Module &M) {
  // Get a set of types that are used by the program...
  std::set<const Type *> UT = getAnalysis<FindUsedTypes>().getTypes();
  
  // Loop over the module symbol table, removing types from UT that are
  // already named, and removing names for structure types that are not used.
  //
  SymbolTable &MST = M.getSymbolTable();
  for (SymbolTable::type_iterator TI = MST.type_begin(), TE = MST.type_end();
       TI != TE; ) {
    SymbolTable::type_iterator I = TI++;
    if (const StructType *STy = dyn_cast<StructType>(I->second)) {
      // If this is not used, remove it from the symbol table.
      std::set<const Type *>::iterator UTI = UT.find(STy);
      if (UTI == UT.end())
        MST.remove(I);
      else
        UT.erase(UTI);
    }
  }

  // UT now contains types that are not named.  Loop over it, naming
  // structure types.
  //
  bool Changed = false;
  unsigned RenameCounter = 0;
  for (std::set<const Type *>::const_iterator I = UT.begin(), E = UT.end();
       I != E; ++I)
    if (const StructType *ST = dyn_cast<StructType>(*I)) {
      while (M.addTypeName("unnamed"+utostr(RenameCounter), ST))
        ++RenameCounter;
      Changed = true;
    }
  return Changed;
}


// Pass the Type* and the variable name and this prints out the variable
// declaration.
//
std::ostream &CWriter::printType(std::ostream &Out, const Type *Ty,
                                 const std::string &NameSoFar,
                                 bool IgnoreName) {
  if (Ty->isPrimitiveType())
    switch (Ty->getTypeID()) {
    case Type::VoidTyID:   return Out << "void "               << NameSoFar;
    case Type::BoolTyID:   return Out << "bool "               << NameSoFar;
    case Type::UByteTyID:  return Out << "unsigned char "      << NameSoFar;
    case Type::SByteTyID:  return Out << "signed char "        << NameSoFar;
    case Type::UShortTyID: return Out << "unsigned short "     << NameSoFar;
    case Type::ShortTyID:  return Out << "short "              << NameSoFar;
    case Type::UIntTyID:   return Out << "unsigned "           << NameSoFar;
    case Type::IntTyID:    return Out << "int "                << NameSoFar;
    case Type::ULongTyID:  return Out << "unsigned long long " << NameSoFar;
    case Type::LongTyID:   return Out << "signed long long "   << NameSoFar;
    case Type::FloatTyID:  return Out << "float "              << NameSoFar;
    case Type::DoubleTyID: return Out << "double "             << NameSoFar;
    default :
      std::cerr << "Unknown primitive type: " << *Ty << "\n";
      abort();
    }
  
  // Check to see if the type is named.
  if (!IgnoreName || isa<OpaqueType>(Ty)) {
    std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
    if (I != TypeNames.end()) return Out << I->second << " " << NameSoFar;
  }

  switch (Ty->getTypeID()) {
  case Type::FunctionTyID: {
    const FunctionType *MTy = cast<FunctionType>(Ty);
    std::stringstream FunctionInnards; 
    FunctionInnards << " (" << NameSoFar << ") (";
    for (FunctionType::param_iterator I = MTy->param_begin(),
           E = MTy->param_end(); I != E; ++I) {
      if (I != MTy->param_begin())
        FunctionInnards << ", ";
      printType(FunctionInnards, *I, "");
    }
    if (MTy->isVarArg()) {
      if (MTy->getNumParams()) 
        FunctionInnards << ", ...";
    } else if (!MTy->getNumParams()) {
      FunctionInnards << "void";
    }
    FunctionInnards << ")";
    std::string tstr = FunctionInnards.str();
    printType(Out, MTy->getReturnType(), tstr);
    return Out;
  }
  case Type::StructTyID: {
    const StructType *STy = cast<StructType>(Ty);
    Out << NameSoFar + " {\n";
    unsigned Idx = 0;
    for (StructType::element_iterator I = STy->element_begin(),
           E = STy->element_end(); I != E; ++I) {
      Out << "  ";
      printType(Out, *I, "field" + utostr(Idx++));
      Out << ";\n";
    }
    return Out << "}";
  }  

  case Type::PointerTyID: {
    const PointerType *PTy = cast<PointerType>(Ty);
    std::string ptrName = "*" + NameSoFar;

    if (isa<ArrayType>(PTy->getElementType()))
      ptrName = "(" + ptrName + ")";

    return printType(Out, PTy->getElementType(), ptrName);
  }

  case Type::ArrayTyID: {
    const ArrayType *ATy = cast<ArrayType>(Ty);
    unsigned NumElements = ATy->getNumElements();
    return printType(Out, ATy->getElementType(),
                     NameSoFar + "[" + utostr(NumElements) + "]");
  }

  case Type::OpaqueTyID: {
    static int Count = 0;
    std::string TyName = "struct opaque_" + itostr(Count++);
    assert(TypeNames.find(Ty) == TypeNames.end());
    TypeNames[Ty] = TyName;
    return Out << TyName << " " << NameSoFar;
  }
  default:
    assert(0 && "Unhandled case in getTypeProps!");
    abort();
  }

  return Out;
}

void CWriter::printConstantArray(ConstantArray *CPA) {

  // As a special case, print the array as a string if it is an array of
  // ubytes or an array of sbytes with positive values.
  // 
  const Type *ETy = CPA->getType()->getElementType();
  bool isString = (ETy == Type::SByteTy || ETy == Type::UByteTy);

  // Make sure the last character is a null char, as automatically added by C
  if (isString && (CPA->getNumOperands() == 0 ||
                   !cast<Constant>(*(CPA->op_end()-1))->isNullValue()))
    isString = false;
  
  if (isString) {
    Out << "\"";
    // Keep track of whether the last number was a hexadecimal escape
    bool LastWasHex = false;

    // Do not include the last character, which we know is null
    for (unsigned i = 0, e = CPA->getNumOperands()-1; i != e; ++i) {
      unsigned char C = cast<ConstantInt>(CPA->getOperand(i))->getRawValue();
      
      // Print it out literally if it is a printable character.  The only thing
      // to be careful about is when the last letter output was a hex escape
      // code, in which case we have to be careful not to print out hex digits
      // explicitly (the C compiler thinks it is a continuation of the previous
      // character, sheesh...)
      //
      if (isprint(C) && (!LastWasHex || !isxdigit(C))) {
        LastWasHex = false;
        if (C == '"' || C == '\\')
          Out << "\\" << C;
        else
          Out << C;
      } else {
        LastWasHex = false;
        switch (C) {
        case '\n': Out << "\\n"; break;
        case '\t': Out << "\\t"; break;
        case '\r': Out << "\\r"; break;
        case '\v': Out << "\\v"; break;
        case '\a': Out << "\\a"; break;
        case '\"': Out << "\\\""; break;
        case '\'': Out << "\\\'"; break;           
        default:
          Out << "\\x";
          Out << (char)(( C/16  < 10) ? ( C/16 +'0') : ( C/16 -10+'A'));
          Out << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
          LastWasHex = true;
          break;
        }
      }
    }
    Out << "\"";
  } else {
    Out << "{";
    if (CPA->getNumOperands()) {
      Out << " ";
      printConstant(cast<Constant>(CPA->getOperand(0)));
      for (unsigned i = 1, e = CPA->getNumOperands(); i != e; ++i) {
        Out << ", ";
        printConstant(cast<Constant>(CPA->getOperand(i)));
      }
    }
    Out << " }";
  }
}

// isFPCSafeToPrint - Returns true if we may assume that CFP may be written out
// textually as a double (rather than as a reference to a stack-allocated
// variable). We decide this by converting CFP to a string and back into a
// double, and then checking whether the conversion results in a bit-equal
// double to the original value of CFP. This depends on us and the target C
// compiler agreeing on the conversion process (which is pretty likely since we
// only deal in IEEE FP).
//
static bool isFPCSafeToPrint(const ConstantFP *CFP) {
#if HAVE_PRINTF_A
  char Buffer[100];
  sprintf(Buffer, "%a", CFP->getValue());

  if (!strncmp(Buffer, "0x", 2) ||
      !strncmp(Buffer, "-0x", 3) ||
      !strncmp(Buffer, "+0x", 3))
    return atof(Buffer) == CFP->getValue();
  return false;
#else
  std::string StrVal = ftostr(CFP->getValue());

  while (StrVal[0] == ' ')
    StrVal.erase(StrVal.begin());

  // Check to make sure that the stringized number is not some string like "Inf"
  // or NaN.  Check that the string matches the "[-+]?[0-9]" regex.
  if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
      ((StrVal[0] == '-' || StrVal[0] == '+') &&
       (StrVal[1] >= '0' && StrVal[1] <= '9')))
    // Reparse stringized version!
    return atof(StrVal.c_str()) == CFP->getValue();
  return false;
#endif
}

// printConstant - The LLVM Constant to C Constant converter.
void CWriter::printConstant(Constant *CPV) {
  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
    switch (CE->getOpcode()) {
    case Instruction::Cast:
      Out << "((";
      printType(Out, CPV->getType());
      Out << ")";
      printConstant(CE->getOperand(0));
      Out << ")";
      return;

    case Instruction::GetElementPtr:
      Out << "(&(";
      printIndexingExpression(CE->getOperand(0), gep_type_begin(CPV),
                              gep_type_end(CPV));
      Out << "))";
      return;
    case Instruction::Select:
      Out << "(";
      printConstant(CE->getOperand(0));
      Out << "?";
      printConstant(CE->getOperand(1));
      Out << ":";
      printConstant(CE->getOperand(2));
      Out << ")";
      return;
    case Instruction::Add:
    case Instruction::Sub:
    case Instruction::Mul:
    case Instruction::Div:
    case Instruction::Rem:
    case Instruction::SetEQ:
    case Instruction::SetNE:
    case Instruction::SetLT:
    case Instruction::SetLE:
    case Instruction::SetGT:
    case Instruction::SetGE:
    case Instruction::Shl:
    case Instruction::Shr:
      Out << "(";
      printConstant(CE->getOperand(0));
      switch (CE->getOpcode()) {
      case Instruction::Add: Out << " + "; break;
      case Instruction::Sub: Out << " - "; break;
      case Instruction::Mul: Out << " * "; break;
      case Instruction::Div: Out << " / "; break;
      case Instruction::Rem: Out << " % "; break;
      case Instruction::SetEQ: Out << " == "; break;
      case Instruction::SetNE: Out << " != "; break;
      case Instruction::SetLT: Out << " < "; break;
      case Instruction::SetLE: Out << " <= "; break;
      case Instruction::SetGT: Out << " > "; break;
      case Instruction::SetGE: Out << " >= "; break;
      case Instruction::Shl: Out << " << "; break;
      case Instruction::Shr: Out << " >> "; break;
      default: assert(0 && "Illegal opcode here!");
      }
      printConstant(CE->getOperand(1));
      Out << ")";
      return;

    default:
      std::cerr << "CWriter Error: Unhandled constant expression: "
                << *CE << "\n";
      abort();
    }
  }

  switch (CPV->getType()->getTypeID()) {
  case Type::BoolTyID:
    Out << (CPV == ConstantBool::False ? "0" : "1"); break;
  case Type::SByteTyID:
  case Type::ShortTyID:
    Out << cast<ConstantSInt>(CPV)->getValue(); break;
  case Type::IntTyID:
    if ((int)cast<ConstantSInt>(CPV)->getValue() == (int)0x80000000)
      Out << "((int)0x80000000)";   // Handle MININT specially to avoid warning
    else
      Out << cast<ConstantSInt>(CPV)->getValue();
    break;

  case Type::LongTyID:
    Out << cast<ConstantSInt>(CPV)->getValue() << "ll"; break;

  case Type::UByteTyID:
  case Type::UShortTyID:
    Out << cast<ConstantUInt>(CPV)->getValue(); break;
  case Type::UIntTyID:
    Out << cast<ConstantUInt>(CPV)->getValue() << "u"; break;
  case Type::ULongTyID:
    Out << cast<ConstantUInt>(CPV)->getValue() << "ull"; break;

  case Type::FloatTyID:
  case Type::DoubleTyID: {
    ConstantFP *FPC = cast<ConstantFP>(CPV);
    std::map<const ConstantFP*, unsigned>::iterator I = FPConstantMap.find(FPC);
    if (I != FPConstantMap.end()) {
      // Because of FP precision problems we must load from a stack allocated
      // value that holds the value in hex.
      Out << "(*(" << (FPC->getType() == Type::FloatTy ? "float" : "double")
          << "*)&FPConstant" << I->second << ")";
    } else {
      if (IsNAN(FPC->getValue())) {
        // The value is NaN
 
        // The prefix for a quiet NaN is 0x7FF8. For a signalling NaN,
        // it's 0x7ff4.
        const unsigned long QuietNaN = 0x7ff8UL;
        const unsigned long SignalNaN = 0x7ff4UL;

        // We need to grab the first part of the FP #
        union {
          double   d;
          uint64_t ll;
        } DHex;
        char Buffer[100];

        DHex.d = FPC->getValue();
        sprintf(Buffer, "0x%llx", DHex.ll);

        std::string Num(&Buffer[0], &Buffer[6]);
        unsigned long Val = strtoul(Num.c_str(), 0, 16);

        if (FPC->getType() == Type::FloatTy)
          Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "F(\""
              << Buffer << "\") /*nan*/ ";
        else
          Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "(\""
              << Buffer << "\") /*nan*/ ";
      } else if (IsInf(FPC->getValue())) {
        // The value is Inf
        if (FPC->getValue() < 0) Out << "-";
        Out << "LLVM_INF" << (FPC->getType() == Type::FloatTy ? "F" : "")
            << " /*inf*/ ";
      } else {
        std::string Num;
#if HAVE_PRINTF_A
        // Print out the constant as a floating point number.
        char Buffer[100];
        sprintf(Buffer, "%a", FPC->getValue());
        Num = Buffer;
#else
        Num = ftostr(FPC->getValue());
#endif
        Out << Num;
      }
    }
    break;
  }

  case Type::ArrayTyID:
    if (isa<ConstantAggregateZero>(CPV)) {
      const ArrayType *AT = cast<ArrayType>(CPV->getType());
      Out << "{";
      if (AT->getNumElements()) {
        Out << " ";
        Constant *CZ = Constant::getNullValue(AT->getElementType());
        printConstant(CZ);
        for (unsigned i = 1, e = AT->getNumElements(); i != e; ++i) {
          Out << ", ";
          printConstant(CZ);
        }
      }
      Out << " }";
    } else {
      printConstantArray(cast<ConstantArray>(CPV));
    }
    break;

  case Type::StructTyID:
    if (isa<ConstantAggregateZero>(CPV)) {
      const StructType *ST = cast<StructType>(CPV->getType());
      Out << "{";
      if (ST->getNumElements()) {
        Out << " ";
        printConstant(Constant::getNullValue(ST->getElementType(0)));
        for (unsigned i = 1, e = ST->getNumElements(); i != e; ++i) {
          Out << ", ";
          printConstant(Constant::getNullValue(ST->getElementType(i)));
        }
      }
      Out << " }";
    } else {
      Out << "{";
      if (CPV->getNumOperands()) {
        Out << " ";
        printConstant(cast<Constant>(CPV->getOperand(0)));
        for (unsigned i = 1, e = CPV->getNumOperands(); i != e; ++i) {
          Out << ", ";
          printConstant(cast<Constant>(CPV->getOperand(i)));
        }
      }
      Out << " }";
    }
    break;

  case Type::PointerTyID:
    if (isa<ConstantPointerNull>(CPV)) {
      Out << "((";
      printType(Out, CPV->getType());
      Out << ")/*NULL*/0)";
      break;
    } else if (GlobalValue *GV = dyn_cast<GlobalValue>(CPV)) {
      writeOperand(GV);
      break;
    }
    // FALL THROUGH
  default:
    std::cerr << "Unknown constant type: " << *CPV << "\n";
    abort();
  }
}

void CWriter::writeOperandInternal(Value *Operand) {
  if (Instruction *I = dyn_cast<Instruction>(Operand))
    if (isInlinableInst(*I) && !isDirectAlloca(I)) {
      // Should we inline this instruction to build a tree?
      Out << "(";
      visit(*I);
      Out << ")";    
      return;
    }
  
  Constant* CPV = dyn_cast<Constant>(Operand);
  if (CPV && !isa<GlobalValue>(CPV)) {
    printConstant(CPV); 
  } else {
    Out << Mang->getValueName(Operand);
  }
}

void CWriter::writeOperand(Value *Operand) {
  if (isa<GlobalVariable>(Operand) || isDirectAlloca(Operand))
    Out << "(&";  // Global variables are references as their addresses by llvm

  writeOperandInternal(Operand);

  if (isa<GlobalVariable>(Operand) || isDirectAlloca(Operand))
    Out << ")";
}

// generateCompilerSpecificCode - This is where we add conditional compilation
// directives to cater to specific compilers as need be.
//
static void generateCompilerSpecificCode(std::ostream& Out) {
  // Alloca is hard to get, and we don't want to include stdlib.h here...
  Out << "/* get a declaration for alloca */\n"
      << "#if defined(sun) || defined(__CYGWIN__) || defined(__APPLE__)\n"
      << "extern void *__builtin_alloca(unsigned long);\n"
      << "#define alloca(x) __builtin_alloca(x)\n"
      << "#else\n"
      << "#ifndef __FreeBSD__\n"
      << "#include <alloca.h>\n"
      << "#endif\n"
      << "#endif\n\n";

  // We output GCC specific attributes to preserve 'linkonce'ness on globals.
  // If we aren't being compiled with GCC, just drop these attributes.
  Out << "#ifndef __GNUC__  /* Can only support \"linkonce\" vars with GCC */\n"
      << "#define __attribute__(X)\n"
      << "#endif\n\n";

#if 0
  // At some point, we should support "external weak" vs. "weak" linkages.
  // On Mac OS X, "external weak" is spelled "__attribute__((weak_import))".
  Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n"
      << "#define __EXTERNAL_WEAK__ __attribute__((weak_import))\n"
      << "#elif defined(__GNUC__)\n"
      << "#define __EXTERNAL_WEAK__ __attribute__((weak))\n"
      << "#else\n"
      << "#define __EXTERNAL_WEAK__\n"
      << "#endif\n\n";
#endif

  // For now, turn off the weak linkage attribute on Mac OS X. (See above.)
  Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n"
      << "#define __ATTRIBUTE_WEAK__\n"
      << "#elif defined(__GNUC__)\n"
      << "#define __ATTRIBUTE_WEAK__ __attribute__((weak))\n"
      << "#else\n"
      << "#define __ATTRIBUTE_WEAK__\n"
      << "#endif\n\n";

  // Define NaN and Inf as GCC builtins if using GCC, as 0 otherwise
  // From the GCC documentation:
  // 
  //   double __builtin_nan (const char *str)
  //
  // This is an implementation of the ISO C99 function nan.
  //
  // Since ISO C99 defines this function in terms of strtod, which we do
  // not implement, a description of the parsing is in order. The string is
  // parsed as by strtol; that is, the base is recognized by leading 0 or
  // 0x prefixes. The number parsed is placed in the significand such that
  // the least significant bit of the number is at the least significant
  // bit of the significand. The number is truncated to fit the significand
  // field provided. The significand is forced to be a quiet NaN.
  //
  // This function, if given a string literal, is evaluated early enough
  // that it is considered a compile-time constant.
  //
  //   float __builtin_nanf (const char *str)
  //
  // Similar to __builtin_nan, except the return type is float.
  //
  //   double __builtin_inf (void)
  //
  // Similar to __builtin_huge_val, except a warning is generated if the
  // target floating-point format does not support infinities. This
  // function is suitable for implementing the ISO C99 macro INFINITY.
  //
  //   float __builtin_inff (void)
  //
  // Similar to __builtin_inf, except the return type is float.
  Out << "#ifdef __GNUC__\n"
      << "#define LLVM_NAN(NanStr)   __builtin_nan(NanStr)   /* Double */\n"
      << "#define LLVM_NANF(NanStr)  __builtin_nanf(NanStr)  /* Float */\n"
      << "#define LLVM_NANS(NanStr)  __builtin_nans(NanStr)  /* Double */\n"
      << "#define LLVM_NANSF(NanStr) __builtin_nansf(NanStr) /* Float */\n"
      << "#define LLVM_INF           __builtin_inf()         /* Double */\n"
      << "#define LLVM_INFF          __builtin_inff()        /* Float */\n"
      << "#else\n"
      << "#define LLVM_NAN(NanStr)   ((double)0.0)           /* Double */\n"
      << "#define LLVM_NANF(NanStr)  0.0F                    /* Float */\n"
      << "#define LLVM_NANS(NanStr)  ((double)0.0)           /* Double */\n"
      << "#define LLVM_NANSF(NanStr) 0.0F                    /* Float */\n"
      << "#define LLVM_INF           ((double)0.0)           /* Double */\n"
      << "#define LLVM_INFF          0.0F                    /* Float */\n"
      << "#endif\n";
}

bool CWriter::doInitialization(Module &M) {
  // Initialize
  TheModule = &M;

  IL.AddPrototypes(M);
  
  // Ensure that all structure types have names...
  Mang = new Mangler(M);

  // get declaration for alloca
  Out << "/* Provide Declarations */\n";
  Out << "#include <stdarg.h>\n";      // Varargs support
  Out << "#include <setjmp.h>\n";      // Unwind support
  generateCompilerSpecificCode(Out);

  // Provide a definition for `bool' if not compiling with a C++ compiler.
  Out << "\n"
      << "#ifndef __cplusplus\ntypedef unsigned char bool;\n#endif\n"
    
      << "\n\n/* Support for floating point constants */\n"
      << "typedef unsigned long long ConstantDoubleTy;\n"
      << "typedef unsigned int        ConstantFloatTy;\n"
    
      << "\n\n/* Global Declarations */\n";

  // First output all the declarations for the program, because C requires
  // Functions & globals to be declared before they are used.
  //

  // Loop over the symbol table, emitting all named constants...
  printModuleTypes(M.getSymbolTable());

  // Global variable declarations...
  if (!M.gempty()) {
    Out << "\n/* External Global Variable Declarations */\n";
    for (Module::giterator I = M.gbegin(), E = M.gend(); I != E; ++I) {
      if (I->hasExternalLinkage()) {
        Out << "extern ";
        printType(Out, I->getType()->getElementType(), Mang->getValueName(I));
        Out << ";\n";
      }
    }
  }

  // Function declarations
  if (!M.empty()) {
    Out << "\n/* Function Declarations */\n";
    for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
      // Don't print declarations for intrinsic functions.
      if (!I->getIntrinsicID() && 
          I->getName() != "setjmp" && I->getName() != "longjmp") {
        printFunctionSignature(I, true);
        if (I->hasWeakLinkage()) Out << " __ATTRIBUTE_WEAK__";
        if (I->hasLinkOnceLinkage()) Out << " __ATTRIBUTE_WEAK__";
        Out << ";\n";
      }
    }
  }

  // Output the global variable declarations
  if (!M.gempty()) {
    Out << "\n\n/* Global Variable Declarations */\n";
    for (Module::giterator I = M.gbegin(), E = M.gend(); I != E; ++I)
      if (!I->isExternal()) {
        Out << "extern ";
        printType(Out, I->getType()->getElementType(), Mang->getValueName(I));

        if (I->hasLinkOnceLinkage())
          Out << " __attribute__((common))";
        else if (I->hasWeakLinkage())
          Out << " __ATTRIBUTE_WEAK__";
        Out << ";\n";
      }
  }

  // Output the global variable definitions and contents...
  if (!M.gempty()) {
    Out << "\n\n/* Global Variable Definitions and Initialization */\n";
    for (Module::giterator I = M.gbegin(), E = M.gend(); I != E; ++I)
      if (!I->isExternal()) {
        if (I->hasInternalLinkage())
          Out << "static ";
        printType(Out, I->getType()->getElementType(), Mang->getValueName(I));
        if (I->hasLinkOnceLinkage())
          Out << " __attribute__((common))";
        else if (I->hasWeakLinkage())
          Out << " __ATTRIBUTE_WEAK__";

        // If the initializer is not null, emit the initializer.  If it is null,
        // we try to avoid emitting large amounts of zeros.  The problem with
        // this, however, occurs when the variable has weak linkage.  In this
        // case, the assembler will complain about the variable being both weak
        // and common, so we disable this optimization.
        if (!I->getInitializer()->isNullValue()) {
          Out << " = " ;
          writeOperand(I->getInitializer());
        } else if (I->hasWeakLinkage()) {
          // We have to specify an initializer, but it doesn't have to be
          // complete.  If the value is an aggregate, print out { 0 }, and let
          // the compiler figure out the rest of the zeros.
          Out << " = " ;
          if (isa<StructType>(I->getInitializer()->getType()) ||
              isa<ArrayType>(I->getInitializer()->getType())) {
            Out << "{ 0 }";
          } else {
            // Just print it out normally.
            writeOperand(I->getInitializer());
          }
        }
        Out << ";\n";
      }
  }

  if (!M.empty())
    Out << "\n\n/* Function Bodies */\n";
  return false;
}


/// Output all floating point constants that cannot be printed accurately...
void CWriter::printFloatingPointConstants(Function &F) {
  union {
    double D;
    uint64_t U;
  } DBLUnion;

  union {
    float F;
    unsigned U;
  } FLTUnion;

  // Scan the module for floating point constants.  If any FP constant is used
  // in the function, we want to redirect it here so that we do not depend on
  // the precision of the printed form, unless the printed form preserves
  // precision.
  //
  static unsigned FPCounter = 0;
  for (constant_iterator I = constant_begin(&F), E = constant_end(&F);
       I != E; ++I)
    if (const ConstantFP *FPC = dyn_cast<ConstantFP>(*I))
      if (!isFPCSafeToPrint(FPC) && // Do not put in FPConstantMap if safe.
          !FPConstantMap.count(FPC)) {
        double Val = FPC->getValue();
        
        FPConstantMap[FPC] = FPCounter;  // Number the FP constants
        
        if (FPC->getType() == Type::DoubleTy) {
          DBLUnion.D = Val;
          Out << "static const ConstantDoubleTy FPConstant" << FPCounter++
              << " = 0x" << std::hex << DBLUnion.U << std::dec
              << "ULL;    /* " << Val << " */\n";
        } else if (FPC->getType() == Type::FloatTy) {
          FLTUnion.F = Val;
          Out << "static const ConstantFloatTy FPConstant" << FPCounter++
              << " = 0x" << std::hex << FLTUnion.U << std::dec
              << "U;    /* " << Val << " */\n";
        } else
          assert(0 && "Unknown float type!");
      }
  
  Out << "\n";
}


/// printSymbolTable - Run through symbol table looking for type names.  If a
/// type name is found, emit it's declaration...
///
void CWriter::printModuleTypes(const SymbolTable &ST) {
  // If there are no type names, exit early.
  if ( ! ST.hasTypes() )
    return;

  // We are only interested in the type plane of the symbol table...
  SymbolTable::type_const_iterator I   = ST.type_begin();
  SymbolTable::type_const_iterator End = ST.type_end();
  
  // Print out forward declarations for structure types before anything else!
  Out << "/* Structure forward decls */\n";
  for (; I != End; ++I)
    if (const Type *STy = dyn_cast<StructType>(I->second)) {
      std::string Name = "struct l_" + Mangler::makeNameProper(I->first);
      Out << Name << ";\n";
      TypeNames.insert(std::make_pair(STy, Name));
    }

  Out << "\n";

  // Now we can print out typedefs...
  Out << "/* Typedefs */\n";
  for (I = ST.type_begin(); I != End; ++I) {
    const Type *Ty = cast<Type>(I->second);
    std::string Name = "l_" + Mangler::makeNameProper(I->first);
    Out << "typedef ";
    printType(Out, Ty, Name);
    Out << ";\n";
  }
  
  Out << "\n";

  // Keep track of which structures have been printed so far...
  std::set<const StructType *> StructPrinted;

  // Loop over all structures then push them into the stack so they are
  // printed in the correct order.
  //
  Out << "/* Structure contents */\n";
  for (I = ST.type_begin(); I != End; ++I)
    if (const StructType *STy = dyn_cast<StructType>(I->second))
      // Only print out used types!
      printContainedStructs(STy, StructPrinted);
}

// Push the struct onto the stack and recursively push all structs
// this one depends on.
void CWriter::printContainedStructs(const Type *Ty,
                                    std::set<const StructType*> &StructPrinted){
  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
    //Check to see if we have already printed this struct
    if (StructPrinted.count(STy) == 0) {
      // Print all contained types first...
      for (StructType::element_iterator I = STy->element_begin(),
             E = STy->element_end(); I != E; ++I) {
        const Type *Ty1 = I->get();
        if (isa<StructType>(Ty1) || isa<ArrayType>(Ty1))
          printContainedStructs(*I, StructPrinted);
      }
      
      //Print structure type out..
      StructPrinted.insert(STy);
      std::string Name = TypeNames[STy];  
      printType(Out, STy, Name, true);
      Out << ";\n\n";
    }

    // If it is an array, check contained types and continue
  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)){
    const Type *Ty1 = ATy->getElementType();
    if (isa<StructType>(Ty1) || isa<ArrayType>(Ty1))
      printContainedStructs(Ty1, StructPrinted);
  }
}


void CWriter::printFunctionSignature(const Function *F, bool Prototype) {
  if (F->hasInternalLinkage()) Out << "static ";
  
  // Loop over the arguments, printing them...
  const FunctionType *FT = cast<FunctionType>(F->getFunctionType());
  
  std::stringstream FunctionInnards; 
    
  // Print out the name...
  FunctionInnards << Mang->getValueName(F) << "(";
    
  if (!F->isExternal()) {
    if (!F->aempty()) {
      std::string ArgName;
      if (F->abegin()->hasName() || !Prototype)
        ArgName = Mang->getValueName(F->abegin());
      printType(FunctionInnards, F->afront().getType(), ArgName);
      for (Function::const_aiterator I = ++F->abegin(), E = F->aend();
           I != E; ++I) {
        FunctionInnards << ", ";
        if (I->hasName() || !Prototype)
          ArgName = Mang->getValueName(I);
        else 
          ArgName = "";
        printType(FunctionInnards, I->getType(), ArgName);
      }
    }
  } else {
    // Loop over the arguments, printing them...
    for (FunctionType::param_iterator I = FT->param_begin(),
           E = FT->param_end(); I != E; ++I) {
      if (I != FT->param_begin()) FunctionInnards << ", ";
      printType(FunctionInnards, *I);
    }
  }

  // Finish printing arguments... if this is a vararg function, print the ...,
  // unless there are no known types, in which case, we just emit ().
  //
  if (FT->isVarArg() && FT->getNumParams()) {
    if (FT->getNumParams()) FunctionInnards << ", ";
    FunctionInnards << "...";  // Output varargs portion of signature!
  } else if (!FT->isVarArg() && FT->getNumParams() == 0) {
    FunctionInnards << "void"; // ret() -> ret(void) in C.
  }
  FunctionInnards << ")";
  // Print out the return type and the entire signature for that matter
  printType(Out, F->getReturnType(), FunctionInnards.str());
}

void CWriter::printFunction(Function &F) {
  printFunctionSignature(&F, false);
  Out << " {\n";

  // print local variable information for the function
  for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ++I)
    if (const AllocaInst *AI = isDirectAlloca(&*I)) {
      Out << "  ";
      printType(Out, AI->getAllocatedType(), Mang->getValueName(AI));
      Out << ";    /* Address exposed local */\n";
    } else if (I->getType() != Type::VoidTy && !isInlinableInst(*I)) {
      Out << "  ";
      printType(Out, I->getType(), Mang->getValueName(&*I));
      Out << ";\n";
      
      if (isa<PHINode>(*I)) {  // Print out PHI node temporaries as well...
        Out << "  ";
        printType(Out, I->getType(),
                  Mang->getValueName(&*I)+"__PHI_TEMPORARY");
        Out << ";\n";
      }
    }

  Out << "\n";

  // print the basic blocks
  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
    if (Loop *L = LI->getLoopFor(BB)) {
      if (L->getHeader() == BB && L->getParentLoop() == 0)
        printLoop(L);
    } else {
      printBasicBlock(BB);
    }
  }
  
  Out << "}\n\n";
}

void CWriter::printLoop(Loop *L) {
  Out << "  do {     /* Syntactic loop '" << L->getHeader()->getName()
      << "' to make GCC happy */\n";
  for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i) {
    BasicBlock *BB = L->getBlocks()[i];
    Loop *BBLoop = LI->getLoopFor(BB);
    if (BBLoop == L)
      printBasicBlock(BB);
    else if (BB == BBLoop->getHeader() && BBLoop->getParentLoop() == L)
      printLoop(BBLoop);      
  }
  Out << "  } while (1); /* end of syntactic loop '"
      << L->getHeader()->getName() << "' */\n";
}

void CWriter::printBasicBlock(BasicBlock *BB) {

  // Don't print the label for the basic block if there are no uses, or if
  // the only terminator use is the predecessor basic block's terminator.
  // We have to scan the use list because PHI nodes use basic blocks too but
  // do not require a label to be generated.
  //
  bool NeedsLabel = false;
  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
    if (isGotoCodeNecessary(*PI, BB)) {
      NeedsLabel = true;
      break;
    }
      
  if (NeedsLabel) Out << Mang->getValueName(BB) << ":\n";
      
  // Output all of the instructions in the basic block...
  for (BasicBlock::iterator II = BB->begin(), E = --BB->end(); II != E;
       ++II) {
    if (!isInlinableInst(*II) && !isDirectAlloca(II)) {
      if (II->getType() != Type::VoidTy)
        outputLValue(II);
      else
        Out << "  ";
      visit(*II);
      Out << ";\n";
    }
  }
      
  // Don't emit prefix or suffix for the terminator...
  visit(*BB->getTerminator());
}


// Specific Instruction type classes... note that all of the casts are
// necessary because we use the instruction classes as opaque types...
//
void CWriter::visitReturnInst(ReturnInst &I) {
  // Don't output a void return if this is the last basic block in the function
  if (I.getNumOperands() == 0 && 
      &*--I.getParent()->getParent()->end() == I.getParent() &&
      !I.getParent()->size() == 1) {
    return;
  }

  Out << "  return";
  if (I.getNumOperands()) {
    Out << " ";
    writeOperand(I.getOperand(0));
  }
  Out << ";\n";
}

void CWriter::visitSwitchInst(SwitchInst &SI) {
  printPHICopiesForSuccessors(SI.getParent(), 0);

  Out << "  switch (";
  writeOperand(SI.getOperand(0));
  Out << ") {\n  default:\n";
  printBranchToBlock(SI.getParent(), SI.getDefaultDest(), 2);
  Out << ";\n";
  for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2) {
    Out << "  case ";
    writeOperand(SI.getOperand(i));
    Out << ":\n";
    BasicBlock *Succ = cast<BasicBlock>(SI.getOperand(i+1));
    printBranchToBlock(SI.getParent(), Succ, 2);
    if (Succ == SI.getParent()->getNext())
      Out << "    break;\n";
  }
  Out << "  }\n";
}

bool CWriter::isGotoCodeNecessary(BasicBlock *From, BasicBlock *To) {
  /// FIXME: This should be reenabled, but loop reordering safe!!
  return true;

  if (From->getNext() != To) // Not the direct successor, we need a goto
    return true; 

  //isa<SwitchInst>(From->getTerminator())


  if (LI->getLoopFor(From) != LI->getLoopFor(To))
    return true;
  return false;
}

void CWriter::printPHICopiesForSuccessors(BasicBlock *CurBlock, 
                                          unsigned Indent) {
  for (succ_iterator SI = succ_begin(CurBlock), E = succ_end(CurBlock);
       SI != E; ++SI)
    for (BasicBlock::iterator I = SI->begin();
         PHINode *PN = dyn_cast<PHINode>(I); ++I) {
      //  now we have to do the printing
      Out << std::string(Indent, ' ');
      Out << "  " << Mang->getValueName(I) << "__PHI_TEMPORARY = ";
      writeOperand(PN->getIncomingValue(PN->getBasicBlockIndex(CurBlock)));
      Out << ";   /* for PHI node */\n";
    }
}


void CWriter::printBranchToBlock(BasicBlock *CurBB, BasicBlock *Succ,
                                 unsigned Indent) {
  if (isGotoCodeNecessary(CurBB, Succ)) {
    Out << std::string(Indent, ' ') << "  goto ";
    writeOperand(Succ);
    Out << ";\n";
  }
}

// Branch instruction printing - Avoid printing out a branch to a basic block
// that immediately succeeds the current one.
//
void CWriter::visitBranchInst(BranchInst &I) {
  printPHICopiesForSuccessors(I.getParent(), 0);

  if (I.isConditional()) {
    if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(0))) {
      Out << "  if (";
      writeOperand(I.getCondition());
      Out << ") {\n";
      
      printBranchToBlock(I.getParent(), I.getSuccessor(0), 2);
      
      if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(1))) {
        Out << "  } else {\n";
        printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
      }
    } else {
      // First goto not necessary, assume second one is...
      Out << "  if (!";
      writeOperand(I.getCondition());
      Out << ") {\n";

      printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
    }

    Out << "  }\n";
  } else {
    printBranchToBlock(I.getParent(), I.getSuccessor(0), 0);
  }
  Out << "\n";
}

// PHI nodes get copied into temporary values at the end of predecessor basic
// blocks.  We now need to copy these temporary values into the REAL value for
// the PHI.
void CWriter::visitPHINode(PHINode &I) {
  writeOperand(&I);
  Out << "__PHI_TEMPORARY";
}


void CWriter::visitBinaryOperator(Instruction &I) {
  // binary instructions, shift instructions, setCond instructions.
  assert(!isa<PointerType>(I.getType()));

  // We must cast the results of binary operations which might be promoted.
  bool needsCast = false;
  if ((I.getType() == Type::UByteTy) || (I.getType() == Type::SByteTy)
      || (I.getType() == Type::UShortTy) || (I.getType() == Type::ShortTy)
      || (I.getType() == Type::FloatTy)) {
    needsCast = true;
    Out << "((";
    printType(Out, I.getType());
    Out << ")(";
  }
      
  writeOperand(I.getOperand(0));

  switch (I.getOpcode()) {
  case Instruction::Add: Out << " + "; break;
  case Instruction::Sub: Out << " - "; break;
  case Instruction::Mul: Out << "*"; break;
  case Instruction::Div: Out << "/"; break;
  case Instruction::Rem: Out << "%"; break;
  case Instruction::And: Out << " & "; break;
  case Instruction::Or: Out << " | "; break;
  case Instruction::Xor: Out << " ^ "; break;
  case Instruction::SetEQ: Out << " == "; break;
  case Instruction::SetNE: Out << " != "; break;
  case Instruction::SetLE: Out << " <= "; break;
  case Instruction::SetGE: Out << " >= "; break;
  case Instruction::SetLT: Out << " < "; break;
  case Instruction::SetGT: Out << " > "; break;
  case Instruction::Shl : Out << " << "; break;
  case Instruction::Shr : Out << " >> "; break;
  default: std::cerr << "Invalid operator type!" << I; abort();
  }

  writeOperand(I.getOperand(1));

  if (needsCast) {
    Out << "))";
  }
}

void CWriter::visitCastInst(CastInst &I) {
  if (I.getType() == Type::BoolTy) {
    Out << "(";
    writeOperand(I.getOperand(0));
    Out << " != 0)";
    return;
  }
  Out << "(";
  printType(Out, I.getType());
  Out << ")";
  if (isa<PointerType>(I.getType())&&I.getOperand(0)->getType()->isIntegral() ||
      isa<PointerType>(I.getOperand(0)->getType())&&I.getType()->isIntegral()) {
    // Avoid "cast to pointer from integer of different size" warnings
    Out << "(long)";  
  }
  
  writeOperand(I.getOperand(0));
}

void CWriter::visitSelectInst(SelectInst &I) {
  Out << "((";
  writeOperand(I.getCondition());
  Out << ") ? (";
  writeOperand(I.getTrueValue());
  Out << ") : (";
  writeOperand(I.getFalseValue());
  Out << "))";    
}


void CWriter::lowerIntrinsics(Function &F) {
  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
      if (CallInst *CI = dyn_cast<CallInst>(I++))
        if (Function *F = CI->getCalledFunction())
          switch (F->getIntrinsicID()) {
          case Intrinsic::not_intrinsic:
          case Intrinsic::vastart:
          case Intrinsic::vacopy:
          case Intrinsic::vaend:
          case Intrinsic::returnaddress:
          case Intrinsic::frameaddress:
          case Intrinsic::setjmp:
          case Intrinsic::longjmp:
            // We directly implement these intrinsics
            break;
          default:
            // All other intrinsic calls we must lower.
            Instruction *Before = CI->getPrev();
            IL.LowerIntrinsicCall(CI);
            if (Before) {        // Move iterator to instruction after call
              I = Before; ++I;
            } else {
              I = BB->begin();
            }
          }
}



void CWriter::visitCallInst(CallInst &I) {
  // Handle intrinsic function calls first...
  if (Function *F = I.getCalledFunction())
    if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
      switch (ID) {
      default: assert(0 && "Unknown LLVM intrinsic!");
      case Intrinsic::vastart: 
        Out << "0; ";
        
        Out << "va_start(*(va_list*)&" << Mang->getValueName(&I) << ", ";
        // Output the last argument to the enclosing function...
        if (I.getParent()->getParent()->aempty()) {
          std::cerr << "The C backend does not currently support zero "
                    << "argument varargs functions, such as '"
                    << I.getParent()->getParent()->getName() << "'!\n";
          abort();
        }
        writeOperand(&I.getParent()->getParent()->aback());
        Out << ")";
        return;
      case Intrinsic::vaend:
        if (!isa<ConstantPointerNull>(I.getOperand(1))) {
          Out << "va_end(*(va_list*)&";
          writeOperand(I.getOperand(1));
          Out << ")";
        } else {
          Out << "va_end(*(va_list*)0)";
        }
        return;
      case Intrinsic::vacopy:
        Out << "0;";
        Out << "va_copy(*(va_list*)&" << Mang->getValueName(&I) << ", ";
        Out << "*(va_list*)&";
        writeOperand(I.getOperand(1));
        Out << ")";
        return;
      case Intrinsic::returnaddress:
        Out << "__builtin_return_address(";
        writeOperand(I.getOperand(1));
        Out << ")";
        return;
      case Intrinsic::frameaddress:
        Out << "__builtin_frame_address(";
        writeOperand(I.getOperand(1));
        Out << ")";
        return;
      case Intrinsic::setjmp:
        Out << "setjmp(*(jmp_buf*)";
        writeOperand(I.getOperand(1));
        Out << ")";
        return;
      case Intrinsic::longjmp:
        Out << "longjmp(*(jmp_buf*)";
        writeOperand(I.getOperand(1));
        Out << ", ";
        writeOperand(I.getOperand(2));
        Out << ")";
        return;
      }
    }
  visitCallSite(&I);
}

void CWriter::visitCallSite(CallSite CS) {
  const PointerType  *PTy   = cast<PointerType>(CS.getCalledValue()->getType());
  const FunctionType *FTy   = cast<FunctionType>(PTy->getElementType());
  const Type         *RetTy = FTy->getReturnType();
  
  writeOperand(CS.getCalledValue());
  Out << "(";

  if (CS.arg_begin() != CS.arg_end()) {
    CallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end();
    writeOperand(*AI);

    for (++AI; AI != AE; ++AI) {
      Out << ", ";
      writeOperand(*AI);
    }
  }
  Out << ")";
}  

void CWriter::visitMallocInst(MallocInst &I) {
  assert(0 && "lowerallocations pass didn't work!");
}

void CWriter::visitAllocaInst(AllocaInst &I) {
  Out << "(";
  printType(Out, I.getType());
  Out << ") alloca(sizeof(";
  printType(Out, I.getType()->getElementType());
  Out << ")";
  if (I.isArrayAllocation()) {
    Out << " * " ;
    writeOperand(I.getOperand(0));
  }
  Out << ")";
}

void CWriter::visitFreeInst(FreeInst &I) {
  assert(0 && "lowerallocations pass didn't work!");
}

void CWriter::printIndexingExpression(Value *Ptr, gep_type_iterator I,
                                      gep_type_iterator E) {
  bool HasImplicitAddress = false;
  // If accessing a global value with no indexing, avoid *(&GV) syndrome
  if (GlobalValue *V = dyn_cast<GlobalValue>(Ptr)) {
    HasImplicitAddress = true;
  } else if (isDirectAlloca(Ptr)) {
    HasImplicitAddress = true;
  }

  if (I == E) {
    if (!HasImplicitAddress)
      Out << "*";  // Implicit zero first argument: '*x' is equivalent to 'x[0]'

    writeOperandInternal(Ptr);
    return;
  }

  const Constant *CI = dyn_cast<Constant>(I.getOperand());
  if (HasImplicitAddress && (!CI || !CI->isNullValue()))
    Out << "(&";

  writeOperandInternal(Ptr);

  if (HasImplicitAddress && (!CI || !CI->isNullValue())) {
    Out << ")";
    HasImplicitAddress = false;  // HIA is only true if we haven't addressed yet
  }

  assert(!HasImplicitAddress || (CI && CI->isNullValue()) &&
         "Can only have implicit address with direct accessing");

  if (HasImplicitAddress) {
    ++I;
  } else if (CI && CI->isNullValue()) {
    gep_type_iterator TmpI = I; ++TmpI;

    // Print out the -> operator if possible...
    if (TmpI != E && isa<StructType>(*TmpI)) {
      Out << (HasImplicitAddress ? "." : "->");
      Out << "field" << cast<ConstantUInt>(TmpI.getOperand())->getValue();
      I = ++TmpI;
    }
  }

  for (; I != E; ++I)
    if (isa<StructType>(*I)) {
      Out << ".field" << cast<ConstantUInt>(I.getOperand())->getValue();
    } else {
      Out << "[";
      writeOperand(I.getOperand());
      Out << "]";
    }
}

void CWriter::visitLoadInst(LoadInst &I) {
  Out << "*";
  writeOperand(I.getOperand(0));
}

void CWriter::visitStoreInst(StoreInst &I) {
  Out << "*";
  writeOperand(I.getPointerOperand());
  Out << " = ";
  writeOperand(I.getOperand(0));
}

void CWriter::visitGetElementPtrInst(GetElementPtrInst &I) {
  Out << "&";
  printIndexingExpression(I.getPointerOperand(), gep_type_begin(I),
                          gep_type_end(I));
}

void CWriter::visitVANextInst(VANextInst &I) {
  Out << Mang->getValueName(I.getOperand(0));
  Out << ";  va_arg(*(va_list*)&" << Mang->getValueName(&I) << ", ";
  printType(Out, I.getArgType());
  Out << ")";  
}

void CWriter::visitVAArgInst(VAArgInst &I) {
  Out << "0;\n";
  Out << "{ va_list Tmp; va_copy(Tmp, *(va_list*)&";
  writeOperand(I.getOperand(0));
  Out << ");\n  " << Mang->getValueName(&I) << " = va_arg(Tmp, ";
  printType(Out, I.getType());
  Out << ");\n  va_end(Tmp); }";
}

//===----------------------------------------------------------------------===//
//                       External Interface declaration
//===----------------------------------------------------------------------===//

bool CTargetMachine::addPassesToEmitAssembly(PassManager &PM, std::ostream &o) {
  PM.add(createLowerGCPass());
  PM.add(createLowerAllocationsPass());
  PM.add(createLowerInvokePass());
  PM.add(new CBackendNameAllUsedStructs());
  PM.add(new CWriter(o, getIntrinsicLowering()));
  return false;
}

// vim: sw=2