summaryrefslogtreecommitdiff
path: root/lib/Target/CellSPU/SPUInstrInfo.td
blob: f76ebd75bfef75920efce4b0cddb25c2c96c7d97 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
//==- SPUInstrInfo.td - Describe the Cell SPU Instructions -*- tablegen -*-==//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// Cell SPU Instructions:
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
// TODO Items (not urgent today, but would be nice, low priority)
//
// ANDBI, ORBI: SPU constructs a 4-byte constant for these instructions by
// concatenating the byte argument b as "bbbb". Could recognize this bit pattern
// in 16-bit and 32-bit constants and reduce instruction count.
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
// Pseudo instructions:
//===----------------------------------------------------------------------===//

let hasCtrlDep = 1, Defs = [R1], Uses = [R1] in {
  def ADJCALLSTACKDOWN : Pseudo<(outs), (ins u16imm_i32:$amt),
                                "${:comment} ADJCALLSTACKDOWN",
                                [(callseq_start timm:$amt)]>;
  def ADJCALLSTACKUP   : Pseudo<(outs), (ins u16imm_i32:$amt),
                                "${:comment} ADJCALLSTACKUP",
                                [(callseq_end timm:$amt)]>;
  def HBR_LABEL        : Pseudo<(outs), (ins hbrtarget:$targ), 
                                "$targ:\t${:comment}branch hint target",[ ]>;
}

//===----------------------------------------------------------------------===//
// Loads:
// NB: The ordering is actually important, since the instruction selection
// will try each of the instructions in sequence, i.e., the D-form first with
// the 10-bit displacement, then the A-form with the 16 bit displacement, and
// finally the X-form with the register-register.
//===----------------------------------------------------------------------===//

let canFoldAsLoad = 1 in {
  class LoadDFormVec<ValueType vectype>
    : RI10Form<0b00101100, (outs VECREG:$rT), (ins dformaddr:$src),
               "lqd\t$rT, $src",
               LoadStore,
               [(set (vectype VECREG:$rT), (load dform_addr:$src))]>
  { }

  class LoadDForm<RegisterClass rclass>
    : RI10Form<0b00101100, (outs rclass:$rT), (ins dformaddr:$src),
               "lqd\t$rT, $src",
               LoadStore,
               [(set rclass:$rT, (load dform_addr:$src))]>
  { }

  multiclass LoadDForms
  {
    def v16i8: LoadDFormVec<v16i8>;
    def v8i16: LoadDFormVec<v8i16>;
    def v4i32: LoadDFormVec<v4i32>;
    def v2i64: LoadDFormVec<v2i64>;
    def v4f32: LoadDFormVec<v4f32>;
    def v2f64: LoadDFormVec<v2f64>;

    def r128:  LoadDForm<GPRC>;
    def r64:   LoadDForm<R64C>;
    def r32:   LoadDForm<R32C>;
    def f32:   LoadDForm<R32FP>;
    def f64:   LoadDForm<R64FP>;
    def r16:   LoadDForm<R16C>;
    def r8:    LoadDForm<R8C>;
  }

  class LoadAFormVec<ValueType vectype>
    : RI16Form<0b100001100, (outs VECREG:$rT), (ins addr256k:$src),
               "lqa\t$rT, $src",
               LoadStore,
               [(set (vectype VECREG:$rT), (load aform_addr:$src))]>
  { }

  class LoadAForm<RegisterClass rclass>
    : RI16Form<0b100001100, (outs rclass:$rT), (ins addr256k:$src),
               "lqa\t$rT, $src",
               LoadStore,
               [(set rclass:$rT, (load aform_addr:$src))]>
  { }

  multiclass LoadAForms
  {
    def v16i8: LoadAFormVec<v16i8>;
    def v8i16: LoadAFormVec<v8i16>;
    def v4i32: LoadAFormVec<v4i32>;
    def v2i64: LoadAFormVec<v2i64>;
    def v4f32: LoadAFormVec<v4f32>;
    def v2f64: LoadAFormVec<v2f64>;

    def r128:  LoadAForm<GPRC>;
    def r64:   LoadAForm<R64C>;
    def r32:   LoadAForm<R32C>;
    def f32:   LoadAForm<R32FP>;
    def f64:   LoadAForm<R64FP>;
    def r16:   LoadAForm<R16C>;
    def r8:    LoadAForm<R8C>;
  }

  class LoadXFormVec<ValueType vectype>
    : RRForm<0b00100011100, (outs VECREG:$rT), (ins memrr:$src),
             "lqx\t$rT, $src",
             LoadStore,
             [(set (vectype VECREG:$rT), (load xform_addr:$src))]>
  { }

  class LoadXForm<RegisterClass rclass>
    : RRForm<0b00100011100, (outs rclass:$rT), (ins memrr:$src),
             "lqx\t$rT, $src",
             LoadStore,
             [(set rclass:$rT, (load xform_addr:$src))]>
  { }

  multiclass LoadXForms
  {
    def v16i8: LoadXFormVec<v16i8>;
    def v8i16: LoadXFormVec<v8i16>;
    def v4i32: LoadXFormVec<v4i32>;
    def v2i64: LoadXFormVec<v2i64>;
    def v4f32: LoadXFormVec<v4f32>;
    def v2f64: LoadXFormVec<v2f64>;

    def r128:  LoadXForm<GPRC>;
    def r64:   LoadXForm<R64C>;
    def r32:   LoadXForm<R32C>;
    def f32:   LoadXForm<R32FP>;
    def f64:   LoadXForm<R64FP>;
    def r16:   LoadXForm<R16C>;
    def r8:    LoadXForm<R8C>;
  }

  defm LQA : LoadAForms;
  defm LQD : LoadDForms;
  defm LQX : LoadXForms;

/* Load quadword, PC relative: Not much use at this point in time.
   Might be of use later for relocatable code. It's effectively the
   same as LQA, but uses PC-relative addressing.
  def LQR : RI16Form<0b111001100, (outs VECREG:$rT), (ins s16imm:$disp),
                     "lqr\t$rT, $disp", LoadStore,
                     [(set VECREG:$rT, (load iaddr:$disp))]>;
 */
}

//===----------------------------------------------------------------------===//
// Stores:
//===----------------------------------------------------------------------===//
class StoreDFormVec<ValueType vectype>
  : RI10Form<0b00100100, (outs), (ins VECREG:$rT, dformaddr:$src),
             "stqd\t$rT, $src",
             LoadStore,
             [(store (vectype VECREG:$rT), dform_addr:$src)]>
{ }

class StoreDForm<RegisterClass rclass>
  : RI10Form<0b00100100, (outs), (ins rclass:$rT, dformaddr:$src),
             "stqd\t$rT, $src",
             LoadStore,
             [(store rclass:$rT, dform_addr:$src)]>
{ }

multiclass StoreDForms
{
  def v16i8: StoreDFormVec<v16i8>;
  def v8i16: StoreDFormVec<v8i16>;
  def v4i32: StoreDFormVec<v4i32>;
  def v2i64: StoreDFormVec<v2i64>;
  def v4f32: StoreDFormVec<v4f32>;
  def v2f64: StoreDFormVec<v2f64>;

  def r128:  StoreDForm<GPRC>;
  def r64:   StoreDForm<R64C>;
  def r32:   StoreDForm<R32C>;
  def f32:   StoreDForm<R32FP>;
  def f64:   StoreDForm<R64FP>;
  def r16:   StoreDForm<R16C>;
  def r8:    StoreDForm<R8C>;
}

class StoreAFormVec<ValueType vectype>
  : RI16Form<0b0010010, (outs), (ins VECREG:$rT, addr256k:$src),
             "stqa\t$rT, $src",
             LoadStore,
             [(store (vectype VECREG:$rT), aform_addr:$src)]>;

class StoreAForm<RegisterClass rclass>
  : RI16Form<0b001001, (outs), (ins rclass:$rT, addr256k:$src),
             "stqa\t$rT, $src",
             LoadStore,
             [(store rclass:$rT, aform_addr:$src)]>;

multiclass StoreAForms
{
  def v16i8: StoreAFormVec<v16i8>;
  def v8i16: StoreAFormVec<v8i16>;
  def v4i32: StoreAFormVec<v4i32>;
  def v2i64: StoreAFormVec<v2i64>;
  def v4f32: StoreAFormVec<v4f32>;
  def v2f64: StoreAFormVec<v2f64>;

  def r128:  StoreAForm<GPRC>;
  def r64:   StoreAForm<R64C>;
  def r32:   StoreAForm<R32C>;
  def f32:   StoreAForm<R32FP>;
  def f64:   StoreAForm<R64FP>;
  def r16:   StoreAForm<R16C>;
  def r8:    StoreAForm<R8C>;
}

class StoreXFormVec<ValueType vectype>
  : RRForm<0b00100100, (outs), (ins VECREG:$rT, memrr:$src),
           "stqx\t$rT, $src",
           LoadStore,
           [(store (vectype VECREG:$rT), xform_addr:$src)]>
{ }

class StoreXForm<RegisterClass rclass>
  : RRForm<0b00100100, (outs), (ins rclass:$rT, memrr:$src),
           "stqx\t$rT, $src",
           LoadStore,
           [(store rclass:$rT, xform_addr:$src)]>
{ }

multiclass StoreXForms
{
  def v16i8: StoreXFormVec<v16i8>;
  def v8i16: StoreXFormVec<v8i16>;
  def v4i32: StoreXFormVec<v4i32>;
  def v2i64: StoreXFormVec<v2i64>;
  def v4f32: StoreXFormVec<v4f32>;
  def v2f64: StoreXFormVec<v2f64>;

  def r128:  StoreXForm<GPRC>;
  def r64:   StoreXForm<R64C>;
  def r32:   StoreXForm<R32C>;
  def f32:   StoreXForm<R32FP>;
  def f64:   StoreXForm<R64FP>;
  def r16:   StoreXForm<R16C>;
  def r8:    StoreXForm<R8C>;
}

defm STQD : StoreDForms;
defm STQA : StoreAForms;
defm STQX : StoreXForms;

/* Store quadword, PC relative: Not much use at this point in time. Might
   be useful for relocatable code.
def STQR : RI16Form<0b111000100, (outs), (ins VECREG:$rT, s16imm:$disp),
                   "stqr\t$rT, $disp", LoadStore,
                   [(store VECREG:$rT, iaddr:$disp)]>;
*/

//===----------------------------------------------------------------------===//
// Generate Controls for Insertion:
//===----------------------------------------------------------------------===//

def CBD: RI7Form<0b10101111100, (outs VECREG:$rT), (ins shufaddr:$src),
    "cbd\t$rT, $src", ShuffleOp,
    [(set (v16i8 VECREG:$rT), (SPUshufmask dform2_addr:$src))]>;

def CBX: RRForm<0b00101011100, (outs VECREG:$rT), (ins memrr:$src),
    "cbx\t$rT, $src", ShuffleOp,
    [(set (v16i8 VECREG:$rT), (SPUshufmask xform_addr:$src))]>;

def CHD: RI7Form<0b10101111100, (outs VECREG:$rT), (ins shufaddr:$src),
    "chd\t$rT, $src", ShuffleOp,
    [(set (v8i16 VECREG:$rT), (SPUshufmask dform2_addr:$src))]>;

def CHX: RRForm<0b10101011100, (outs VECREG:$rT), (ins memrr:$src),
    "chx\t$rT, $src", ShuffleOp,
    [(set (v8i16 VECREG:$rT), (SPUshufmask xform_addr:$src))]>;

def CWD: RI7Form<0b01101111100, (outs VECREG:$rT), (ins shufaddr:$src),
    "cwd\t$rT, $src", ShuffleOp,
    [(set (v4i32 VECREG:$rT), (SPUshufmask dform2_addr:$src))]>;

def CWX: RRForm<0b01101011100, (outs VECREG:$rT), (ins memrr:$src),
    "cwx\t$rT, $src", ShuffleOp,
    [(set (v4i32 VECREG:$rT), (SPUshufmask xform_addr:$src))]>;

def CWDf32: RI7Form<0b01101111100, (outs VECREG:$rT), (ins shufaddr:$src),
    "cwd\t$rT, $src", ShuffleOp,
    [(set (v4f32 VECREG:$rT), (SPUshufmask dform2_addr:$src))]>;

def CWXf32: RRForm<0b01101011100, (outs VECREG:$rT), (ins memrr:$src),
    "cwx\t$rT, $src", ShuffleOp,
    [(set (v4f32 VECREG:$rT), (SPUshufmask xform_addr:$src))]>;

def CDD: RI7Form<0b11101111100, (outs VECREG:$rT), (ins shufaddr:$src),
    "cdd\t$rT, $src", ShuffleOp,
    [(set (v2i64 VECREG:$rT), (SPUshufmask dform2_addr:$src))]>;

def CDX: RRForm<0b11101011100, (outs VECREG:$rT), (ins memrr:$src),
    "cdx\t$rT, $src", ShuffleOp,
    [(set (v2i64 VECREG:$rT), (SPUshufmask xform_addr:$src))]>;

def CDDf64: RI7Form<0b11101111100, (outs VECREG:$rT), (ins shufaddr:$src),
    "cdd\t$rT, $src", ShuffleOp,
    [(set (v2f64 VECREG:$rT), (SPUshufmask dform2_addr:$src))]>;

def CDXf64: RRForm<0b11101011100, (outs VECREG:$rT), (ins memrr:$src),
    "cdx\t$rT, $src", ShuffleOp,
    [(set (v2f64 VECREG:$rT), (SPUshufmask xform_addr:$src))]>;

//===----------------------------------------------------------------------===//
// Constant formation:
//===----------------------------------------------------------------------===//

def ILHv8i16:
  RI16Form<0b110000010, (outs VECREG:$rT), (ins s16imm:$val),
    "ilh\t$rT, $val", ImmLoad,
    [(set (v8i16 VECREG:$rT), (v8i16 v8i16SExt16Imm:$val))]>;

def ILHr16:
  RI16Form<0b110000010, (outs R16C:$rT), (ins s16imm:$val),
    "ilh\t$rT, $val", ImmLoad,
    [(set R16C:$rT, immSExt16:$val)]>;

// Cell SPU doesn't have a native 8-bit immediate load, but ILH works ("with
// the right constant")
def ILHr8:
  RI16Form<0b110000010, (outs R8C:$rT), (ins s16imm_i8:$val),
    "ilh\t$rT, $val", ImmLoad,
    [(set R8C:$rT, immSExt8:$val)]>;

// IL does sign extension!

class ILInst<dag OOL, dag IOL, list<dag> pattern>:
  RI16Form<0b100000010, OOL, IOL, "il\t$rT, $val",
           ImmLoad, pattern>;

class ILVecInst<ValueType vectype, Operand immtype, PatLeaf xform>:
  ILInst<(outs VECREG:$rT), (ins immtype:$val),
         [(set (vectype VECREG:$rT), (vectype xform:$val))]>;

class ILRegInst<RegisterClass rclass, Operand immtype, PatLeaf xform>:
  ILInst<(outs rclass:$rT), (ins immtype:$val),
         [(set rclass:$rT, xform:$val)]>;

multiclass ImmediateLoad
{
  def v2i64: ILVecInst<v2i64, s16imm_i64, v2i64SExt16Imm>;
  def v4i32: ILVecInst<v4i32, s16imm_i32, v4i32SExt16Imm>;

  // TODO: Need v2f64, v4f32

  def r64: ILRegInst<R64C, s16imm_i64, immSExt16>;
  def r32: ILRegInst<R32C, s16imm_i32, immSExt16>;
  def f32: ILRegInst<R32FP, s16imm_f32, fpimmSExt16>;
  def f64: ILRegInst<R64FP, s16imm_f64, fpimmSExt16>;
}

defm IL : ImmediateLoad;

class ILHUInst<dag OOL, dag IOL, list<dag> pattern>:
  RI16Form<0b010000010, OOL, IOL, "ilhu\t$rT, $val",
           ImmLoad, pattern>;

class ILHUVecInst<ValueType vectype, Operand immtype, PatLeaf xform>:
  ILHUInst<(outs VECREG:$rT), (ins immtype:$val),
           [(set (vectype VECREG:$rT), (vectype xform:$val))]>;

class ILHURegInst<RegisterClass rclass, Operand immtype, PatLeaf xform>:
  ILHUInst<(outs rclass:$rT), (ins immtype:$val),
           [(set rclass:$rT, xform:$val)]>;

multiclass ImmLoadHalfwordUpper
{
  def v2i64: ILHUVecInst<v2i64, u16imm_i64, immILHUvec_i64>;
  def v4i32: ILHUVecInst<v4i32, u16imm_i32, immILHUvec>;

  def r64: ILHURegInst<R64C, u16imm_i64, hi16>;
  def r32: ILHURegInst<R32C, u16imm_i32, hi16>;

  // Loads the high portion of an address
  def hi: ILHURegInst<R32C, symbolHi, hi16>;

  // Used in custom lowering constant SFP loads:
  def f32: ILHURegInst<R32FP, f16imm, hi16_f32>;
}

defm ILHU : ImmLoadHalfwordUpper;

// Immediate load address (can also be used to load 18-bit unsigned constants,
// see the zext 16->32 pattern)

class ILAInst<dag OOL, dag IOL, list<dag> pattern>:
  RI18Form<0b1000010, OOL, IOL, "ila\t$rT, $val",
           LoadNOP, pattern>;

class ILAVecInst<ValueType vectype, Operand immtype, PatLeaf xform>:
  ILAInst<(outs VECREG:$rT), (ins immtype:$val),
          [(set (vectype VECREG:$rT), (vectype xform:$val))]>;

class ILARegInst<RegisterClass rclass, Operand immtype, PatLeaf xform>:
  ILAInst<(outs rclass:$rT), (ins immtype:$val),
          [(set rclass:$rT, xform:$val)]>;

multiclass ImmLoadAddress
{
  def v2i64: ILAVecInst<v2i64, u18imm, v2i64Uns18Imm>;
  def v4i32: ILAVecInst<v4i32, u18imm, v4i32Uns18Imm>;

  def r64: ILARegInst<R64C, u18imm_i64, imm18>;
  def r32: ILARegInst<R32C, u18imm, imm18>;
  def f32: ILARegInst<R32FP, f18imm, fpimm18>;
  def f64: ILARegInst<R64FP, f18imm_f64, fpimm18>;

  def hi: ILARegInst<R32C, symbolHi, imm18>;
  def lo: ILARegInst<R32C, symbolLo, imm18>;

  def lsa: ILAInst<(outs R32C:$rT), (ins symbolLSA:$val),
                   [(set R32C:$rT, imm18:$val)]>;
}

defm ILA : ImmLoadAddress;

// Immediate OR, Halfword Lower: The "other" part of loading large constants
// into 32-bit registers. See the anonymous pattern Pat<(i32 imm:$imm), ...>
// Note that these are really two operand instructions, but they're encoded
// as three operands with the first two arguments tied-to each other.

class IOHLInst<dag OOL, dag IOL, list<dag> pattern>:
  RI16Form<0b100000110, OOL, IOL, "iohl\t$rT, $val",
           ImmLoad, pattern>,
  RegConstraint<"$rS = $rT">,
  NoEncode<"$rS">;

class IOHLVecInst<ValueType vectype, Operand immtype /* , PatLeaf xform */>:
  IOHLInst<(outs VECREG:$rT), (ins VECREG:$rS, immtype:$val),
           [/* no pattern */]>;

class IOHLRegInst<RegisterClass rclass, Operand immtype /* , PatLeaf xform */>:
  IOHLInst<(outs rclass:$rT), (ins rclass:$rS, immtype:$val),
           [/* no pattern */]>;

multiclass ImmOrHalfwordLower
{
  def v2i64: IOHLVecInst<v2i64, u16imm_i64>;
  def v4i32: IOHLVecInst<v4i32, u16imm_i32>;

  def r32: IOHLRegInst<R32C, i32imm>;
  def f32: IOHLRegInst<R32FP, f32imm>;

  def lo: IOHLRegInst<R32C, symbolLo>;
}

defm IOHL: ImmOrHalfwordLower;

// Form select mask for bytes using immediate, used in conjunction with the
// SELB instruction:

class FSMBIVec<ValueType vectype>:
  RI16Form<0b101001100, (outs VECREG:$rT), (ins u16imm:$val),
          "fsmbi\t$rT, $val",
          SelectOp,
          [(set (vectype VECREG:$rT), (SPUselmask (i16 immU16:$val)))]>;

multiclass FormSelectMaskBytesImm
{
  def v16i8: FSMBIVec<v16i8>;
  def v8i16: FSMBIVec<v8i16>;
  def v4i32: FSMBIVec<v4i32>;
  def v2i64: FSMBIVec<v2i64>;
}

defm FSMBI : FormSelectMaskBytesImm;

// fsmb: Form select mask for bytes. N.B. Input operand, $rA, is 16-bits
class FSMBInst<dag OOL, dag IOL, list<dag> pattern>:
    RRForm_1<0b01101101100, OOL, IOL, "fsmb\t$rT, $rA", SelectOp,
             pattern>;

class FSMBRegInst<RegisterClass rclass, ValueType vectype>:
    FSMBInst<(outs VECREG:$rT), (ins rclass:$rA),
             [(set (vectype VECREG:$rT), (SPUselmask rclass:$rA))]>;

class FSMBVecInst<ValueType vectype>:
    FSMBInst<(outs VECREG:$rT), (ins VECREG:$rA),
             [(set (vectype VECREG:$rT),
                   (SPUselmask (vectype VECREG:$rA)))]>;

multiclass FormSelectMaskBits {
  def v16i8_r16: FSMBRegInst<R16C, v16i8>;
  def v16i8:     FSMBVecInst<v16i8>;
}

defm FSMB: FormSelectMaskBits;

// fsmh: Form select mask for halfwords. N.B., Input operand, $rA, is
// only 8-bits wide (even though it's input as 16-bits here)

class FSMHInst<dag OOL, dag IOL, list<dag> pattern>:
    RRForm_1<0b10101101100, OOL, IOL, "fsmh\t$rT, $rA", SelectOp,
             pattern>;

class FSMHRegInst<RegisterClass rclass, ValueType vectype>:
    FSMHInst<(outs VECREG:$rT), (ins rclass:$rA),
             [(set (vectype VECREG:$rT), (SPUselmask rclass:$rA))]>;

class FSMHVecInst<ValueType vectype>:
    FSMHInst<(outs VECREG:$rT), (ins VECREG:$rA),
             [(set (vectype VECREG:$rT),
                   (SPUselmask (vectype VECREG:$rA)))]>;

multiclass FormSelectMaskHalfword {
  def v8i16_r16: FSMHRegInst<R16C, v8i16>;
  def v8i16:     FSMHVecInst<v8i16>;
}

defm FSMH: FormSelectMaskHalfword;

// fsm: Form select mask for words. Like the other fsm* instructions,
// only the lower 4 bits of $rA are significant.

class FSMInst<dag OOL, dag IOL, list<dag> pattern>:
    RRForm_1<0b00101101100, OOL, IOL, "fsm\t$rT, $rA", SelectOp,
             pattern>;

class FSMRegInst<ValueType vectype, RegisterClass rclass>:
    FSMInst<(outs VECREG:$rT), (ins rclass:$rA),
            [(set (vectype VECREG:$rT), (SPUselmask rclass:$rA))]>;

class FSMVecInst<ValueType vectype>:
    FSMInst<(outs VECREG:$rT), (ins VECREG:$rA),
            [(set (vectype VECREG:$rT), (SPUselmask (vectype VECREG:$rA)))]>;

multiclass FormSelectMaskWord {
  def v4i32: FSMVecInst<v4i32>;

  def r32 :  FSMRegInst<v4i32, R32C>;
  def r16 :  FSMRegInst<v4i32, R16C>;
}

defm FSM : FormSelectMaskWord;

// Special case when used for i64 math operations
multiclass FormSelectMaskWord64 {
  def r32 : FSMRegInst<v2i64, R32C>;
  def r16 : FSMRegInst<v2i64, R16C>;
}

defm FSM64 : FormSelectMaskWord64;

//===----------------------------------------------------------------------===//
// Integer and Logical Operations:
//===----------------------------------------------------------------------===//

def AHv8i16:
  RRForm<0b00010011000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
    "ah\t$rT, $rA, $rB", IntegerOp,
    [(set (v8i16 VECREG:$rT), (int_spu_si_ah VECREG:$rA, VECREG:$rB))]>;

def : Pat<(add (v8i16 VECREG:$rA), (v8i16 VECREG:$rB)),
          (AHv8i16 VECREG:$rA, VECREG:$rB)>;

def AHr16:
  RRForm<0b00010011000, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
    "ah\t$rT, $rA, $rB", IntegerOp,
    [(set R16C:$rT, (add R16C:$rA, R16C:$rB))]>;

def AHIvec:
    RI10Form<0b10111000, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
      "ahi\t$rT, $rA, $val", IntegerOp,
      [(set (v8i16 VECREG:$rT), (add (v8i16 VECREG:$rA),
                                     v8i16SExt10Imm:$val))]>;

def AHIr16:
  RI10Form<0b10111000, (outs R16C:$rT), (ins R16C:$rA, s10imm:$val),
    "ahi\t$rT, $rA, $val", IntegerOp,
    [(set R16C:$rT, (add R16C:$rA, i16ImmSExt10:$val))]>;

// v4i32, i32 add instruction:

class AInst<dag OOL, dag IOL, list<dag> pattern>:
  RRForm<0b00000011000, OOL, IOL,
         "a\t$rT, $rA, $rB", IntegerOp,
         pattern>;

class AVecInst<ValueType vectype>:
  AInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
        [(set (vectype VECREG:$rT), (add (vectype VECREG:$rA),
                                         (vectype VECREG:$rB)))]>;

class ARegInst<RegisterClass rclass>:
  AInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
        [(set rclass:$rT, (add rclass:$rA, rclass:$rB))]>;
        
multiclass AddInstruction {
  def v4i32: AVecInst<v4i32>;
  def v16i8: AVecInst<v16i8>;
  def r32:   ARegInst<R32C>;
}

defm A : AddInstruction;

class AIInst<dag OOL, dag IOL, list<dag> pattern>:
    RI10Form<0b00111000, OOL, IOL,
             "ai\t$rT, $rA, $val", IntegerOp,
             pattern>;

class AIVecInst<ValueType vectype, PatLeaf immpred>:
    AIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
            [(set (vectype VECREG:$rT), (add (vectype VECREG:$rA), immpred:$val))]>;

class AIFPVecInst<ValueType vectype, PatLeaf immpred>:
    AIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
            [/* no pattern */]>;

class AIRegInst<RegisterClass rclass, PatLeaf immpred>:
    AIInst<(outs rclass:$rT), (ins rclass:$rA, s10imm_i32:$val),
           [(set rclass:$rT, (add rclass:$rA, immpred:$val))]>;

// This is used to add epsilons to floating point numbers in the f32 fdiv code:
class AIFPInst<RegisterClass rclass, PatLeaf immpred>:
    AIInst<(outs rclass:$rT), (ins rclass:$rA, s10imm_i32:$val),
           [/* no pattern */]>;

multiclass AddImmediate {
  def v4i32: AIVecInst<v4i32, v4i32SExt10Imm>;

  def r32: AIRegInst<R32C, i32ImmSExt10>;

  def v4f32: AIFPVecInst<v4f32, v4i32SExt10Imm>;
  def f32: AIFPInst<R32FP, i32ImmSExt10>;
}

defm AI : AddImmediate;

def SFHvec:
    RRForm<0b00010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
      "sfh\t$rT, $rA, $rB", IntegerOp,
      [(set (v8i16 VECREG:$rT), (sub (v8i16 VECREG:$rA),
                                     (v8i16 VECREG:$rB)))]>;

def SFHr16:
    RRForm<0b00010010000, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
      "sfh\t$rT, $rA, $rB", IntegerOp,
      [(set R16C:$rT, (sub R16C:$rB, R16C:$rA))]>;

def SFHIvec:
    RI10Form<0b10110000, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
      "sfhi\t$rT, $rA, $val", IntegerOp,
      [(set (v8i16 VECREG:$rT), (sub v8i16SExt10Imm:$val,
                                     (v8i16 VECREG:$rA)))]>;

def SFHIr16 : RI10Form<0b10110000, (outs R16C:$rT), (ins R16C:$rA, s10imm:$val),
  "sfhi\t$rT, $rA, $val", IntegerOp,
  [(set R16C:$rT, (sub i16ImmSExt10:$val, R16C:$rA))]>;

def SFvec : RRForm<0b00000010000, (outs VECREG:$rT),
                                  (ins VECREG:$rA, VECREG:$rB),
  "sf\t$rT, $rA, $rB", IntegerOp,
  [(set (v4i32 VECREG:$rT), (sub (v4i32 VECREG:$rB), (v4i32 VECREG:$rA)))]>;


def SFr32 : RRForm<0b00000010000, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
  "sf\t$rT, $rA, $rB", IntegerOp,
  [(set R32C:$rT, (sub R32C:$rB, R32C:$rA))]>;

def SFIvec:
    RI10Form<0b00110000, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
      "sfi\t$rT, $rA, $val", IntegerOp,
      [(set (v4i32 VECREG:$rT), (sub v4i32SExt10Imm:$val,
                                     (v4i32 VECREG:$rA)))]>;

def SFIr32 : RI10Form<0b00110000, (outs R32C:$rT),
                                  (ins R32C:$rA, s10imm_i32:$val),
  "sfi\t$rT, $rA, $val", IntegerOp,
  [(set R32C:$rT, (sub i32ImmSExt10:$val, R32C:$rA))]>;

// ADDX: only available in vector form, doesn't match a pattern.
class ADDXInst<dag OOL, dag IOL, list<dag> pattern>:
    RRForm<0b00000010110, OOL, IOL,
      "addx\t$rT, $rA, $rB",
      IntegerOp, pattern>;

class ADDXVecInst<ValueType vectype>:
    ADDXInst<(outs VECREG:$rT),
             (ins VECREG:$rA, VECREG:$rB, VECREG:$rCarry),
             [/* no pattern */]>,
    RegConstraint<"$rCarry = $rT">,
    NoEncode<"$rCarry">;

class ADDXRegInst<RegisterClass rclass>:
    ADDXInst<(outs rclass:$rT),
             (ins rclass:$rA, rclass:$rB, rclass:$rCarry),
             [/* no pattern */]>,
    RegConstraint<"$rCarry = $rT">,
    NoEncode<"$rCarry">;

multiclass AddExtended {
  def v2i64 : ADDXVecInst<v2i64>;
  def v4i32 : ADDXVecInst<v4i32>;
  def r64 : ADDXRegInst<R64C>;
  def r32 : ADDXRegInst<R32C>;
}

defm ADDX : AddExtended;

// CG: Generate carry for add
class CGInst<dag OOL, dag IOL, list<dag> pattern>:
    RRForm<0b01000011000, OOL, IOL,
      "cg\t$rT, $rA, $rB",
      IntegerOp, pattern>;

class CGVecInst<ValueType vectype>:
    CGInst<(outs VECREG:$rT),
           (ins VECREG:$rA, VECREG:$rB),
           [/* no pattern */]>;

class CGRegInst<RegisterClass rclass>:
    CGInst<(outs rclass:$rT),
           (ins rclass:$rA, rclass:$rB),
           [/* no pattern */]>;

multiclass CarryGenerate {
  def v2i64 : CGVecInst<v2i64>;
  def v4i32 : CGVecInst<v4i32>;
  def r64 : CGRegInst<R64C>;
  def r32 : CGRegInst<R32C>;
}

defm CG : CarryGenerate;

// SFX: Subract from, extended. This is used in conjunction with BG to subtract
// with carry (borrow, in this case)
class SFXInst<dag OOL, dag IOL, list<dag> pattern>:
    RRForm<0b10000010110, OOL, IOL,
      "sfx\t$rT, $rA, $rB",
      IntegerOp, pattern>;

class SFXVecInst<ValueType vectype>:
    SFXInst<(outs VECREG:$rT),
            (ins VECREG:$rA, VECREG:$rB, VECREG:$rCarry),
             [/* no pattern */]>,
    RegConstraint<"$rCarry = $rT">,
    NoEncode<"$rCarry">;

class SFXRegInst<RegisterClass rclass>:
    SFXInst<(outs rclass:$rT),
            (ins rclass:$rA, rclass:$rB, rclass:$rCarry),
             [/* no pattern */]>,
    RegConstraint<"$rCarry = $rT">,
    NoEncode<"$rCarry">;

multiclass SubtractExtended {
  def v2i64 : SFXVecInst<v2i64>;
  def v4i32 : SFXVecInst<v4i32>;
  def r64 : SFXRegInst<R64C>;
  def r32 : SFXRegInst<R32C>;
}

defm SFX : SubtractExtended;

// BG: only available in vector form, doesn't match a pattern.
class BGInst<dag OOL, dag IOL, list<dag> pattern>:
    RRForm<0b01000010000, OOL, IOL,
      "bg\t$rT, $rA, $rB",
      IntegerOp, pattern>;

class BGVecInst<ValueType vectype>:
    BGInst<(outs VECREG:$rT),
           (ins VECREG:$rA, VECREG:$rB),
           [/* no pattern */]>;

class BGRegInst<RegisterClass rclass>:
    BGInst<(outs rclass:$rT),
           (ins rclass:$rA, rclass:$rB),
           [/* no pattern */]>;

multiclass BorrowGenerate {
  def v4i32 : BGVecInst<v4i32>;
  def v2i64 : BGVecInst<v2i64>;
  def r64 : BGRegInst<R64C>;
  def r32 : BGRegInst<R32C>;
}

defm BG : BorrowGenerate;

// BGX: Borrow generate, extended.
def BGXvec:
    RRForm<0b11000010110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB,
                                VECREG:$rCarry),
      "bgx\t$rT, $rA, $rB", IntegerOp,
      []>,
    RegConstraint<"$rCarry = $rT">,
    NoEncode<"$rCarry">;

// Halfword multiply variants:
// N.B: These can be used to build up larger quantities (16x16 -> 32)

def MPYv8i16:
  RRForm<0b00100011110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
    "mpy\t$rT, $rA, $rB", IntegerMulDiv,
    [/* no pattern */]>;

def MPYr16:
  RRForm<0b00100011110, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
    "mpy\t$rT, $rA, $rB", IntegerMulDiv,
    [(set R16C:$rT, (mul R16C:$rA, R16C:$rB))]>;

// Unsigned 16-bit multiply:

class MPYUInst<dag OOL, dag IOL, list<dag> pattern>:
    RRForm<0b00110011110, OOL, IOL,
      "mpyu\t$rT, $rA, $rB", IntegerMulDiv,
      pattern>;

def MPYUv4i32:
  MPYUInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
           [/* no pattern */]>;

def MPYUr16:
  MPYUInst<(outs R32C:$rT), (ins R16C:$rA, R16C:$rB),
           [(set R32C:$rT, (mul (zext R16C:$rA), (zext R16C:$rB)))]>;

def MPYUr32:
  MPYUInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
           [/* no pattern */]>;

// mpyi: multiply 16 x s10imm -> 32 result.

class MPYIInst<dag OOL, dag IOL, list<dag> pattern>:
  RI10Form<0b00101110, OOL, IOL,
    "mpyi\t$rT, $rA, $val", IntegerMulDiv,
    pattern>;

def MPYIvec:
  MPYIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
           [(set (v8i16 VECREG:$rT),
                 (mul (v8i16 VECREG:$rA), v8i16SExt10Imm:$val))]>;

def MPYIr16:
  MPYIInst<(outs R16C:$rT), (ins R16C:$rA, s10imm:$val),
           [(set R16C:$rT, (mul R16C:$rA, i16ImmSExt10:$val))]>;

// mpyui: same issues as other multiplies, plus, this doesn't match a
// pattern... but may be used during target DAG selection or lowering

class MPYUIInst<dag OOL, dag IOL, list<dag> pattern>:
  RI10Form<0b10101110, OOL, IOL,
           "mpyui\t$rT, $rA, $val", IntegerMulDiv,
           pattern>;
    
def MPYUIvec:
  MPYUIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
            []>;

def MPYUIr16:
  MPYUIInst<(outs R16C:$rT), (ins R16C:$rA, s10imm:$val),
            []>;

// mpya: 16 x 16 + 16 -> 32 bit result
class MPYAInst<dag OOL, dag IOL, list<dag> pattern>:
  RRRForm<0b0011, OOL, IOL,
          "mpya\t$rT, $rA, $rB, $rC", IntegerMulDiv,
          pattern>;
          
def MPYAv4i32:
  MPYAInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
           [(set (v4i32 VECREG:$rT),
                 (add (v4i32 (bitconvert (mul (v8i16 VECREG:$rA),
                                              (v8i16 VECREG:$rB)))),
                      (v4i32 VECREG:$rC)))]>;

def MPYAr32:
  MPYAInst<(outs R32C:$rT), (ins R16C:$rA, R16C:$rB, R32C:$rC),
           [(set R32C:$rT, (add (sext (mul R16C:$rA, R16C:$rB)),
                                R32C:$rC))]>;
                                
def MPYAr32_sext:
  MPYAInst<(outs R32C:$rT), (ins R16C:$rA, R16C:$rB, R32C:$rC),
           [(set R32C:$rT, (add (mul (sext R16C:$rA), (sext R16C:$rB)),
                                R32C:$rC))]>;

def MPYAr32_sextinreg:
  MPYAInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB, R32C:$rC),
           [(set R32C:$rT, (add (mul (sext_inreg R32C:$rA, i16),
                                     (sext_inreg R32C:$rB, i16)),
                                R32C:$rC))]>;

// mpyh: multiply high, used to synthesize 32-bit multiplies
class MPYHInst<dag OOL, dag IOL, list<dag> pattern>:
  RRForm<0b10100011110, OOL, IOL,
         "mpyh\t$rT, $rA, $rB", IntegerMulDiv,
         pattern>;
         
def MPYHv4i32:
    MPYHInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
             [/* no pattern */]>;

def MPYHr32:
    MPYHInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
             [/* no pattern */]>;

// mpys: multiply high and shift right (returns the top half of
// a 16-bit multiply, sign extended to 32 bits.)

class MPYSInst<dag OOL, dag IOL>:
    RRForm<0b11100011110, OOL, IOL, 
      "mpys\t$rT, $rA, $rB", IntegerMulDiv,
      [/* no pattern */]>;

def MPYSv4i32:
    MPYSInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB)>;
    
def MPYSr16:
    MPYSInst<(outs R32C:$rT), (ins R16C:$rA, R16C:$rB)>;

// mpyhh: multiply high-high (returns the 32-bit result from multiplying
// the top 16 bits of the $rA, $rB)

class MPYHHInst<dag OOL, dag IOL>:
  RRForm<0b01100011110, OOL, IOL,
        "mpyhh\t$rT, $rA, $rB", IntegerMulDiv,
        [/* no pattern */]>;
        
def MPYHHv8i16:
    MPYHHInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB)>;

def MPYHHr32:
    MPYHHInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB)>;

// mpyhha: Multiply high-high, add to $rT:

class MPYHHAInst<dag OOL, dag IOL>:
    RRForm<0b01100010110, OOL, IOL,
      "mpyhha\t$rT, $rA, $rB", IntegerMulDiv,
      [/* no pattern */]>;

def MPYHHAvec:
    MPYHHAInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB)>;
    
def MPYHHAr32:
    MPYHHAInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB)>;

// mpyhhu: Multiply high-high, unsigned, e.g.:
//
// +-------+-------+   +-------+-------+   +---------+
// |  a0   .  a1   | x |  b0   .  b1   | = | a0 x b0 |
// +-------+-------+   +-------+-------+   +---------+
//
// where a0, b0 are the upper 16 bits of the 32-bit word

class MPYHHUInst<dag OOL, dag IOL>:
    RRForm<0b01110011110, OOL, IOL,
      "mpyhhu\t$rT, $rA, $rB", IntegerMulDiv,
      [/* no pattern */]>;

def MPYHHUv4i32:
    MPYHHUInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB)>;
    
def MPYHHUr32:
    MPYHHUInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB)>;

// mpyhhau: Multiply high-high, unsigned

class MPYHHAUInst<dag OOL, dag IOL>:
    RRForm<0b01110010110, OOL, IOL,
      "mpyhhau\t$rT, $rA, $rB", IntegerMulDiv,
      [/* no pattern */]>;

def MPYHHAUvec:
    MPYHHAUInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB)>;
    
def MPYHHAUr32:
    MPYHHAUInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB)>;

//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
// clz: Count leading zeroes
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
class CLZInst<dag OOL, dag IOL, list<dag> pattern>:
    RRForm_1<0b10100101010, OOL, IOL, "clz\t$rT, $rA",
             IntegerOp, pattern>;

class CLZRegInst<RegisterClass rclass>:
    CLZInst<(outs rclass:$rT), (ins rclass:$rA),
            [(set rclass:$rT, (ctlz rclass:$rA))]>;

class CLZVecInst<ValueType vectype>:
    CLZInst<(outs VECREG:$rT), (ins VECREG:$rA),
            [(set (vectype VECREG:$rT), (ctlz (vectype VECREG:$rA)))]>;

multiclass CountLeadingZeroes {
  def v4i32 : CLZVecInst<v4i32>;
  def r32   : CLZRegInst<R32C>;
}

defm CLZ : CountLeadingZeroes;

// cntb: Count ones in bytes (aka "population count")
//
// NOTE: This instruction is really a vector instruction, but the custom
// lowering code uses it in unorthodox ways to support CTPOP for other
// data types!

def CNTBv16i8:
    RRForm_1<0b00101101010, (outs VECREG:$rT), (ins VECREG:$rA),
      "cntb\t$rT, $rA", IntegerOp,
      [(set (v16i8 VECREG:$rT), (SPUcntb (v16i8 VECREG:$rA)))]>;

def CNTBv8i16 :
    RRForm_1<0b00101101010, (outs VECREG:$rT), (ins VECREG:$rA),
      "cntb\t$rT, $rA", IntegerOp,
      [(set (v8i16 VECREG:$rT), (SPUcntb (v8i16 VECREG:$rA)))]>;

def CNTBv4i32 :
    RRForm_1<0b00101101010, (outs VECREG:$rT), (ins VECREG:$rA),
      "cntb\t$rT, $rA", IntegerOp,
      [(set (v4i32 VECREG:$rT), (SPUcntb (v4i32 VECREG:$rA)))]>;

// gbb: Gather the low order bits from each byte in $rA into a single 16-bit
// quantity stored into $rT's slot 0, upper 16 bits are zeroed, as are
// slots 1-3.
//
// Note: This instruction "pairs" with the fsmb instruction for all of the
// various types defined here.
//
// Note 2: The "VecInst" and "RegInst" forms refer to the result being either
// a vector or register.

class GBBInst<dag OOL, dag IOL, list<dag> pattern>:
  RRForm_1<0b01001101100, OOL, IOL, "gbb\t$rT, $rA", GatherOp, pattern>;

class GBBRegInst<RegisterClass rclass, ValueType vectype>:
  GBBInst<(outs rclass:$rT), (ins VECREG:$rA),
          [/* no pattern */]>;

class GBBVecInst<ValueType vectype>:
  GBBInst<(outs VECREG:$rT), (ins VECREG:$rA),
          [/* no pattern */]>;

multiclass GatherBitsFromBytes {
  def v16i8_r32: GBBRegInst<R32C, v16i8>;
  def v16i8_r16: GBBRegInst<R16C, v16i8>;
  def v16i8:     GBBVecInst<v16i8>;
}

defm GBB: GatherBitsFromBytes;

// gbh: Gather all low order bits from each halfword in $rA into a single
// 8-bit quantity stored in $rT's slot 0, with the upper bits of $rT set to 0
// and slots 1-3 also set to 0.
//
// See notes for GBBInst, above.

class GBHInst<dag OOL, dag IOL, list<dag> pattern>:
    RRForm_1<0b10001101100, OOL, IOL, "gbh\t$rT, $rA", GatherOp,
             pattern>;

class GBHRegInst<RegisterClass rclass, ValueType vectype>:
    GBHInst<(outs rclass:$rT), (ins VECREG:$rA),
            [/* no pattern */]>;

class GBHVecInst<ValueType vectype>:
    GBHInst<(outs VECREG:$rT), (ins VECREG:$rA),
            [/* no pattern */]>;

multiclass GatherBitsHalfword {
  def v8i16_r32: GBHRegInst<R32C, v8i16>;
  def v8i16_r16: GBHRegInst<R16C, v8i16>;
  def v8i16:     GBHVecInst<v8i16>;
}

defm GBH: GatherBitsHalfword;

// gb: Gather all low order bits from each word in $rA into a single
// 4-bit quantity stored in $rT's slot 0, upper bits in $rT set to 0,
// as well as slots 1-3.
//
// See notes for gbb, above.

class GBInst<dag OOL, dag IOL, list<dag> pattern>:
    RRForm_1<0b00001101100, OOL, IOL, "gb\t$rT, $rA", GatherOp,
             pattern>;

class GBRegInst<RegisterClass rclass, ValueType vectype>:
    GBInst<(outs rclass:$rT), (ins VECREG:$rA),
           [/* no pattern */]>;

class GBVecInst<ValueType vectype>:
    GBInst<(outs VECREG:$rT), (ins VECREG:$rA),
           [/* no pattern */]>;

multiclass GatherBitsWord {
  def v4i32_r32: GBRegInst<R32C, v4i32>;
  def v4i32_r16: GBRegInst<R16C, v4i32>;
  def v4i32:     GBVecInst<v4i32>;
}

defm GB: GatherBitsWord;

// avgb: average bytes
def AVGB:
    RRForm<0b11001011000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
      "avgb\t$rT, $rA, $rB", ByteOp,
      []>;

// absdb: absolute difference of bytes
def ABSDB:
    RRForm<0b11001010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
      "absdb\t$rT, $rA, $rB", ByteOp,
      []>;

// sumb: sum bytes into halfwords
def SUMB:
    RRForm<0b11001010010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
      "sumb\t$rT, $rA, $rB", ByteOp,
      []>;

// Sign extension operations:
class XSBHInst<dag OOL, dag IOL, list<dag> pattern>:
    RRForm_1<0b01101101010, OOL, IOL,
      "xsbh\t$rDst, $rSrc",
      IntegerOp, pattern>;

class XSBHInRegInst<RegisterClass rclass, list<dag> pattern>:
    XSBHInst<(outs rclass:$rDst), (ins rclass:$rSrc),
             pattern>;

multiclass ExtendByteHalfword {
  def v16i8:     XSBHInst<(outs VECREG:$rDst), (ins VECREG:$rSrc),
                          [
                  /*(set (v8i16 VECREG:$rDst), (sext (v8i16 VECREG:$rSrc)))*/]>;
  def r8:        XSBHInst<(outs R16C:$rDst), (ins R8C:$rSrc),
                          [(set R16C:$rDst, (sext R8C:$rSrc))]>;
  def r16:       XSBHInRegInst<R16C,
                               [(set R16C:$rDst, (sext_inreg R16C:$rSrc, i8))]>;

  // 32-bit form for XSBH: used to sign extend 8-bit quantities to 16-bit
  // quantities to 32-bit quantities via a 32-bit register (see the sext 8->32
  // pattern below). Intentionally doesn't match a pattern because we want the
  // sext 8->32 pattern to do the work for us, namely because we need the extra
  // XSHWr32.
  def r32:   XSBHInRegInst<R32C, [/* no pattern */]>;
  
  // Same as the 32-bit version, but for i64
  def r64:   XSBHInRegInst<R64C, [/* no pattern */]>;
}

defm XSBH : ExtendByteHalfword;

// Sign extend halfwords to words:

class XSHWInst<dag OOL, dag IOL, list<dag> pattern>:
    RRForm_1<0b01101101010, OOL, IOL, "xshw\t$rDest, $rSrc",
            IntegerOp, pattern>;

class XSHWVecInst<ValueType in_vectype, ValueType out_vectype>:
    XSHWInst<(outs VECREG:$rDest), (ins VECREG:$rSrc),
             [(set (out_vectype VECREG:$rDest),
                   (sext (in_vectype VECREG:$rSrc)))]>;

class XSHWInRegInst<RegisterClass rclass, list<dag> pattern>:
    XSHWInst<(outs rclass:$rDest), (ins rclass:$rSrc),
             pattern>;
             
class XSHWRegInst<RegisterClass rclass>:
    XSHWInst<(outs rclass:$rDest), (ins R16C:$rSrc),
             [(set rclass:$rDest, (sext R16C:$rSrc))]>;

multiclass ExtendHalfwordWord {
  def v4i32: XSHWVecInst<v8i16, v4i32>;

  def r16:   XSHWRegInst<R32C>;

  def r32:   XSHWInRegInst<R32C,
                          [(set R32C:$rDest, (sext_inreg R32C:$rSrc, i16))]>;
  def r64:   XSHWInRegInst<R64C, [/* no pattern */]>;
}

defm XSHW : ExtendHalfwordWord;

// Sign-extend words to doublewords (32->64 bits)

class XSWDInst<dag OOL, dag IOL, list<dag> pattern>:
    RRForm_1<0b01100101010, OOL, IOL, "xswd\t$rDst, $rSrc",
              IntegerOp, pattern>;
      
class XSWDVecInst<ValueType in_vectype, ValueType out_vectype>:
    XSWDInst<(outs VECREG:$rDst), (ins VECREG:$rSrc),
             [/*(set (out_vectype VECREG:$rDst),
                   (sext (out_vectype VECREG:$rSrc)))*/]>;
      
class XSWDRegInst<RegisterClass in_rclass, RegisterClass out_rclass>:
    XSWDInst<(outs out_rclass:$rDst), (ins in_rclass:$rSrc),
             [(set out_rclass:$rDst, (sext in_rclass:$rSrc))]>;
             
multiclass ExtendWordToDoubleWord {
  def v2i64: XSWDVecInst<v4i32, v2i64>;
  def r64:   XSWDRegInst<R32C, R64C>;
  
  def r64_inreg: XSWDInst<(outs R64C:$rDst), (ins R64C:$rSrc),
                          [(set R64C:$rDst, (sext_inreg R64C:$rSrc, i32))]>;
}

defm XSWD : ExtendWordToDoubleWord;

// AND operations

class ANDInst<dag OOL, dag IOL, list<dag> pattern> :
    RRForm<0b10000011000, OOL, IOL, "and\t$rT, $rA, $rB",
           IntegerOp, pattern>;

class ANDVecInst<ValueType vectype>:
    ANDInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
             [(set (vectype VECREG:$rT), (and (vectype VECREG:$rA),
                                              (vectype VECREG:$rB)))]>;

class ANDRegInst<RegisterClass rclass>:
    ANDInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
             [(set rclass:$rT, (and rclass:$rA, rclass:$rB))]>;

multiclass BitwiseAnd
{
  def v16i8: ANDVecInst<v16i8>;
  def v8i16: ANDVecInst<v8i16>;
  def v4i32: ANDVecInst<v4i32>;
  def v2i64: ANDVecInst<v2i64>;

  def r128:  ANDRegInst<GPRC>;
  def r64:   ANDRegInst<R64C>;
  def r32:   ANDRegInst<R32C>;
  def r16:   ANDRegInst<R16C>;
  def r8:    ANDRegInst<R8C>;

  //===---------------------------------------------
  // Special instructions to perform the fabs instruction
  def fabs32: ANDInst<(outs R32FP:$rT), (ins R32FP:$rA, R32C:$rB),
                      [/* Intentionally does not match a pattern */]>;

  def fabs64: ANDInst<(outs R64FP:$rT), (ins R64FP:$rA, R64C:$rB),
                      [/* Intentionally does not match a pattern */]>;

  def fabsvec: ANDInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
                       [/* Intentionally does not match a pattern */]>;

  //===---------------------------------------------

  // Hacked form of AND to zero-extend 16-bit quantities to 32-bit
  // quantities -- see 16->32 zext pattern.
  //
  // This pattern is somewhat artificial, since it might match some
  // compiler generated pattern but it is unlikely to do so.

  def i16i32: ANDInst<(outs R32C:$rT), (ins R16C:$rA, R32C:$rB),
                      [(set R32C:$rT, (and (zext R16C:$rA), R32C:$rB))]>;
}

defm AND : BitwiseAnd;


def vnot_cell_conv : PatFrag<(ops node:$in),
                             (xor node:$in, (bitconvert (v4i32 immAllOnesV)))>;

// N.B.: vnot_cell_conv is one of those special target selection pattern
// fragments,
// in which we expect there to be a bit_convert on the constant. Bear in mind
// that llvm translates "not <reg>" to "xor <reg>, -1" (or in this case, a
// constant -1 vector.)

class ANDCInst<dag OOL, dag IOL, list<dag> pattern>:
    RRForm<0b10000011010, OOL, IOL, "andc\t$rT, $rA, $rB",
           IntegerOp, pattern>;

class ANDCVecInst<ValueType vectype, PatFrag vnot_frag = vnot>:
    ANDCInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
             [(set (vectype VECREG:$rT),
                   (and (vectype VECREG:$rA),
                        (vnot_frag (vectype VECREG:$rB))))]>;

class ANDCRegInst<RegisterClass rclass>:
    ANDCInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
             [(set rclass:$rT, (and rclass:$rA, (not rclass:$rB)))]>;

multiclass AndComplement
{
  def v16i8: ANDCVecInst<v16i8>;
  def v8i16: ANDCVecInst<v8i16>;
  def v4i32: ANDCVecInst<v4i32>;
  def v2i64: ANDCVecInst<v2i64>;

  def r128: ANDCRegInst<GPRC>;
  def r64:  ANDCRegInst<R64C>;
  def r32:  ANDCRegInst<R32C>;
  def r16:  ANDCRegInst<R16C>;
  def r8:   ANDCRegInst<R8C>;

  // Sometimes, the xor pattern has a bitcast constant:
  def v16i8_conv: ANDCVecInst<v16i8, vnot_cell_conv>;
}

defm ANDC : AndComplement;

class ANDBIInst<dag OOL, dag IOL, list<dag> pattern>:
    RI10Form<0b01101000, OOL, IOL, "andbi\t$rT, $rA, $val",
             ByteOp, pattern>;

multiclass AndByteImm
{
  def v16i8: ANDBIInst<(outs VECREG:$rT), (ins VECREG:$rA, u10imm:$val),
                       [(set (v16i8 VECREG:$rT),
                             (and (v16i8 VECREG:$rA),
                                  (v16i8 v16i8U8Imm:$val)))]>;

  def r8: ANDBIInst<(outs R8C:$rT), (ins R8C:$rA, u10imm_i8:$val),
                    [(set R8C:$rT, (and R8C:$rA, immU8:$val))]>;
}

defm ANDBI : AndByteImm;

class ANDHIInst<dag OOL, dag IOL, list<dag> pattern> :
    RI10Form<0b10101000, OOL, IOL, "andhi\t$rT, $rA, $val",
             ByteOp, pattern>;

multiclass AndHalfwordImm
{
  def v8i16: ANDHIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
                       [(set (v8i16 VECREG:$rT),
                             (and (v8i16 VECREG:$rA), v8i16SExt10Imm:$val))]>;

  def r16: ANDHIInst<(outs R16C:$rT), (ins R16C:$rA, u10imm:$val),
                     [(set R16C:$rT, (and R16C:$rA, i16ImmUns10:$val))]>;

  // Zero-extend i8 to i16:
  def i8i16: ANDHIInst<(outs R16C:$rT), (ins R8C:$rA, u10imm:$val),
                      [(set R16C:$rT, (and (zext R8C:$rA), i16ImmUns10:$val))]>;
}

defm ANDHI : AndHalfwordImm;

class ANDIInst<dag OOL, dag IOL, list<dag> pattern> :
    RI10Form<0b00101000, OOL, IOL, "andi\t$rT, $rA, $val",
             IntegerOp, pattern>;

multiclass AndWordImm
{
  def v4i32: ANDIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
                      [(set (v4i32 VECREG:$rT),
                            (and (v4i32 VECREG:$rA), v4i32SExt10Imm:$val))]>;

  def r32: ANDIInst<(outs R32C:$rT), (ins R32C:$rA, s10imm_i32:$val),
                    [(set R32C:$rT, (and R32C:$rA, i32ImmSExt10:$val))]>;

  // Hacked form of ANDI to zero-extend i8 quantities to i32. See the zext 8->32
  // pattern below.
  def i8i32: ANDIInst<(outs R32C:$rT), (ins R8C:$rA, s10imm_i32:$val),
                      [(set R32C:$rT,
                            (and (zext R8C:$rA), i32ImmSExt10:$val))]>;

  // Hacked form of ANDI to zero-extend i16 quantities to i32. See the
  // zext 16->32 pattern below.
  //
  // Note that this pattern is somewhat artificial, since it might match
  // something the compiler generates but is unlikely to occur in practice.
  def i16i32: ANDIInst<(outs R32C:$rT), (ins R16C:$rA, s10imm_i32:$val),
                       [(set R32C:$rT,
                             (and (zext R16C:$rA), i32ImmSExt10:$val))]>;
}

defm ANDI : AndWordImm;

//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
// Bitwise OR group:
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~

// Bitwise "or" (N.B.: These are also register-register copy instructions...)
class ORInst<dag OOL, dag IOL, list<dag> pattern>:
    RRForm<0b10000010000, OOL, IOL, "or\t$rT, $rA, $rB",
           IntegerOp, pattern>;

class ORVecInst<ValueType vectype>:
    ORInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
           [(set (vectype VECREG:$rT), (or (vectype VECREG:$rA),
                                           (vectype VECREG:$rB)))]>;

class ORRegInst<RegisterClass rclass>:
    ORInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
           [(set rclass:$rT, (or rclass:$rA, rclass:$rB))]>;


multiclass BitwiseOr
{
  def v16i8: ORVecInst<v16i8>;
  def v8i16: ORVecInst<v8i16>;
  def v4i32: ORVecInst<v4i32>;
  def v2i64: ORVecInst<v2i64>;

  def v4f32: ORInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
                    [(set (v4f32 VECREG:$rT),
                          (v4f32 (bitconvert (or (v4i32 VECREG:$rA),
                                                 (v4i32 VECREG:$rB)))))]>;

  def v2f64: ORInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
                    [(set (v2f64 VECREG:$rT),
                          (v2f64 (bitconvert (or (v2i64 VECREG:$rA),
                                                 (v2i64 VECREG:$rB)))))]>;

  def r128: ORRegInst<GPRC>;
  def r64:  ORRegInst<R64C>;
  def r32:  ORRegInst<R32C>;
  def r16:  ORRegInst<R16C>;
  def r8:   ORRegInst<R8C>;

  // OR instructions used to copy f32 and f64 registers.
  def f32: ORInst<(outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB),
                  [/* no pattern */]>;

  def f64: ORInst<(outs R64FP:$rT), (ins R64FP:$rA, R64FP:$rB),
                  [/* no pattern */]>;
}

defm OR : BitwiseOr;

//===----------------------------------------------------------------------===//
// SPU::PREFSLOT2VEC and VEC2PREFSLOT re-interpretations of registers
//===----------------------------------------------------------------------===//
def : Pat<(v16i8 (SPUprefslot2vec R8C:$rA)),
          (COPY_TO_REGCLASS R8C:$rA, VECREG)>;

def : Pat<(v8i16 (SPUprefslot2vec R16C:$rA)),
          (COPY_TO_REGCLASS R16C:$rA, VECREG)>;

def : Pat<(v4i32 (SPUprefslot2vec R32C:$rA)),
          (COPY_TO_REGCLASS R32C:$rA, VECREG)>;

def : Pat<(v2i64 (SPUprefslot2vec R64C:$rA)),
          (COPY_TO_REGCLASS R64C:$rA, VECREG)>;

def : Pat<(v4f32 (SPUprefslot2vec R32FP:$rA)),
          (COPY_TO_REGCLASS R32FP:$rA, VECREG)>;

def : Pat<(v2f64 (SPUprefslot2vec R64FP:$rA)),
          (COPY_TO_REGCLASS R64FP:$rA, VECREG)>;
 
def : Pat<(i8 (SPUvec2prefslot (v16i8 VECREG:$rA))),
          (COPY_TO_REGCLASS (v16i8 VECREG:$rA), R8C)>;

def : Pat<(i16 (SPUvec2prefslot (v8i16 VECREG:$rA))),
          (COPY_TO_REGCLASS (v8i16 VECREG:$rA), R16C)>;

def : Pat<(i32 (SPUvec2prefslot (v4i32 VECREG:$rA))),
          (COPY_TO_REGCLASS (v4i32 VECREG:$rA), R32C)>;

def : Pat<(i64 (SPUvec2prefslot (v2i64 VECREG:$rA))),
          (COPY_TO_REGCLASS (v2i64 VECREG:$rA), R64C)>;

def : Pat<(f32 (SPUvec2prefslot (v4f32 VECREG:$rA))),
          (COPY_TO_REGCLASS (v4f32 VECREG:$rA), R32FP)>;

def : Pat<(f64 (SPUvec2prefslot (v2f64 VECREG:$rA))),
          (COPY_TO_REGCLASS (v2f64 VECREG:$rA), R64FP)>;

// Load Register: This is an assembler alias for a bitwise OR of a register
// against itself. It's here because it brings some clarity to assembly
// language output.

let hasCtrlDep = 1 in {
    class LRInst<dag OOL, dag IOL>
              : SPUInstr<OOL, IOL, "lr\t$rT, $rA", IntegerOp> {
      bits<7> RA;
      bits<7> RT;

      let Pattern = [/*no pattern*/];

      let Inst{0-10} = 0b10000010000;   /* It's an OR operation */
      let Inst{11-17} = RA;
      let Inst{18-24} = RA;
      let Inst{25-31} = RT;
    }

    class LRVecInst<ValueType vectype>:
        LRInst<(outs VECREG:$rT), (ins VECREG:$rA)>;

    class LRRegInst<RegisterClass rclass>:
        LRInst<(outs rclass:$rT), (ins rclass:$rA)>;

    multiclass LoadRegister {
      def v2i64: LRVecInst<v2i64>;
      def v2f64: LRVecInst<v2f64>;
      def v4i32: LRVecInst<v4i32>;
      def v4f32: LRVecInst<v4f32>;
      def v8i16: LRVecInst<v8i16>;
      def v16i8: LRVecInst<v16i8>;

      def r128:  LRRegInst<GPRC>;
      def r64:   LRRegInst<R64C>;
      def f64:   LRRegInst<R64FP>;
      def r32:   LRRegInst<R32C>;
      def f32:   LRRegInst<R32FP>;
      def r16:   LRRegInst<R16C>;
      def r8:    LRRegInst<R8C>;
    }

    defm LR: LoadRegister;
}

// ORC: Bitwise "or" with complement (c = a | ~b)

class ORCInst<dag OOL, dag IOL, list<dag> pattern>:
    RRForm<0b10010010000, OOL, IOL, "orc\t$rT, $rA, $rB",
           IntegerOp, pattern>;

class ORCVecInst<ValueType vectype>:
    ORCInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
            [(set (vectype VECREG:$rT), (or (vectype VECREG:$rA),
                                            (vnot (vectype VECREG:$rB))))]>;

class ORCRegInst<RegisterClass rclass>:
  ORCInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
          [(set rclass:$rT, (or rclass:$rA, (not rclass:$rB)))]>;

multiclass BitwiseOrComplement
{
  def v16i8: ORCVecInst<v16i8>;
  def v8i16: ORCVecInst<v8i16>;
  def v4i32: ORCVecInst<v4i32>;
  def v2i64: ORCVecInst<v2i64>;

  def r128:  ORCRegInst<GPRC>;
  def r64:   ORCRegInst<R64C>;
  def r32:   ORCRegInst<R32C>;
  def r16:   ORCRegInst<R16C>;
  def r8:    ORCRegInst<R8C>;
}

defm ORC : BitwiseOrComplement;

// OR byte immediate
class ORBIInst<dag OOL, dag IOL, list<dag> pattern>:
    RI10Form<0b01100000, OOL, IOL, "orbi\t$rT, $rA, $val",
             IntegerOp, pattern>;

class ORBIVecInst<ValueType vectype, PatLeaf immpred>:
    ORBIInst<(outs VECREG:$rT), (ins VECREG:$rA, u10imm:$val),
             [(set (v16i8 VECREG:$rT), (or (vectype VECREG:$rA),
                                           (vectype immpred:$val)))]>;

multiclass BitwiseOrByteImm
{
  def v16i8: ORBIVecInst<v16i8, v16i8U8Imm>;

  def r8: ORBIInst<(outs R8C:$rT), (ins R8C:$rA, u10imm_i8:$val),
                   [(set R8C:$rT, (or R8C:$rA, immU8:$val))]>;
}

defm ORBI : BitwiseOrByteImm;

// OR halfword immediate
class ORHIInst<dag OOL, dag IOL, list<dag> pattern>:
    RI10Form<0b10100000, OOL, IOL, "orhi\t$rT, $rA, $val",
             IntegerOp, pattern>;

class ORHIVecInst<ValueType vectype, PatLeaf immpred>:
    ORHIInst<(outs VECREG:$rT), (ins VECREG:$rA, u10imm:$val),
              [(set (vectype VECREG:$rT), (or (vectype VECREG:$rA),
                                              immpred:$val))]>;

multiclass BitwiseOrHalfwordImm
{
  def v8i16: ORHIVecInst<v8i16, v8i16Uns10Imm>;

  def r16: ORHIInst<(outs R16C:$rT), (ins R16C:$rA, u10imm:$val),
                    [(set R16C:$rT, (or R16C:$rA, i16ImmUns10:$val))]>;

  // Specialized ORHI form used to promote 8-bit registers to 16-bit
  def i8i16: ORHIInst<(outs R16C:$rT), (ins R8C:$rA, s10imm:$val),
                      [(set R16C:$rT, (or (anyext R8C:$rA),
                                          i16ImmSExt10:$val))]>;
}

defm ORHI : BitwiseOrHalfwordImm;

class ORIInst<dag OOL, dag IOL, list<dag> pattern>:
    RI10Form<0b00100000, OOL, IOL, "ori\t$rT, $rA, $val",
             IntegerOp, pattern>;

class ORIVecInst<ValueType vectype, PatLeaf immpred>:
    ORIInst<(outs VECREG:$rT), (ins VECREG:$rA, u10imm:$val),
            [(set (vectype VECREG:$rT), (or (vectype VECREG:$rA),
                                            immpred:$val))]>;

// Bitwise "or" with immediate
multiclass BitwiseOrImm
{
  def v4i32: ORIVecInst<v4i32, v4i32Uns10Imm>;

  def r32: ORIInst<(outs R32C:$rT), (ins R32C:$rA, s10imm_i32:$val),
                   [(set R32C:$rT, (or R32C:$rA, i32ImmSExt10:$val))]>;

  // i16i32: hacked version of the ori instruction to extend 16-bit quantities
  // to 32-bit quantities. used exclusively to match "anyext" conversions (vide
  // infra "anyext 16->32" pattern.)
  def i16i32: ORIInst<(outs R32C:$rT), (ins R16C:$rA, s10imm_i32:$val),
                      [(set R32C:$rT, (or (anyext R16C:$rA),
                                          i32ImmSExt10:$val))]>;

  // i8i32: Hacked version of the ORI instruction to extend 16-bit quantities
  // to 32-bit quantities. Used exclusively to match "anyext" conversions (vide
  // infra "anyext 16->32" pattern.)
  def i8i32: ORIInst<(outs R32C:$rT), (ins R8C:$rA, s10imm_i32:$val),
                     [(set R32C:$rT, (or (anyext R8C:$rA),
                                         i32ImmSExt10:$val))]>;
}

defm ORI : BitwiseOrImm;

// ORX: "or" across the vector: or's $rA's word slots leaving the result in
// $rT[0], slots 1-3 are zeroed.
//
// FIXME: Needs to match an intrinsic pattern.
def ORXv4i32:
    RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
      "orx\t$rT, $rA, $rB", IntegerOp,
      []>;

// XOR:

class XORInst<dag OOL, dag IOL, list<dag> pattern> :
    RRForm<0b10010010000, OOL, IOL, "xor\t$rT, $rA, $rB",
           IntegerOp, pattern>;

class XORVecInst<ValueType vectype>:
    XORInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
             [(set (vectype VECREG:$rT), (xor (vectype VECREG:$rA),
                                              (vectype VECREG:$rB)))]>;

class XORRegInst<RegisterClass rclass>:
    XORInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
             [(set rclass:$rT, (xor rclass:$rA, rclass:$rB))]>;

multiclass BitwiseExclusiveOr
{
  def v16i8: XORVecInst<v16i8>;
  def v8i16: XORVecInst<v8i16>;
  def v4i32: XORVecInst<v4i32>;
  def v2i64: XORVecInst<v2i64>;

  def r128:  XORRegInst<GPRC>;
  def r64:   XORRegInst<R64C>;
  def r32:   XORRegInst<R32C>;
  def r16:   XORRegInst<R16C>;
  def r8:    XORRegInst<R8C>;

  // XOR instructions used to negate f32 and f64 quantities.

  def fneg32: XORInst<(outs R32FP:$rT), (ins R32FP:$rA, R32C:$rB),
                     [/* no pattern */]>;

  def fneg64: XORInst<(outs R64FP:$rT), (ins R64FP:$rA, R64C:$rB),
                     [/* no pattern */]>;

  def fnegvec: XORInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
                      [/* no pattern, see fneg{32,64} */]>;
}

defm XOR : BitwiseExclusiveOr;

//==----------------------------------------------------------

class XORBIInst<dag OOL, dag IOL, list<dag> pattern>:
    RI10Form<0b01100000, OOL, IOL, "xorbi\t$rT, $rA, $val",
             IntegerOp, pattern>;

multiclass XorByteImm
{
  def v16i8:
    XORBIInst<(outs VECREG:$rT), (ins VECREG:$rA, u10imm:$val),
              [(set (v16i8 VECREG:$rT), (xor (v16i8 VECREG:$rA), v16i8U8Imm:$val))]>;

  def r8:
    XORBIInst<(outs R8C:$rT), (ins R8C:$rA, u10imm_i8:$val),
              [(set R8C:$rT, (xor R8C:$rA, immU8:$val))]>;
}

defm XORBI : XorByteImm;

def XORHIv8i16:
    RI10Form<0b10100000, (outs VECREG:$rT), (ins VECREG:$rA, u10imm:$val),
      "xorhi\t$rT, $rA, $val", IntegerOp,
      [(set (v8i16 VECREG:$rT), (xor (v8i16 VECREG:$rA),
                                      v8i16SExt10Imm:$val))]>;

def XORHIr16:
    RI10Form<0b10100000, (outs R16C:$rT), (ins R16C:$rA, s10imm:$val),
      "xorhi\t$rT, $rA, $val", IntegerOp,
      [(set R16C:$rT, (xor R16C:$rA, i16ImmSExt10:$val))]>;

def XORIv4i32:
    RI10Form<0b00100000, (outs VECREG:$rT), (ins VECREG:$rA, s10imm_i32:$val),
      "xori\t$rT, $rA, $val", IntegerOp,
      [(set (v4i32 VECREG:$rT), (xor (v4i32 VECREG:$rA),
                                     v4i32SExt10Imm:$val))]>;

def XORIr32:
    RI10Form<0b00100000, (outs R32C:$rT), (ins R32C:$rA, s10imm_i32:$val),
      "xori\t$rT, $rA, $val", IntegerOp,
      [(set R32C:$rT, (xor R32C:$rA, i32ImmSExt10:$val))]>;

// NAND:

class NANDInst<dag OOL, dag IOL, list<dag> pattern>:
    RRForm<0b10010011000, OOL, IOL, "nand\t$rT, $rA, $rB",
           IntegerOp, pattern>;

class NANDVecInst<ValueType vectype>:
    NANDInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
             [(set (vectype VECREG:$rT), (vnot (and (vectype VECREG:$rA),
                                                    (vectype VECREG:$rB))))]>;
class NANDRegInst<RegisterClass rclass>:
    NANDInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
             [(set rclass:$rT, (not (and rclass:$rA, rclass:$rB)))]>;

multiclass BitwiseNand
{
  def v16i8: NANDVecInst<v16i8>;
  def v8i16: NANDVecInst<v8i16>;
  def v4i32: NANDVecInst<v4i32>;
  def v2i64: NANDVecInst<v2i64>;

  def r128:  NANDRegInst<GPRC>;
  def r64:   NANDRegInst<R64C>;
  def r32:   NANDRegInst<R32C>;
  def r16:   NANDRegInst<R16C>;
  def r8:    NANDRegInst<R8C>;
}

defm NAND : BitwiseNand;

// NOR:

class NORInst<dag OOL, dag IOL, list<dag> pattern>:
    RRForm<0b10010010000, OOL, IOL, "nor\t$rT, $rA, $rB",
           IntegerOp, pattern>;

class NORVecInst<ValueType vectype>:
    NORInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
            [(set (vectype VECREG:$rT), (vnot (or (vectype VECREG:$rA),
                                                  (vectype VECREG:$rB))))]>;
class NORRegInst<RegisterClass rclass>:
    NORInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
            [(set rclass:$rT, (not (or rclass:$rA, rclass:$rB)))]>;

multiclass BitwiseNor
{
  def v16i8: NORVecInst<v16i8>;
  def v8i16: NORVecInst<v8i16>;
  def v4i32: NORVecInst<v4i32>;
  def v2i64: NORVecInst<v2i64>;

  def r128:  NORRegInst<GPRC>;
  def r64:   NORRegInst<R64C>;
  def r32:   NORRegInst<R32C>;
  def r16:   NORRegInst<R16C>;
  def r8:    NORRegInst<R8C>;
}

defm NOR : BitwiseNor;

// Select bits:
class SELBInst<dag OOL, dag IOL, list<dag> pattern>:
    RRRForm<0b1000, OOL, IOL, "selb\t$rT, $rA, $rB, $rC",
            IntegerOp, pattern>;

class SELBVecInst<ValueType vectype, PatFrag vnot_frag = vnot>:
  SELBInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
           [(set (vectype VECREG:$rT),
                 (or (and (vectype VECREG:$rC), (vectype VECREG:$rB)),
                     (and (vnot_frag (vectype VECREG:$rC)),
                          (vectype VECREG:$rA))))]>;

class SELBVecVCondInst<ValueType vectype>:
  SELBInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
           [(set (vectype VECREG:$rT),
                 (select (vectype VECREG:$rC),
                         (vectype VECREG:$rB),
                         (vectype VECREG:$rA)))]>;

class SELBVecCondInst<ValueType vectype>:
  SELBInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, R32C:$rC),
           [(set (vectype VECREG:$rT),
                 (select R32C:$rC,
                         (vectype VECREG:$rB),
                         (vectype VECREG:$rA)))]>;

class SELBRegInst<RegisterClass rclass>:
  SELBInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB, rclass:$rC),
           [(set rclass:$rT,
                 (or (and rclass:$rB, rclass:$rC),
                     (and rclass:$rA, (not rclass:$rC))))]>;

class SELBRegCondInst<RegisterClass rcond, RegisterClass rclass>:
  SELBInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB, rcond:$rC),
           [(set rclass:$rT,
                 (select rcond:$rC, rclass:$rB, rclass:$rA))]>;

multiclass SelectBits
{
  def v16i8: SELBVecInst<v16i8>;
  def v8i16: SELBVecInst<v8i16>;
  def v4i32: SELBVecInst<v4i32>;
  def v2i64: SELBVecInst<v2i64, vnot_cell_conv>;

  def r128:  SELBRegInst<GPRC>;
  def r64:   SELBRegInst<R64C>;
  def r32:   SELBRegInst<R32C>;
  def r16:   SELBRegInst<R16C>;
  def r8:    SELBRegInst<R8C>;

  def v16i8_cond: SELBVecCondInst<v16i8>;
  def v8i16_cond: SELBVecCondInst<v8i16>;
  def v4i32_cond: SELBVecCondInst<v4i32>;
  def v2i64_cond: SELBVecCondInst<v2i64>;

  def v16i8_vcond: SELBVecCondInst<v16i8>;
  def v8i16_vcond: SELBVecCondInst<v8i16>;
  def v4i32_vcond: SELBVecCondInst<v4i32>;
  def v2i64_vcond: SELBVecCondInst<v2i64>;

  def v4f32_cond:
        SELBInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
                 [(set (v4f32 VECREG:$rT),
                       (select (v4i32 VECREG:$rC),
                               (v4f32 VECREG:$rB),
                               (v4f32 VECREG:$rA)))]>;

  // SELBr64_cond is defined in SPU64InstrInfo.td
  def r32_cond:   SELBRegCondInst<R32C, R32C>;
  def f32_cond:   SELBRegCondInst<R32C, R32FP>;
  def r16_cond:   SELBRegCondInst<R16C, R16C>;
  def r8_cond:    SELBRegCondInst<R8C,  R8C>;
}

defm SELB : SelectBits;

class SPUselbPatVec<ValueType vectype, SPUInstr inst>:
   Pat<(SPUselb (vectype VECREG:$rA), (vectype VECREG:$rB), (vectype VECREG:$rC)),
       (inst VECREG:$rA, VECREG:$rB, VECREG:$rC)>;

def : SPUselbPatVec<v16i8, SELBv16i8>;
def : SPUselbPatVec<v8i16, SELBv8i16>;
def : SPUselbPatVec<v4i32, SELBv4i32>;
def : SPUselbPatVec<v2i64, SELBv2i64>;

class SPUselbPatReg<RegisterClass rclass, SPUInstr inst>:
   Pat<(SPUselb rclass:$rA, rclass:$rB, rclass:$rC),
       (inst rclass:$rA, rclass:$rB, rclass:$rC)>;

def : SPUselbPatReg<R8C,   SELBr8>;
def : SPUselbPatReg<R16C,  SELBr16>;
def : SPUselbPatReg<R32C,  SELBr32>;
def : SPUselbPatReg<R64C,  SELBr64>;

// EQV: Equivalence (1 for each same bit, otherwise 0)
//
// Note: There are a lot of ways to match this bit operator and these patterns
// attempt to be as exhaustive as possible.

class EQVInst<dag OOL, dag IOL, list<dag> pattern>:
    RRForm<0b10010010000, OOL, IOL, "eqv\t$rT, $rA, $rB",
           IntegerOp, pattern>;

class EQVVecInst<ValueType vectype>:
    EQVInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
            [(set (vectype VECREG:$rT),
                  (or (and (vectype VECREG:$rA), (vectype VECREG:$rB)),
                      (and (vnot (vectype VECREG:$rA)),
                           (vnot (vectype VECREG:$rB)))))]>;

class EQVRegInst<RegisterClass rclass>:
    EQVInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
            [(set rclass:$rT, (or (and rclass:$rA, rclass:$rB),
                                  (and (not rclass:$rA), (not rclass:$rB))))]>;

class EQVVecPattern1<ValueType vectype>:
  EQVInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
          [(set (vectype VECREG:$rT),
                (xor (vectype VECREG:$rA), (vnot (vectype VECREG:$rB))))]>;

class EQVRegPattern1<RegisterClass rclass>:
  EQVInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
          [(set rclass:$rT, (xor rclass:$rA, (not rclass:$rB)))]>;

class EQVVecPattern2<ValueType vectype>:
  EQVInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
          [(set (vectype VECREG:$rT),
                (or (and (vectype VECREG:$rA), (vectype VECREG:$rB)),
                    (vnot (or (vectype VECREG:$rA), (vectype VECREG:$rB)))))]>;

class EQVRegPattern2<RegisterClass rclass>:
  EQVInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
          [(set rclass:$rT,
                (or (and rclass:$rA, rclass:$rB),
                    (not (or rclass:$rA, rclass:$rB))))]>;

class EQVVecPattern3<ValueType vectype>:
  EQVInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
          [(set (vectype VECREG:$rT),
                (not (xor (vectype VECREG:$rA), (vectype VECREG:$rB))))]>;

class EQVRegPattern3<RegisterClass rclass>:
  EQVInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
          [(set rclass:$rT, (not (xor rclass:$rA, rclass:$rB)))]>;

multiclass BitEquivalence
{
  def v16i8: EQVVecInst<v16i8>;
  def v8i16: EQVVecInst<v8i16>;
  def v4i32: EQVVecInst<v4i32>;
  def v2i64: EQVVecInst<v2i64>;

  def v16i8_1: EQVVecPattern1<v16i8>;
  def v8i16_1: EQVVecPattern1<v8i16>;
  def v4i32_1: EQVVecPattern1<v4i32>;
  def v2i64_1: EQVVecPattern1<v2i64>;

  def v16i8_2: EQVVecPattern2<v16i8>;
  def v8i16_2: EQVVecPattern2<v8i16>;
  def v4i32_2: EQVVecPattern2<v4i32>;
  def v2i64_2: EQVVecPattern2<v2i64>;

  def v16i8_3: EQVVecPattern3<v16i8>;
  def v8i16_3: EQVVecPattern3<v8i16>;
  def v4i32_3: EQVVecPattern3<v4i32>;
  def v2i64_3: EQVVecPattern3<v2i64>;

  def r128:  EQVRegInst<GPRC>;
  def r64:   EQVRegInst<R64C>;
  def r32:   EQVRegInst<R32C>;
  def r16:   EQVRegInst<R16C>;
  def r8:    EQVRegInst<R8C>;

  def r128_1: EQVRegPattern1<GPRC>;
  def r64_1:  EQVRegPattern1<R64C>;
  def r32_1:  EQVRegPattern1<R32C>;
  def r16_1:  EQVRegPattern1<R16C>;
  def r8_1:   EQVRegPattern1<R8C>;

  def r128_2: EQVRegPattern2<GPRC>;
  def r64_2:  EQVRegPattern2<R64C>;
  def r32_2:  EQVRegPattern2<R32C>;
  def r16_2:  EQVRegPattern2<R16C>;
  def r8_2:   EQVRegPattern2<R8C>;

  def r128_3: EQVRegPattern3<GPRC>;
  def r64_3:  EQVRegPattern3<R64C>;
  def r32_3:  EQVRegPattern3<R32C>;
  def r16_3:  EQVRegPattern3<R16C>;
  def r8_3:   EQVRegPattern3<R8C>;
}

defm EQV: BitEquivalence;

//===----------------------------------------------------------------------===//
// Vector shuffle...
//===----------------------------------------------------------------------===//
// SPUshuffle is generated in LowerVECTOR_SHUFFLE and gets replaced with SHUFB.
// See the SPUshuffle SDNode operand above, which sets up the DAG pattern
// matcher to emit something when the LowerVECTOR_SHUFFLE generates a node with
// the SPUISD::SHUFB opcode.
//===----------------------------------------------------------------------===//

class SHUFBInst<dag OOL, dag IOL, list<dag> pattern>:
    RRRForm<0b1000, OOL, IOL, "shufb\t$rT, $rA, $rB, $rC",
            ShuffleOp, pattern>;

class SHUFBVecInst<ValueType resultvec, ValueType maskvec>:
    SHUFBInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
              [(set (resultvec VECREG:$rT),
                    (SPUshuffle (resultvec VECREG:$rA),
                                (resultvec VECREG:$rB),
                                (maskvec VECREG:$rC)))]>;

class SHUFBGPRCInst:
    SHUFBInst<(outs VECREG:$rT), (ins GPRC:$rA, GPRC:$rB, VECREG:$rC),
              [/* no pattern */]>;

multiclass ShuffleBytes
{
  def v16i8     : SHUFBVecInst<v16i8, v16i8>;
  def v16i8_m32 : SHUFBVecInst<v16i8, v4i32>;
  def v8i16     : SHUFBVecInst<v8i16, v16i8>;
  def v8i16_m32 : SHUFBVecInst<v8i16, v4i32>;
  def v4i32     : SHUFBVecInst<v4i32, v16i8>;
  def v4i32_m32 : SHUFBVecInst<v4i32, v4i32>;
  def v2i64     : SHUFBVecInst<v2i64, v16i8>;
  def v2i64_m32 : SHUFBVecInst<v2i64, v4i32>;

  def v4f32     : SHUFBVecInst<v4f32, v16i8>;
  def v4f32_m32 : SHUFBVecInst<v4f32, v4i32>;

  def v2f64     : SHUFBVecInst<v2f64, v16i8>;
  def v2f64_m32 : SHUFBVecInst<v2f64, v4i32>;

  def gprc      : SHUFBGPRCInst;
}

defm SHUFB : ShuffleBytes;

//===----------------------------------------------------------------------===//
// Shift and rotate group:
//===----------------------------------------------------------------------===//

class SHLHInst<dag OOL, dag IOL, list<dag> pattern>:
    RRForm<0b11111010000, OOL, IOL, "shlh\t$rT, $rA, $rB",
           RotShiftVec, pattern>;

class SHLHVecInst<ValueType vectype>:
    SHLHInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
             [(set (vectype VECREG:$rT),
                   (SPUvec_shl (vectype VECREG:$rA), (vectype VECREG:$rB)))]>;

multiclass ShiftLeftHalfword
{
  def v8i16: SHLHVecInst<v8i16>;
  def r16:   SHLHInst<(outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
                      [(set R16C:$rT, (shl R16C:$rA, R16C:$rB))]>;
  def r16_r32: SHLHInst<(outs R16C:$rT), (ins R16C:$rA, R32C:$rB),
                        [(set R16C:$rT, (shl R16C:$rA, R32C:$rB))]>;
}

defm SHLH : ShiftLeftHalfword;

//===----------------------------------------------------------------------===//

class SHLHIInst<dag OOL, dag IOL, list<dag> pattern>:
    RI7Form<0b11111010000, OOL, IOL, "shlhi\t$rT, $rA, $val",
            RotShiftVec, pattern>;

class SHLHIVecInst<ValueType vectype>:
    SHLHIInst<(outs VECREG:$rT), (ins VECREG:$rA, u7imm:$val),
              [(set (vectype VECREG:$rT),
                    (SPUvec_shl (vectype VECREG:$rA), (i16 uimm7:$val)))]>;

multiclass ShiftLeftHalfwordImm
{
  def v8i16: SHLHIVecInst<v8i16>;
  def r16: SHLHIInst<(outs R16C:$rT), (ins R16C:$rA, u7imm:$val),
                     [(set R16C:$rT, (shl R16C:$rA, (i16 uimm7:$val)))]>;
}

defm SHLHI : ShiftLeftHalfwordImm;

def : Pat<(SPUvec_shl (v8i16 VECREG:$rA), (i32 uimm7:$val)),
          (SHLHIv8i16 VECREG:$rA, (TO_IMM16 uimm7:$val))>;

def : Pat<(shl R16C:$rA, (i32 uimm7:$val)),
          (SHLHIr16 R16C:$rA, (TO_IMM16 uimm7:$val))>;

//===----------------------------------------------------------------------===//

class SHLInst<dag OOL, dag IOL, list<dag> pattern>:
    RRForm<0b11111010000, OOL, IOL, "shl\t$rT, $rA, $rB",
           RotShiftVec, pattern>;

multiclass ShiftLeftWord
{
  def v4i32:
      SHLInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
              [(set (v4i32 VECREG:$rT),
                    (SPUvec_shl (v4i32 VECREG:$rA), (v4i32 VECREG:$rB)))]>;
  def r32:
      SHLInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
              [(set R32C:$rT, (shl R32C:$rA, R32C:$rB))]>;
}

defm SHL: ShiftLeftWord;

//===----------------------------------------------------------------------===//

class SHLIInst<dag OOL, dag IOL, list<dag> pattern>:
    RI7Form<0b11111010000, OOL, IOL, "shli\t$rT, $rA, $val",
            RotShiftVec, pattern>;

multiclass ShiftLeftWordImm
{
  def v4i32:
    SHLIInst<(outs VECREG:$rT), (ins VECREG:$rA, u7imm_i32:$val),
             [(set (v4i32 VECREG:$rT),
                   (SPUvec_shl (v4i32 VECREG:$rA), (i32 uimm7:$val)))]>;

  def r32:
    SHLIInst<(outs R32C:$rT), (ins R32C:$rA, u7imm_i32:$val),
             [(set R32C:$rT, (shl R32C:$rA, (i32 uimm7:$val)))]>;
}

defm SHLI : ShiftLeftWordImm;

//===----------------------------------------------------------------------===//
// SHLQBI vec form: Note that this will shift the entire vector (the 128-bit
// register) to the left. Vector form is here to ensure type correctness.
//
// The shift count is in the lowest 3 bits (29-31) of $rB, so only a bit shift
// of 7 bits is actually possible.
//
// Note also that SHLQBI/SHLQBII are used in conjunction with SHLQBY/SHLQBYI
// to shift i64 and i128. SHLQBI is the residual left over after shifting by
// bytes with SHLQBY.

class SHLQBIInst<dag OOL, dag IOL, list<dag> pattern>:
    RRForm<0b11011011100, OOL, IOL, "shlqbi\t$rT, $rA, $rB",
           RotShiftQuad, pattern>;

class SHLQBIVecInst<ValueType vectype>:
    SHLQBIInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
               [(set (vectype VECREG:$rT),
                     (SPUshlquad_l_bits (vectype VECREG:$rA), R32C:$rB))]>;

class SHLQBIRegInst<RegisterClass rclass>:
    SHLQBIInst<(outs rclass:$rT), (ins rclass:$rA, R32C:$rB),
               [/* no pattern */]>;

multiclass ShiftLeftQuadByBits
{
  def v16i8: SHLQBIVecInst<v16i8>;
  def v8i16: SHLQBIVecInst<v8i16>;
  def v4i32: SHLQBIVecInst<v4i32>;
  def v4f32: SHLQBIVecInst<v4f32>;
  def v2i64: SHLQBIVecInst<v2i64>;
  def v2f64: SHLQBIVecInst<v2f64>;

  def r128:  SHLQBIRegInst<GPRC>;
}

defm SHLQBI : ShiftLeftQuadByBits;

// See note above on SHLQBI. In this case, the predicate actually does then
// enforcement, whereas with SHLQBI, we have to "take it on faith."
class SHLQBIIInst<dag OOL, dag IOL, list<dag> pattern>:
    RI7Form<0b11011111100, OOL, IOL, "shlqbii\t$rT, $rA, $val",
            RotShiftQuad, pattern>;

class SHLQBIIVecInst<ValueType vectype>:
    SHLQBIIInst<(outs VECREG:$rT), (ins VECREG:$rA, u7imm_i32:$val),
                [(set (vectype VECREG:$rT),
                      (SPUshlquad_l_bits (vectype VECREG:$rA), (i32 bitshift:$val)))]>;

multiclass ShiftLeftQuadByBitsImm
{
  def v16i8 : SHLQBIIVecInst<v16i8>;
  def v8i16 : SHLQBIIVecInst<v8i16>;
  def v4i32 : SHLQBIIVecInst<v4i32>;
  def v4f32 : SHLQBIIVecInst<v4f32>;
  def v2i64 : SHLQBIIVecInst<v2i64>;
  def v2f64 : SHLQBIIVecInst<v2f64>;
}

defm SHLQBII : ShiftLeftQuadByBitsImm;

// SHLQBY, SHLQBYI vector forms: Shift the entire vector to the left by bytes,
// not by bits. See notes above on SHLQBI.

class SHLQBYInst<dag OOL, dag IOL, list<dag> pattern>:
    RI7Form<0b11111011100, OOL, IOL, "shlqby\t$rT, $rA, $rB",
            RotShiftQuad, pattern>;

class SHLQBYVecInst<ValueType vectype>:
    SHLQBYInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
               [(set (vectype VECREG:$rT),
                     (SPUshlquad_l_bytes (vectype VECREG:$rA), R32C:$rB))]>;

multiclass ShiftLeftQuadBytes
{
  def v16i8: SHLQBYVecInst<v16i8>;
  def v8i16: SHLQBYVecInst<v8i16>;
  def v4i32: SHLQBYVecInst<v4i32>;
  def v4f32: SHLQBYVecInst<v4f32>;
  def v2i64: SHLQBYVecInst<v2i64>;
  def v2f64: SHLQBYVecInst<v2f64>;
  def r128: SHLQBYInst<(outs GPRC:$rT), (ins GPRC:$rA, R32C:$rB),
                       [(set GPRC:$rT, (SPUshlquad_l_bytes GPRC:$rA, R32C:$rB))]>;
}

defm SHLQBY: ShiftLeftQuadBytes;

class SHLQBYIInst<dag OOL, dag IOL, list<dag> pattern>:
    RI7Form<0b11111111100, OOL, IOL, "shlqbyi\t$rT, $rA, $val",
            RotShiftQuad, pattern>;

class SHLQBYIVecInst<ValueType vectype>:
    SHLQBYIInst<(outs VECREG:$rT), (ins VECREG:$rA, u7imm_i32:$val),
                [(set (vectype VECREG:$rT),
                      (SPUshlquad_l_bytes (vectype VECREG:$rA), (i32 uimm7:$val)))]>;

multiclass ShiftLeftQuadBytesImm
{
  def v16i8: SHLQBYIVecInst<v16i8>;
  def v8i16: SHLQBYIVecInst<v8i16>;
  def v4i32: SHLQBYIVecInst<v4i32>;
  def v4f32: SHLQBYIVecInst<v4f32>;
  def v2i64: SHLQBYIVecInst<v2i64>;
  def v2f64: SHLQBYIVecInst<v2f64>;
  def r128:  SHLQBYIInst<(outs GPRC:$rT), (ins GPRC:$rA, u7imm_i32:$val),
                         [(set GPRC:$rT,
                               (SPUshlquad_l_bytes GPRC:$rA, (i32 uimm7:$val)))]>;
}

defm SHLQBYI : ShiftLeftQuadBytesImm;

class SHLQBYBIInst<dag OOL, dag IOL, list<dag> pattern>:
    RRForm<0b00111001111, OOL, IOL, "shlqbybi\t$rT, $rA, $rB",
           RotShiftQuad, pattern>;

class SHLQBYBIVecInst<ValueType vectype>:
    SHLQBYBIInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
                [/* no pattern */]>;

class SHLQBYBIRegInst<RegisterClass rclass>:
    SHLQBYBIInst<(outs rclass:$rT), (ins rclass:$rA, R32C:$rB),
                 [/* no pattern */]>;

multiclass ShiftLeftQuadBytesBitCount
{
  def v16i8: SHLQBYBIVecInst<v16i8>;
  def v8i16: SHLQBYBIVecInst<v8i16>;
  def v4i32: SHLQBYBIVecInst<v4i32>;
  def v4f32: SHLQBYBIVecInst<v4f32>;
  def v2i64: SHLQBYBIVecInst<v2i64>;
  def v2f64: SHLQBYBIVecInst<v2f64>;

  def r128:  SHLQBYBIRegInst<GPRC>;
}

defm SHLQBYBI : ShiftLeftQuadBytesBitCount;

//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
// Rotate halfword:
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
class ROTHInst<dag OOL, dag IOL, list<dag> pattern>:
    RRForm<0b00111010000, OOL, IOL, "roth\t$rT, $rA, $rB",
           RotShiftVec, pattern>;

class ROTHVecInst<ValueType vectype>:
    ROTHInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
             [(set (vectype VECREG:$rT),
                   (SPUvec_rotl VECREG:$rA, (v8i16 VECREG:$rB)))]>;

class ROTHRegInst<RegisterClass rclass>:
    ROTHInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
             [(set rclass:$rT, (rotl rclass:$rA, rclass:$rB))]>;

multiclass RotateLeftHalfword
{
  def v8i16: ROTHVecInst<v8i16>;
  def r16: ROTHRegInst<R16C>;
}

defm ROTH: RotateLeftHalfword;

def ROTHr16_r32: ROTHInst<(outs R16C:$rT), (ins R16C:$rA, R32C:$rB),
                          [(set R16C:$rT, (rotl R16C:$rA, R32C:$rB))]>;

//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
// Rotate halfword, immediate:
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
class ROTHIInst<dag OOL, dag IOL, list<dag> pattern>:
    RI7Form<0b00111110000, OOL, IOL, "rothi\t$rT, $rA, $val",
            RotShiftVec, pattern>;

class ROTHIVecInst<ValueType vectype>:
    ROTHIInst<(outs VECREG:$rT), (ins VECREG:$rA, u7imm:$val),
              [(set (vectype VECREG:$rT),
                    (SPUvec_rotl VECREG:$rA, (i16 uimm7:$val)))]>;

multiclass RotateLeftHalfwordImm
{
  def v8i16: ROTHIVecInst<v8i16>;
  def r16: ROTHIInst<(outs R16C:$rT), (ins R16C:$rA, u7imm:$val),
                     [(set R16C:$rT, (rotl R16C:$rA, (i16 uimm7:$val)))]>;
  def r16_r32: ROTHIInst<(outs R16C:$rT), (ins R16C:$rA, u7imm_i32:$val),
                         [(set R16C:$rT, (rotl R16C:$rA, (i32 uimm7:$val)))]>;
}

defm ROTHI: RotateLeftHalfwordImm;

def : Pat<(SPUvec_rotl (v8i16 VECREG:$rA), (i32 uimm7:$val)),
          (ROTHIv8i16 VECREG:$rA, (TO_IMM16 imm:$val))>;

//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
// Rotate word:
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~

class ROTInst<dag OOL, dag IOL, list<dag> pattern>:
    RRForm<0b00011010000, OOL, IOL, "rot\t$rT, $rA, $rB",
           RotShiftVec, pattern>;

class ROTVecInst<ValueType vectype>:
    ROTInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
            [(set (vectype VECREG:$rT),
                  (SPUvec_rotl (vectype VECREG:$rA), R32C:$rB))]>;

class ROTRegInst<RegisterClass rclass>:
    ROTInst<(outs rclass:$rT), (ins rclass:$rA, R32C:$rB),
            [(set rclass:$rT,
                  (rotl rclass:$rA, R32C:$rB))]>;

multiclass RotateLeftWord
{
  def v4i32: ROTVecInst<v4i32>;
  def r32:   ROTRegInst<R32C>;
}

defm ROT: RotateLeftWord;

// The rotate amount is in the same bits whether we've got an 8-bit, 16-bit or
// 32-bit register
def ROTr32_r16_anyext:
    ROTInst<(outs R32C:$rT), (ins R32C:$rA, R16C:$rB),
            [(set R32C:$rT, (rotl R32C:$rA, (i32 (anyext R16C:$rB))))]>;

def : Pat<(rotl R32C:$rA, (i32 (zext R16C:$rB))),
          (ROTr32_r16_anyext R32C:$rA, R16C:$rB)>;

def : Pat<(rotl R32C:$rA, (i32 (sext R16C:$rB))),
          (ROTr32_r16_anyext R32C:$rA, R16C:$rB)>;

def ROTr32_r8_anyext:
    ROTInst<(outs R32C:$rT), (ins R32C:$rA, R8C:$rB),
            [(set R32C:$rT, (rotl R32C:$rA, (i32 (anyext R8C:$rB))))]>;

def : Pat<(rotl R32C:$rA, (i32 (zext R8C:$rB))),
          (ROTr32_r8_anyext R32C:$rA, R8C:$rB)>;

def : Pat<(rotl R32C:$rA, (i32 (sext R8C:$rB))),
          (ROTr32_r8_anyext R32C:$rA, R8C:$rB)>;

//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
// Rotate word, immediate
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~

class ROTIInst<dag OOL, dag IOL, list<dag> pattern>:
    RI7Form<0b00011110000, OOL, IOL, "roti\t$rT, $rA, $val",
            RotShiftVec, pattern>;

class ROTIVecInst<ValueType vectype, Operand optype, ValueType inttype, PatLeaf pred>:
    ROTIInst<(outs VECREG:$rT), (ins VECREG:$rA, optype:$val),
             [(set (vectype VECREG:$rT),
                   (SPUvec_rotl (vectype VECREG:$rA), (inttype pred:$val)))]>;

class ROTIRegInst<RegisterClass rclass, Operand optype, ValueType inttype, PatLeaf pred>:
    ROTIInst<(outs rclass:$rT), (ins rclass:$rA, optype:$val),
             [(set rclass:$rT, (rotl rclass:$rA, (inttype pred:$val)))]>;

multiclass RotateLeftWordImm
{
  def v4i32: ROTIVecInst<v4i32, u7imm_i32, i32, uimm7>;
  def v4i32_i16: ROTIVecInst<v4i32, u7imm, i16, uimm7>;
  def v4i32_i8:  ROTIVecInst<v4i32, u7imm_i8, i8, uimm7>;

  def r32:       ROTIRegInst<R32C, u7imm_i32, i32, uimm7>;
  def r32_i16:   ROTIRegInst<R32C, u7imm, i16, uimm7>;
  def r32_i8:    ROTIRegInst<R32C, u7imm_i8, i8, uimm7>;
}

defm ROTI : RotateLeftWordImm;

//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
// Rotate quad by byte (count)
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~

class ROTQBYInst<dag OOL, dag IOL, list<dag> pattern>:
    RRForm<0b00111011100, OOL, IOL, "rotqby\t$rT, $rA, $rB",
           RotShiftQuad, pattern>;

class ROTQBYGenInst<ValueType type, RegisterClass rc>:
    ROTQBYInst<(outs rc:$rT), (ins rc:$rA, R32C:$rB),
               [(set (type rc:$rT),
                     (SPUrotbytes_left (type rc:$rA), R32C:$rB))]>;

class ROTQBYVecInst<ValueType type>:
    ROTQBYGenInst<type, VECREG>;

multiclass RotateQuadLeftByBytes
{
  def v16i8: ROTQBYVecInst<v16i8>;
  def v8i16: ROTQBYVecInst<v8i16>;
  def v4i32: ROTQBYVecInst<v4i32>;
  def v4f32: ROTQBYVecInst<v4f32>;
  def v2i64: ROTQBYVecInst<v2i64>;
  def v2f64: ROTQBYVecInst<v2f64>;
  def i128:  ROTQBYGenInst<i128, GPRC>;
}

defm ROTQBY: RotateQuadLeftByBytes;

//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
// Rotate quad by byte (count), immediate
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~

class ROTQBYIInst<dag OOL, dag IOL, list<dag> pattern>:
    RI7Form<0b00111111100, OOL, IOL, "rotqbyi\t$rT, $rA, $val",
            RotShiftQuad, pattern>;

class ROTQBYIGenInst<ValueType type, RegisterClass rclass>:
    ROTQBYIInst<(outs rclass:$rT), (ins rclass:$rA, u7imm:$val),
                [(set (type rclass:$rT),
                      (SPUrotbytes_left (type rclass:$rA), (i16 uimm7:$val)))]>;

class ROTQBYIVecInst<ValueType vectype>:
    ROTQBYIGenInst<vectype, VECREG>;

multiclass RotateQuadByBytesImm
{
  def v16i8: ROTQBYIVecInst<v16i8>;
  def v8i16: ROTQBYIVecInst<v8i16>;
  def v4i32: ROTQBYIVecInst<v4i32>;
  def v4f32: ROTQBYIVecInst<v4f32>;
  def v2i64: ROTQBYIVecInst<v2i64>;
  def vfi64: ROTQBYIVecInst<v2f64>;
  def i128:  ROTQBYIGenInst<i128, GPRC>;
}

defm ROTQBYI: RotateQuadByBytesImm;

// See ROTQBY note above.
class ROTQBYBIInst<dag OOL, dag IOL, list<dag> pattern>:
    RI7Form<0b00110011100, OOL, IOL,
      "rotqbybi\t$rT, $rA, $shift",
      RotShiftQuad, pattern>;

class ROTQBYBIVecInst<ValueType vectype, RegisterClass rclass>:
    ROTQBYBIInst<(outs VECREG:$rT), (ins VECREG:$rA, rclass:$shift),
      [(set (vectype VECREG:$rT),
            (SPUrotbytes_left_bits (vectype VECREG:$rA), rclass:$shift))]>;

multiclass RotateQuadByBytesByBitshift {
  def v16i8_r32: ROTQBYBIVecInst<v16i8, R32C>;
  def v8i16_r32: ROTQBYBIVecInst<v8i16, R32C>;
  def v4i32_r32: ROTQBYBIVecInst<v4i32, R32C>;
  def v2i64_r32: ROTQBYBIVecInst<v2i64, R32C>;
}

defm ROTQBYBI : RotateQuadByBytesByBitshift;

//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
// See ROTQBY note above.
//
// Assume that the user of this instruction knows to shift the rotate count
// into bit 29
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~

class ROTQBIInst<dag OOL, dag IOL, list<dag> pattern>:
    RRForm<0b00011011100, OOL, IOL, "rotqbi\t$rT, $rA, $rB",
           RotShiftQuad, pattern>;

class ROTQBIVecInst<ValueType vectype>:
    ROTQBIInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
               [/* no pattern yet */]>;

class ROTQBIRegInst<RegisterClass rclass>:
    ROTQBIInst<(outs rclass:$rT), (ins rclass:$rA, R32C:$rB),
               [/* no pattern yet */]>;

multiclass RotateQuadByBitCount
{
  def v16i8: ROTQBIVecInst<v16i8>;
  def v8i16: ROTQBIVecInst<v8i16>;
  def v4i32: ROTQBIVecInst<v4i32>;
  def v2i64: ROTQBIVecInst<v2i64>;

  def r128:  ROTQBIRegInst<GPRC>;
  def r64:   ROTQBIRegInst<R64C>;
}

defm ROTQBI: RotateQuadByBitCount;

class ROTQBIIInst<dag OOL, dag IOL, list<dag> pattern>:
    RI7Form<0b00011111100, OOL, IOL, "rotqbii\t$rT, $rA, $val",
            RotShiftQuad, pattern>;

class ROTQBIIVecInst<ValueType vectype, Operand optype, ValueType inttype,
                     PatLeaf pred>:
    ROTQBIIInst<(outs VECREG:$rT), (ins VECREG:$rA, optype:$val),
                [/* no pattern yet */]>;

class ROTQBIIRegInst<RegisterClass rclass, Operand optype, ValueType inttype,
                     PatLeaf pred>:
    ROTQBIIInst<(outs rclass:$rT), (ins rclass:$rA, optype:$val),
                [/* no pattern yet */]>;

multiclass RotateQuadByBitCountImm
{
  def v16i8: ROTQBIIVecInst<v16i8, u7imm_i32, i32, uimm7>;
  def v8i16: ROTQBIIVecInst<v8i16, u7imm_i32, i32, uimm7>;
  def v4i32: ROTQBIIVecInst<v4i32, u7imm_i32, i32, uimm7>;
  def v2i64: ROTQBIIVecInst<v2i64, u7imm_i32, i32, uimm7>;

  def r128:  ROTQBIIRegInst<GPRC, u7imm_i32, i32, uimm7>;
  def r64:   ROTQBIIRegInst<R64C, u7imm_i32, i32, uimm7>;
}

defm ROTQBII : RotateQuadByBitCountImm;

//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
// ROTHM v8i16 form:
// NOTE(1): No vector rotate is generated by the C/C++ frontend (today),
//          so this only matches a synthetically generated/lowered code
//          fragment.
// NOTE(2): $rB must be negated before the right rotate!
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~

class ROTHMInst<dag OOL, dag IOL, list<dag> pattern>:
    RRForm<0b10111010000, OOL, IOL, "rothm\t$rT, $rA, $rB",
           RotShiftVec, pattern>;

def ROTHMv8i16:
    ROTHMInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
              [/* see patterns below - $rB must be negated */]>;

def : Pat<(SPUvec_srl (v8i16 VECREG:$rA), (v8i16 VECREG:$rB)),
          (ROTHMv8i16 VECREG:$rA, (SFHIvec VECREG:$rB, 0))>;

// ROTHM r16 form: Rotate 16-bit quantity to right, zero fill at the left
// Note: This instruction doesn't match a pattern because rB must be negated
// for the instruction to work. Thus, the pattern below the instruction!

def ROTHMr16:
    ROTHMInst<(outs R16C:$rT), (ins R16C:$rA, R32C:$rB),
              [/* see patterns below - $rB must be negated! */]>;

def : Pat<(srl R16C:$rA, R32C:$rB),
          (ROTHMr16 R16C:$rA, (SFIr32 R32C:$rB, 0))>;

def : Pat<(srl R16C:$rA, R16C:$rB),
          (ROTHMr16 R16C:$rA,
                    (SFIr32 (XSHWr16 R16C:$rB), 0))>;

def : Pat<(srl R16C:$rA, R8C:$rB),
          (ROTHMr16 R16C:$rA,
                    (SFIr32 (XSHWr16 (XSBHr8 R8C:$rB) ), 0))>;

// ROTHMI v8i16 form: See the comment for ROTHM v8i16. The difference here is
// that the immediate can be complemented, so that the user doesn't have to
// worry about it.

class ROTHMIInst<dag OOL, dag IOL, list<dag> pattern>:
    RI7Form<0b10111110000, OOL, IOL, "rothmi\t$rT, $rA, $val",
            RotShiftVec, pattern>;

def ROTHMIv8i16:
    ROTHMIInst<(outs VECREG:$rT), (ins VECREG:$rA, rothNeg7imm:$val),
               [/* no pattern */]>;

def : Pat<(SPUvec_srl (v8i16 VECREG:$rA), (i32 imm:$val)),
          (ROTHMIv8i16 VECREG:$rA, imm:$val)>;

def: Pat<(SPUvec_srl (v8i16 VECREG:$rA), (i16 imm:$val)),
         (ROTHMIv8i16 VECREG:$rA, (TO_IMM32 imm:$val))>;

def: Pat<(SPUvec_srl (v8i16 VECREG:$rA), (i8 imm:$val)),
         (ROTHMIv8i16 VECREG:$rA, (TO_IMM32 imm:$val))>;

def ROTHMIr16:
    ROTHMIInst<(outs R16C:$rT), (ins R16C:$rA, rothNeg7imm:$val),
               [/* no pattern */]>;

def: Pat<(srl R16C:$rA, (i32 uimm7:$val)),
         (ROTHMIr16 R16C:$rA, uimm7:$val)>;

def: Pat<(srl R16C:$rA, (i16 uimm7:$val)),
         (ROTHMIr16 R16C:$rA, (TO_IMM32 uimm7:$val))>;

def: Pat<(srl R16C:$rA, (i8 uimm7:$val)),
         (ROTHMIr16 R16C:$rA, (TO_IMM32 uimm7:$val))>;

// ROTM v4i32 form: See the ROTHM v8i16 comments.
class ROTMInst<dag OOL, dag IOL, list<dag> pattern>:
    RRForm<0b10011010000, OOL, IOL, "rotm\t$rT, $rA, $rB",
           RotShiftVec, pattern>;

def ROTMv4i32:
    ROTMInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
             [/* see patterns below - $rB must be negated */]>;

def : Pat<(SPUvec_srl (v4i32 VECREG:$rA), (v4i32 VECREG:$rB)),
          (ROTMv4i32 VECREG:$rA, (SFIvec VECREG:$rB, 0))>;

def ROTMr32:
    ROTMInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
             [/* see patterns below - $rB must be negated */]>;

def : Pat<(srl R32C:$rA, R32C:$rB),
          (ROTMr32 R32C:$rA, (SFIr32 R32C:$rB, 0))>;

def : Pat<(srl R32C:$rA, R16C:$rB),
          (ROTMr32 R32C:$rA,
                   (SFIr32 (XSHWr16 R16C:$rB), 0))>;

def : Pat<(srl R32C:$rA, R8C:$rB),
          (ROTMr32 R32C:$rA,
                   (SFIr32 (XSHWr16 (XSBHr8 R8C:$rB)), 0))>;

// ROTMI v4i32 form: See the comment for ROTHM v8i16.
def ROTMIv4i32:
    RI7Form<0b10011110000, (outs VECREG:$rT), (ins VECREG:$rA, rotNeg7imm:$val),
      "rotmi\t$rT, $rA, $val", RotShiftVec,
      [(set (v4i32 VECREG:$rT),
            (SPUvec_srl VECREG:$rA, (i32 uimm7:$val)))]>;

def : Pat<(SPUvec_srl (v4i32 VECREG:$rA), (i16 uimm7:$val)),
          (ROTMIv4i32 VECREG:$rA, (TO_IMM32 uimm7:$val))>;

def : Pat<(SPUvec_srl (v4i32 VECREG:$rA), (i8 uimm7:$val)),
          (ROTMIv4i32 VECREG:$rA, (TO_IMM32 uimm7:$val))>;

// ROTMI r32 form: know how to complement the immediate value.
def ROTMIr32:
    RI7Form<0b10011110000, (outs R32C:$rT), (ins R32C:$rA, rotNeg7imm:$val),
      "rotmi\t$rT, $rA, $val", RotShiftVec,
      [(set R32C:$rT, (srl R32C:$rA, (i32 uimm7:$val)))]>;

def : Pat<(srl R32C:$rA, (i16 imm:$val)),
          (ROTMIr32 R32C:$rA, (TO_IMM32 uimm7:$val))>;

def : Pat<(srl R32C:$rA, (i8 imm:$val)),
          (ROTMIr32 R32C:$rA, (TO_IMM32 uimm7:$val))>;

//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
// ROTQMBY: This is a vector form merely so that when used in an
// instruction pattern, type checking will succeed. This instruction assumes
// that the user knew to negate $rB.
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~

class ROTQMBYInst<dag OOL, dag IOL, list<dag> pattern>:
    RRForm<0b10111011100, OOL, IOL, "rotqmby\t$rT, $rA, $rB",
           RotShiftQuad, pattern>;

class ROTQMBYVecInst<ValueType vectype>:
    ROTQMBYInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
                [/* no pattern, $rB must be negated */]>;

class ROTQMBYRegInst<RegisterClass rclass>:
    ROTQMBYInst<(outs rclass:$rT), (ins rclass:$rA, R32C:$rB),
                [/* no pattern */]>;

multiclass RotateQuadBytes
{
  def v16i8: ROTQMBYVecInst<v16i8>;
  def v8i16: ROTQMBYVecInst<v8i16>;
  def v4i32: ROTQMBYVecInst<v4i32>;
  def v2i64: ROTQMBYVecInst<v2i64>;

  def r128: ROTQMBYRegInst<GPRC>;
  def r64:  ROTQMBYRegInst<R64C>;
}

defm ROTQMBY : RotateQuadBytes;

def : Pat<(SPUsrl_bytes GPRC:$rA, R32C:$rB),
          (ROTQMBYr128  GPRC:$rA, 
                        (SFIr32 R32C:$rB, 0))>;

class ROTQMBYIInst<dag OOL, dag IOL, list<dag> pattern>:
    RI7Form<0b10111111100, OOL, IOL, "rotqmbyi\t$rT, $rA, $val",
            RotShiftQuad, pattern>;

class ROTQMBYIVecInst<ValueType vectype>:
    ROTQMBYIInst<(outs VECREG:$rT), (ins VECREG:$rA, rotNeg7imm:$val),
                 [/* no pattern */]>;

class ROTQMBYIRegInst<RegisterClass rclass, Operand optype, ValueType inttype,
                      PatLeaf pred>:
    ROTQMBYIInst<(outs rclass:$rT), (ins rclass:$rA, optype:$val),
                 [/* no pattern */]>;

// 128-bit zero extension form:
class ROTQMBYIZExtInst<RegisterClass rclass, Operand optype, PatLeaf pred>:
    ROTQMBYIInst<(outs GPRC:$rT), (ins rclass:$rA, optype:$val),
                 [/* no pattern */]>;

multiclass RotateQuadBytesImm
{
  def v16i8: ROTQMBYIVecInst<v16i8>;
  def v8i16: ROTQMBYIVecInst<v8i16>;
  def v4i32: ROTQMBYIVecInst<v4i32>;
  def v2i64: ROTQMBYIVecInst<v2i64>;

  def r128:  ROTQMBYIRegInst<GPRC, rotNeg7imm, i32, uimm7>;
  def r64:   ROTQMBYIRegInst<R64C, rotNeg7imm, i32, uimm7>;
  
  def r128_zext_r8:  ROTQMBYIZExtInst<R8C, rotNeg7imm, uimm7>;
  def r128_zext_r16: ROTQMBYIZExtInst<R16C, rotNeg7imm, uimm7>;
  def r128_zext_r32: ROTQMBYIZExtInst<R32C, rotNeg7imm, uimm7>;
  def r128_zext_r64: ROTQMBYIZExtInst<R64C, rotNeg7imm, uimm7>;
}

defm ROTQMBYI : RotateQuadBytesImm;

//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
// Rotate right and mask by bit count
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~

class ROTQMBYBIInst<dag OOL, dag IOL, list<dag> pattern>:
    RRForm<0b10110011100, OOL, IOL, "rotqmbybi\t$rT, $rA, $rB",
           RotShiftQuad, pattern>;

class ROTQMBYBIVecInst<ValueType vectype>:
    ROTQMBYBIInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
                  [/* no pattern, */]>;

multiclass RotateMaskQuadByBitCount
{
  def v16i8: ROTQMBYBIVecInst<v16i8>;
  def v8i16: ROTQMBYBIVecInst<v8i16>;
  def v4i32: ROTQMBYBIVecInst<v4i32>;
  def v2i64: ROTQMBYBIVecInst<v2i64>;
  def r128: ROTQMBYBIInst<(outs GPRC:$rT), (ins GPRC:$rA, R32C:$rB),
                           [/*no pattern*/]>;
}

defm ROTQMBYBI: RotateMaskQuadByBitCount;

//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
// Rotate quad and mask by bits
// Note that the rotate amount has to be negated
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~

class ROTQMBIInst<dag OOL, dag IOL, list<dag> pattern>:
    RRForm<0b10011011100, OOL, IOL, "rotqmbi\t$rT, $rA, $rB",
           RotShiftQuad, pattern>;

class ROTQMBIVecInst<ValueType vectype>:
    ROTQMBIInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
                [/* no pattern */]>;

class ROTQMBIRegInst<RegisterClass rclass>:
    ROTQMBIInst<(outs rclass:$rT), (ins rclass:$rA, R32C:$rB),
                [/* no pattern */]>;

multiclass RotateMaskQuadByBits
{
  def v16i8: ROTQMBIVecInst<v16i8>;
  def v8i16: ROTQMBIVecInst<v8i16>;
  def v4i32: ROTQMBIVecInst<v4i32>;
  def v2i64: ROTQMBIVecInst<v2i64>;

  def r128:  ROTQMBIRegInst<GPRC>;
  def r64:   ROTQMBIRegInst<R64C>;
}

defm ROTQMBI: RotateMaskQuadByBits;

def : Pat<(srl GPRC:$rA, R32C:$rB),
          (ROTQMBYBIr128 (ROTQMBIr128  GPRC:$rA, 
                                       (SFIr32 R32C:$rB, 0)),
                         (SFIr32 R32C:$rB, 0))>;


//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
// Rotate quad and mask by bits, immediate
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~

class ROTQMBIIInst<dag OOL, dag IOL, list<dag> pattern>:
    RI7Form<0b10011111100, OOL, IOL, "rotqmbii\t$rT, $rA, $val",
            RotShiftQuad, pattern>;

class ROTQMBIIVecInst<ValueType vectype>:
   ROTQMBIIInst<(outs VECREG:$rT), (ins VECREG:$rA, rotNeg7imm:$val),
                 [/* no pattern */]>;

class ROTQMBIIRegInst<RegisterClass rclass>:
   ROTQMBIIInst<(outs rclass:$rT), (ins rclass:$rA, rotNeg7imm:$val),
                 [/* no pattern */]>;

multiclass RotateMaskQuadByBitsImm
{
  def v16i8: ROTQMBIIVecInst<v16i8>;
  def v8i16: ROTQMBIIVecInst<v8i16>;
  def v4i32: ROTQMBIIVecInst<v4i32>;
  def v2i64: ROTQMBIIVecInst<v2i64>;

  def r128:  ROTQMBIIRegInst<GPRC>;
  def r64:   ROTQMBIIRegInst<R64C>;
}

defm ROTQMBII: RotateMaskQuadByBitsImm;

//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~

def ROTMAHv8i16:
    RRForm<0b01111010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
      "rotmah\t$rT, $rA, $rB", RotShiftVec,
      [/* see patterns below - $rB must be negated */]>;

def : Pat<(SPUvec_sra (v8i16 VECREG:$rA), (v8i16 VECREG:$rB)),
          (ROTMAHv8i16 VECREG:$rA, (SFHIvec VECREG:$rB, 0))>;

def ROTMAHr16:
    RRForm<0b01111010000, (outs R16C:$rT), (ins R16C:$rA, R32C:$rB),
      "rotmah\t$rT, $rA, $rB", RotShiftVec,
      [/* see patterns below - $rB must be negated */]>;

def : Pat<(sra R16C:$rA, R32C:$rB),
          (ROTMAHr16 R16C:$rA, (SFIr32 R32C:$rB, 0))>;

def : Pat<(sra R16C:$rA, R16C:$rB),
          (ROTMAHr16 R16C:$rA,
                     (SFIr32 (XSHWr16 R16C:$rB), 0))>;

def : Pat<(sra R16C:$rA, R8C:$rB),
          (ROTMAHr16 R16C:$rA,
                     (SFIr32 (XSHWr16 (XSBHr8 R8C:$rB)), 0))>;

def ROTMAHIv8i16:
    RRForm<0b01111110000, (outs VECREG:$rT), (ins VECREG:$rA, rothNeg7imm:$val),
      "rotmahi\t$rT, $rA, $val", RotShiftVec,
      [(set (v8i16 VECREG:$rT),
            (SPUvec_sra (v8i16 VECREG:$rA), (i32 uimm7:$val)))]>;

def : Pat<(SPUvec_sra (v8i16 VECREG:$rA), (i16 uimm7:$val)),
          (ROTMAHIv8i16 (v8i16 VECREG:$rA), (TO_IMM32 uimm7:$val))>;

def : Pat<(SPUvec_sra (v8i16 VECREG:$rA), (i8 uimm7:$val)),
          (ROTMAHIv8i16 (v8i16 VECREG:$rA), (TO_IMM32 uimm7:$val))>;

def ROTMAHIr16:
    RRForm<0b01111110000, (outs R16C:$rT), (ins R16C:$rA, rothNeg7imm_i16:$val),
      "rotmahi\t$rT, $rA, $val", RotShiftVec,
      [(set R16C:$rT, (sra R16C:$rA, (i16 uimm7:$val)))]>;

def : Pat<(sra R16C:$rA, (i32 imm:$val)),
          (ROTMAHIr16 R16C:$rA, (TO_IMM32 uimm7:$val))>;

def : Pat<(sra R16C:$rA, (i8 imm:$val)),
          (ROTMAHIr16 R16C:$rA, (TO_IMM32 uimm7:$val))>;

def ROTMAv4i32:
    RRForm<0b01011010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
      "rotma\t$rT, $rA, $rB", RotShiftVec,
      [/* see patterns below - $rB must be negated */]>;

def : Pat<(SPUvec_sra (v4i32 VECREG:$rA), (v4i32 VECREG:$rB)),
          (ROTMAv4i32 VECREG:$rA, (SFIvec (v4i32 VECREG:$rB), 0))>;

def ROTMAr32:
    RRForm<0b01011010000, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
      "rotma\t$rT, $rA, $rB", RotShiftVec,
      [/* see patterns below - $rB must be negated */]>;

def : Pat<(sra R32C:$rA, R32C:$rB),
          (ROTMAr32 R32C:$rA, (SFIr32 R32C:$rB, 0))>;

def : Pat<(sra R32C:$rA, R16C:$rB),
          (ROTMAr32 R32C:$rA,
                    (SFIr32 (XSHWr16 R16C:$rB), 0))>;

def : Pat<(sra R32C:$rA, R8C:$rB),
          (ROTMAr32 R32C:$rA,
                    (SFIr32 (XSHWr16 (XSBHr8 R8C:$rB)), 0))>;

class ROTMAIInst<dag OOL, dag IOL, list<dag> pattern>:
    RRForm<0b01011110000, OOL, IOL,
      "rotmai\t$rT, $rA, $val",
      RotShiftVec, pattern>;

class ROTMAIVecInst<ValueType vectype, Operand intop, ValueType inttype>:
    ROTMAIInst<(outs VECREG:$rT), (ins VECREG:$rA, intop:$val),
      [(set (vectype VECREG:$rT),
            (SPUvec_sra VECREG:$rA, (inttype uimm7:$val)))]>;

class ROTMAIRegInst<RegisterClass rclass, Operand intop, ValueType inttype>:
    ROTMAIInst<(outs rclass:$rT), (ins rclass:$rA, intop:$val),
      [(set rclass:$rT, (sra rclass:$rA, (inttype uimm7:$val)))]>;

multiclass RotateMaskAlgebraicImm {
  def v2i64_i32 : ROTMAIVecInst<v2i64, rotNeg7imm, i32>;
  def v4i32_i32 : ROTMAIVecInst<v4i32, rotNeg7imm, i32>;
  def r64_i32 : ROTMAIRegInst<R64C, rotNeg7imm, i32>;
  def r32_i32 : ROTMAIRegInst<R32C, rotNeg7imm, i32>;
}

defm ROTMAI : RotateMaskAlgebraicImm;

//===----------------------------------------------------------------------===//
// Branch and conditionals:
//===----------------------------------------------------------------------===//

let isTerminator = 1, isBarrier = 1 in {
  // Halt If Equal (r32 preferred slot only, no vector form)
  def HEQr32:
    RRForm_3<0b00011011110, (outs), (ins R32C:$rA, R32C:$rB),
      "heq\t$rA, $rB", BranchResolv,
      [/* no pattern to match */]>;

  def HEQIr32 :
    RI10Form_2<0b11111110, (outs), (ins R32C:$rA, s10imm:$val),
      "heqi\t$rA, $val", BranchResolv,
      [/* no pattern to match */]>;

  // HGT/HGTI: These instructions use signed arithmetic for the comparison,
  // contrasting with HLGT/HLGTI, which use unsigned comparison:
  def HGTr32:
    RRForm_3<0b00011010010, (outs), (ins R32C:$rA, R32C:$rB),
      "hgt\t$rA, $rB", BranchResolv,
      [/* no pattern to match */]>;

  def HGTIr32:
    RI10Form_2<0b11110010, (outs), (ins R32C:$rA, s10imm:$val),
      "hgti\t$rA, $val", BranchResolv,
      [/* no pattern to match */]>;

  def HLGTr32:
    RRForm_3<0b00011011010, (outs), (ins R32C:$rA, R32C:$rB),
      "hlgt\t$rA, $rB", BranchResolv,
      [/* no pattern to match */]>;

  def HLGTIr32:
    RI10Form_2<0b11111010, (outs), (ins R32C:$rA, s10imm:$val),
      "hlgti\t$rA, $val", BranchResolv,
      [/* no pattern to match */]>;
}

//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
// Comparison operators for i8, i16 and i32:
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~

class CEQBInst<dag OOL, dag IOL, list<dag> pattern> :
  RRForm<0b00001011110, OOL, IOL, "ceqb\t$rT, $rA, $rB",
         ByteOp, pattern>;

multiclass CmpEqualByte
{
  def v16i8 :
    CEQBInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
      [(set (v16i8 VECREG:$rT), (seteq (v8i16 VECREG:$rA),
                                       (v8i16 VECREG:$rB)))]>;

  def r8 :
    CEQBInst<(outs R8C:$rT), (ins R8C:$rA, R8C:$rB),
             [(set R8C:$rT, (seteq R8C:$rA, R8C:$rB))]>;
}

class CEQBIInst<dag OOL, dag IOL, list<dag> pattern> :
  RI10Form<0b01111110, OOL, IOL, "ceqbi\t$rT, $rA, $val",
           ByteOp, pattern>;

multiclass CmpEqualByteImm
{
  def v16i8 :
    CEQBIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm_i8:$val),
              [(set (v16i8 VECREG:$rT), (seteq (v16i8 VECREG:$rA),
                                               v16i8SExt8Imm:$val))]>;
  def r8:
    CEQBIInst<(outs R8C:$rT), (ins R8C:$rA, s10imm_i8:$val),
             [(set R8C:$rT, (seteq R8C:$rA, immSExt8:$val))]>;
}

class CEQHInst<dag OOL, dag IOL, list<dag> pattern> :
  RRForm<0b00010011110, OOL, IOL, "ceqh\t$rT, $rA, $rB",
         ByteOp, pattern>;

multiclass CmpEqualHalfword
{
  def v8i16 : CEQHInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
                       [(set (v8i16 VECREG:$rT), (seteq (v8i16 VECREG:$rA),
                                                        (v8i16 VECREG:$rB)))]>;

  def r16 : CEQHInst<(outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
                     [(set R16C:$rT, (seteq R16C:$rA, R16C:$rB))]>;
}

class CEQHIInst<dag OOL, dag IOL, list<dag> pattern> :
  RI10Form<0b10111110, OOL, IOL, "ceqhi\t$rT, $rA, $val",
           ByteOp, pattern>;

multiclass CmpEqualHalfwordImm
{
  def v8i16 : CEQHIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
                        [(set (v8i16 VECREG:$rT),
                              (seteq (v8i16 VECREG:$rA),
                                     (v8i16 v8i16SExt10Imm:$val)))]>;
  def r16 : CEQHIInst<(outs R16C:$rT), (ins R16C:$rA, s10imm:$val),
                      [(set R16C:$rT, (seteq R16C:$rA, i16ImmSExt10:$val))]>;
}

class CEQInst<dag OOL, dag IOL, list<dag> pattern> :
  RRForm<0b00000011110, OOL, IOL, "ceq\t$rT, $rA, $rB",
         ByteOp, pattern>;

multiclass CmpEqualWord
{
  def v4i32 : CEQInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
                      [(set (v4i32 VECREG:$rT),
                            (seteq (v4i32 VECREG:$rA), (v4i32 VECREG:$rB)))]>;

  def r32 : CEQInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
                    [(set R32C:$rT, (seteq R32C:$rA, R32C:$rB))]>;
}

class CEQIInst<dag OOL, dag IOL, list<dag> pattern> :
  RI10Form<0b00111110, OOL, IOL, "ceqi\t$rT, $rA, $val",
           ByteOp, pattern>;

multiclass CmpEqualWordImm
{
  def v4i32 : CEQIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
                       [(set (v4i32 VECREG:$rT),
                             (seteq (v4i32 VECREG:$rA),
                                    (v4i32 v4i32SExt16Imm:$val)))]>;

  def r32: CEQIInst<(outs R32C:$rT), (ins R32C:$rA, s10imm_i32:$val),
                    [(set R32C:$rT, (seteq R32C:$rA, i32ImmSExt10:$val))]>;
}

class CGTBInst<dag OOL, dag IOL, list<dag> pattern> :
  RRForm<0b00001010010, OOL, IOL, "cgtb\t$rT, $rA, $rB",
         ByteOp, pattern>;

multiclass CmpGtrByte
{
  def v16i8 :
    CGTBInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
      [(set (v16i8 VECREG:$rT), (setgt (v8i16 VECREG:$rA),
                                       (v8i16 VECREG:$rB)))]>;

  def r8 :
    CGTBInst<(outs R8C:$rT), (ins R8C:$rA, R8C:$rB),
             [(set R8C:$rT, (setgt R8C:$rA, R8C:$rB))]>;
}

class CGTBIInst<dag OOL, dag IOL, list<dag> pattern> :
  RI10Form<0b01110010, OOL, IOL, "cgtbi\t$rT, $rA, $val",
           ByteOp, pattern>;

multiclass CmpGtrByteImm
{
  def v16i8 :
    CGTBIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm_i8:$val),
              [(set (v16i8 VECREG:$rT), (setgt (v16i8 VECREG:$rA),
                                               v16i8SExt8Imm:$val))]>;
  def r8:
    CGTBIInst<(outs R8C:$rT), (ins R8C:$rA, s10imm_i8:$val),
              [(set R8C:$rT, (setgt R8C:$rA, immSExt8:$val))]>;
}

class CGTHInst<dag OOL, dag IOL, list<dag> pattern> :
  RRForm<0b00010010010, OOL, IOL, "cgth\t$rT, $rA, $rB",
         ByteOp, pattern>;

multiclass CmpGtrHalfword
{
  def v8i16 : CGTHInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
                       [(set (v8i16 VECREG:$rT), (setgt (v8i16 VECREG:$rA),
                                                        (v8i16 VECREG:$rB)))]>;

  def r16 : CGTHInst<(outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
                     [(set R16C:$rT, (setgt R16C:$rA, R16C:$rB))]>;
}

class CGTHIInst<dag OOL, dag IOL, list<dag> pattern> :
  RI10Form<0b10110010, OOL, IOL, "cgthi\t$rT, $rA, $val",
           ByteOp, pattern>;

multiclass CmpGtrHalfwordImm
{
  def v8i16 : CGTHIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
                        [(set (v8i16 VECREG:$rT),
                              (setgt (v8i16 VECREG:$rA),
                                     (v8i16 v8i16SExt10Imm:$val)))]>;
  def r16 : CGTHIInst<(outs R16C:$rT), (ins R16C:$rA, s10imm:$val),
                      [(set R16C:$rT, (setgt R16C:$rA, i16ImmSExt10:$val))]>;
}

class CGTInst<dag OOL, dag IOL, list<dag> pattern> :
  RRForm<0b00000010010, OOL, IOL, "cgt\t$rT, $rA, $rB",
         ByteOp, pattern>;

multiclass CmpGtrWord
{
  def v4i32 : CGTInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
                      [(set (v4i32 VECREG:$rT),
                            (setgt (v4i32 VECREG:$rA), (v4i32 VECREG:$rB)))]>;

  def r32 : CGTInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
                    [(set R32C:$rT, (setgt R32C:$rA, R32C:$rB))]>;
}

class CGTIInst<dag OOL, dag IOL, list<dag> pattern> :
  RI10Form<0b00110010, OOL, IOL, "cgti\t$rT, $rA, $val",
           ByteOp, pattern>;

multiclass CmpGtrWordImm
{
  def v4i32 : CGTIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
                       [(set (v4i32 VECREG:$rT),
                             (setgt (v4i32 VECREG:$rA),
                                    (v4i32 v4i32SExt16Imm:$val)))]>;

  def r32: CGTIInst<(outs R32C:$rT), (ins R32C:$rA, s10imm_i32:$val),
                    [(set R32C:$rT, (setgt R32C:$rA, i32ImmSExt10:$val))]>;

  // CGTIv4f32, CGTIf32: These are used in the f32 fdiv instruction sequence:
  def v4f32: CGTIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
                       [(set (v4i32 VECREG:$rT),
                             (setgt (v4i32 (bitconvert (v4f32 VECREG:$rA))),
                                    (v4i32 v4i32SExt16Imm:$val)))]>;

  def f32:   CGTIInst<(outs R32C:$rT), (ins R32FP:$rA, s10imm_i32:$val),
                      [/* no pattern */]>;
}

class CLGTBInst<dag OOL, dag IOL, list<dag> pattern> :
  RRForm<0b00001011010, OOL, IOL, "clgtb\t$rT, $rA, $rB",
         ByteOp, pattern>;

multiclass CmpLGtrByte
{
  def v16i8 :
    CLGTBInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
      [(set (v16i8 VECREG:$rT), (setugt (v8i16 VECREG:$rA),
                                       (v8i16 VECREG:$rB)))]>;

  def r8 :
    CLGTBInst<(outs R8C:$rT), (ins R8C:$rA, R8C:$rB),
             [(set R8C:$rT, (setugt R8C:$rA, R8C:$rB))]>;
}

class CLGTBIInst<dag OOL, dag IOL, list<dag> pattern> :
  RI10Form<0b01111010, OOL, IOL, "clgtbi\t$rT, $rA, $val",
           ByteOp, pattern>;

multiclass CmpLGtrByteImm
{
  def v16i8 :
    CLGTBIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm_i8:$val),
              [(set (v16i8 VECREG:$rT), (setugt (v16i8 VECREG:$rA),
                                               v16i8SExt8Imm:$val))]>;
  def r8:
    CLGTBIInst<(outs R8C:$rT), (ins R8C:$rA, s10imm_i8:$val),
             [(set R8C:$rT, (setugt R8C:$rA, immSExt8:$val))]>;
}

class CLGTHInst<dag OOL, dag IOL, list<dag> pattern> :
  RRForm<0b00010011010, OOL, IOL, "clgth\t$rT, $rA, $rB",
         ByteOp, pattern>;

multiclass CmpLGtrHalfword
{
  def v8i16 : CLGTHInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
                       [(set (v8i16 VECREG:$rT), (setugt (v8i16 VECREG:$rA),
                                                        (v8i16 VECREG:$rB)))]>;

  def r16 : CLGTHInst<(outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
                     [(set R16C:$rT, (setugt R16C:$rA, R16C:$rB))]>;
}

class CLGTHIInst<dag OOL, dag IOL, list<dag> pattern> :
  RI10Form<0b10111010, OOL, IOL, "clgthi\t$rT, $rA, $val",
           ByteOp, pattern>;

multiclass CmpLGtrHalfwordImm
{
  def v8i16 : CLGTHIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
                         [(set (v8i16 VECREG:$rT),
                               (setugt (v8i16 VECREG:$rA),
                                       (v8i16 v8i16SExt10Imm:$val)))]>;
  def r16 : CLGTHIInst<(outs R16C:$rT), (ins R16C:$rA, s10imm:$val),
                       [(set R16C:$rT, (setugt R16C:$rA, i16ImmSExt10:$val))]>;
}

class CLGTInst<dag OOL, dag IOL, list<dag> pattern> :
  RRForm<0b00000011010, OOL, IOL, "clgt\t$rT, $rA, $rB",
         ByteOp, pattern>;

multiclass CmpLGtrWord
{
  def v4i32 : CLGTInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
                      [(set (v4i32 VECREG:$rT),
                            (setugt (v4i32 VECREG:$rA), (v4i32 VECREG:$rB)))]>;

  def r32 : CLGTInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
                     [(set R32C:$rT, (setugt R32C:$rA, R32C:$rB))]>;
}

class CLGTIInst<dag OOL, dag IOL, list<dag> pattern> :
  RI10Form<0b00111010, OOL, IOL, "clgti\t$rT, $rA, $val",
           ByteOp, pattern>;

multiclass CmpLGtrWordImm
{
  def v4i32 : CLGTIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
                       [(set (v4i32 VECREG:$rT),
                             (setugt (v4i32 VECREG:$rA),
                                    (v4i32 v4i32SExt16Imm:$val)))]>;

  def r32: CLGTIInst<(outs R32C:$rT), (ins R32C:$rA, s10imm_i32:$val),
                     [(set R32C:$rT, (setugt R32C:$rA, i32ImmSExt10:$val))]>;
}

defm CEQB   : CmpEqualByte;
defm CEQBI  : CmpEqualByteImm;
defm CEQH   : CmpEqualHalfword;
defm CEQHI  : CmpEqualHalfwordImm;
defm CEQ    : CmpEqualWord;
defm CEQI   : CmpEqualWordImm;
defm CGTB   : CmpGtrByte;
defm CGTBI  : CmpGtrByteImm;
defm CGTH   : CmpGtrHalfword;
defm CGTHI  : CmpGtrHalfwordImm;
defm CGT    : CmpGtrWord;
defm CGTI   : CmpGtrWordImm;
defm CLGTB  : CmpLGtrByte;
defm CLGTBI : CmpLGtrByteImm;
defm CLGTH  : CmpLGtrHalfword;
defm CLGTHI : CmpLGtrHalfwordImm;
defm CLGT   : CmpLGtrWord;
defm CLGTI  : CmpLGtrWordImm;

//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
// For SETCC primitives not supported above (setlt, setle, setge, etc.)
// define a pattern to generate the right code, as a binary operator
// (in a manner of speaking.)
//
// Notes:
// 1. This only matches the setcc set of conditionals. Special pattern
//    matching is used for select conditionals.
//
// 2. The "DAG" versions of these classes is almost exclusively used for
//    i64 comparisons. See the tblgen fundamentals documentation for what
//    ".ResultInstrs[0]" means; see TargetSelectionDAG.td and the Pattern
//    class for where ResultInstrs originates.
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~

class SETCCNegCondReg<PatFrag cond, RegisterClass rclass, ValueType inttype,
                      SPUInstr xorinst, SPUInstr cmpare>:
  Pat<(cond rclass:$rA, rclass:$rB),
      (xorinst (cmpare rclass:$rA, rclass:$rB), (inttype -1))>;

class SETCCNegCondImm<PatFrag cond, RegisterClass rclass, ValueType inttype,
                      PatLeaf immpred, SPUInstr xorinst, SPUInstr cmpare>:
  Pat<(cond rclass:$rA, (inttype immpred:$imm)),
      (xorinst (cmpare rclass:$rA, (inttype immpred:$imm)), (inttype -1))>;

def : SETCCNegCondReg<setne, R8C, i8, XORBIr8,  CEQBr8>;
def : SETCCNegCondImm<setne, R8C, i8, immSExt8, XORBIr8, CEQBIr8>;

def : SETCCNegCondReg<setne, R16C, i16, XORHIr16,     CEQHr16>;
def : SETCCNegCondImm<setne, R16C, i16, i16ImmSExt10, XORHIr16, CEQHIr16>;

def : SETCCNegCondReg<setne, R32C, i32, XORIr32, CEQr32>;
def : SETCCNegCondImm<setne, R32C, i32, i32ImmSExt10, XORIr32, CEQIr32>;

class SETCCBinOpReg<PatFrag cond, RegisterClass rclass,
                    SPUInstr binop, SPUInstr cmpOp1, SPUInstr cmpOp2>:
    Pat<(cond rclass:$rA, rclass:$rB),
        (binop (cmpOp1 rclass:$rA, rclass:$rB),
               (cmpOp2 rclass:$rA, rclass:$rB))>;

class SETCCBinOpImm<PatFrag cond, RegisterClass rclass, PatLeaf immpred,
                    ValueType immtype,
                    SPUInstr binop, SPUInstr cmpOp1, SPUInstr cmpOp2>:
    Pat<(cond rclass:$rA, (immtype immpred:$imm)),
        (binop (cmpOp1 rclass:$rA, (immtype immpred:$imm)),
               (cmpOp2 rclass:$rA, (immtype immpred:$imm)))>;

def : SETCCBinOpReg<setge, R8C, ORr8, CGTBr8, CEQBr8>;
def : SETCCBinOpImm<setge, R8C, immSExt8, i8, ORr8, CGTBIr8, CEQBIr8>;
def : SETCCBinOpReg<setlt, R8C, NORr8, CGTBr8, CEQBr8>;
def : SETCCBinOpImm<setlt, R8C, immSExt8, i8, NORr8, CGTBIr8, CEQBIr8>;
def : Pat<(setle R8C:$rA, R8C:$rB),
          (XORBIr8 (CGTBr8 R8C:$rA, R8C:$rB), 0xff)>;
def :  Pat<(setle R8C:$rA, immU8:$imm),
           (XORBIr8 (CGTBIr8 R8C:$rA, immU8:$imm), 0xff)>;

def : SETCCBinOpReg<setge, R16C, ORr16, CGTHr16, CEQHr16>;
def : SETCCBinOpImm<setge, R16C, i16ImmSExt10, i16,
                    ORr16, CGTHIr16, CEQHIr16>;
def : SETCCBinOpReg<setlt, R16C, NORr16, CGTHr16, CEQHr16>;
def : SETCCBinOpImm<setlt, R16C, i16ImmSExt10, i16, NORr16, CGTHIr16, CEQHIr16>;
def : Pat<(setle R16C:$rA, R16C:$rB),
          (XORHIr16 (CGTHr16 R16C:$rA, R16C:$rB), 0xffff)>;
def : Pat<(setle R16C:$rA, i16ImmSExt10:$imm),
          (XORHIr16 (CGTHIr16 R16C:$rA, i16ImmSExt10:$imm), 0xffff)>;

def : SETCCBinOpReg<setge, R32C, ORr32, CGTr32, CEQr32>;
def : SETCCBinOpImm<setge, R32C, i32ImmSExt10, i32,
                    ORr32, CGTIr32, CEQIr32>;
def : SETCCBinOpReg<setlt, R32C, NORr32, CGTr32, CEQr32>;
def : SETCCBinOpImm<setlt, R32C, i32ImmSExt10, i32, NORr32, CGTIr32, CEQIr32>;
def : Pat<(setle R32C:$rA, R32C:$rB),
          (XORIr32 (CGTr32 R32C:$rA, R32C:$rB), 0xffffffff)>;
def : Pat<(setle R32C:$rA, i32ImmSExt10:$imm),
          (XORIr32 (CGTIr32 R32C:$rA, i32ImmSExt10:$imm), 0xffffffff)>;

def : SETCCBinOpReg<setuge, R8C, ORr8, CLGTBr8, CEQBr8>;
def : SETCCBinOpImm<setuge, R8C, immSExt8, i8, ORr8, CLGTBIr8, CEQBIr8>;
def : SETCCBinOpReg<setult, R8C, NORr8, CLGTBr8, CEQBr8>;
def : SETCCBinOpImm<setult, R8C, immSExt8, i8, NORr8, CLGTBIr8, CEQBIr8>;
def : Pat<(setule R8C:$rA, R8C:$rB),
          (XORBIr8 (CLGTBr8 R8C:$rA, R8C:$rB), 0xff)>;
def :  Pat<(setule R8C:$rA, immU8:$imm),
           (XORBIr8 (CLGTBIr8 R8C:$rA, immU8:$imm), 0xff)>;

def : SETCCBinOpReg<setuge, R16C, ORr16, CLGTHr16, CEQHr16>;
def : SETCCBinOpImm<setuge, R16C, i16ImmSExt10, i16,
                    ORr16, CLGTHIr16, CEQHIr16>;
def : SETCCBinOpReg<setult, R16C, NORr16, CLGTHr16, CEQHr16>;
def : SETCCBinOpImm<setult, R16C, i16ImmSExt10, i16, NORr16,
                    CLGTHIr16, CEQHIr16>;
def : Pat<(setule R16C:$rA, R16C:$rB),
          (XORHIr16 (CLGTHr16 R16C:$rA, R16C:$rB), 0xffff)>;
def :  Pat<(setule R16C:$rA, i16ImmSExt10:$imm),
           (XORHIr16 (CLGTHIr16 R16C:$rA, i16ImmSExt10:$imm), 0xffff)>;

def : SETCCBinOpReg<setuge, R32C, ORr32, CLGTr32, CEQr32>;
def : SETCCBinOpImm<setuge, R32C, i32ImmSExt10, i32,
                    ORr32, CLGTIr32, CEQIr32>;
def : SETCCBinOpReg<setult, R32C, NORr32, CLGTr32, CEQr32>;
def : SETCCBinOpImm<setult, R32C, i32ImmSExt10, i32, NORr32, CLGTIr32, CEQIr32>;
def : Pat<(setule R32C:$rA, R32C:$rB),
          (XORIr32 (CLGTr32 R32C:$rA, R32C:$rB), 0xffffffff)>;
def : Pat<(setule R32C:$rA, i32ImmSExt10:$imm),
          (XORIr32 (CLGTIr32 R32C:$rA, i32ImmSExt10:$imm), 0xffffffff)>;

//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
// select conditional patterns:
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~

class SELECTNegCondReg<PatFrag cond, RegisterClass rclass, ValueType inttype,
                       SPUInstr selinstr, SPUInstr cmpare>:
  Pat<(select (inttype (cond rclass:$rA, rclass:$rB)),
              rclass:$rTrue, rclass:$rFalse),
      (selinstr rclass:$rTrue, rclass:$rFalse,
                (cmpare rclass:$rA, rclass:$rB))>;

class SELECTNegCondImm<PatFrag cond, RegisterClass rclass, ValueType inttype,
                       PatLeaf immpred, SPUInstr selinstr, SPUInstr cmpare>:
  Pat<(select (inttype (cond rclass:$rA, immpred:$imm)),
              rclass:$rTrue, rclass:$rFalse),
      (selinstr rclass:$rTrue, rclass:$rFalse,
                (cmpare rclass:$rA, immpred:$imm))>;

def : SELECTNegCondReg<setne, R8C, i8, SELBr8, CEQBr8>;
def : SELECTNegCondImm<setne, R8C, i8, immSExt8, SELBr8, CEQBIr8>;
def : SELECTNegCondReg<setle, R8C, i8, SELBr8, CGTBr8>;
def : SELECTNegCondImm<setle, R8C, i8, immSExt8, SELBr8, CGTBr8>;
def : SELECTNegCondReg<setule, R8C, i8, SELBr8, CLGTBr8>;
def : SELECTNegCondImm<setule, R8C, i8, immU8, SELBr8, CLGTBIr8>;

def : SELECTNegCondReg<setne, R16C, i16, SELBr16, CEQHr16>;
def : SELECTNegCondImm<setne, R16C, i16, i16ImmSExt10, SELBr16, CEQHIr16>;
def : SELECTNegCondReg<setle, R16C, i16, SELBr16, CGTHr16>;
def : SELECTNegCondImm<setle, R16C, i16, i16ImmSExt10, SELBr16, CGTHIr16>;
def : SELECTNegCondReg<setule, R16C, i16, SELBr16, CLGTHr16>;
def : SELECTNegCondImm<setule, R16C, i16, i16ImmSExt10, SELBr16, CLGTHIr16>;

def : SELECTNegCondReg<setne, R32C, i32, SELBr32, CEQr32>;
def : SELECTNegCondImm<setne, R32C, i32, i32ImmSExt10, SELBr32, CEQIr32>;
def : SELECTNegCondReg<setle, R32C, i32, SELBr32, CGTr32>;
def : SELECTNegCondImm<setle, R32C, i32, i32ImmSExt10, SELBr32, CGTIr32>;
def : SELECTNegCondReg<setule, R32C, i32, SELBr32, CLGTr32>;
def : SELECTNegCondImm<setule, R32C, i32, i32ImmSExt10, SELBr32, CLGTIr32>;

class SELECTBinOpReg<PatFrag cond, RegisterClass rclass, ValueType inttype,
                     SPUInstr selinstr, SPUInstr binop, SPUInstr cmpOp1,
                     SPUInstr cmpOp2>:
  Pat<(select (inttype (cond rclass:$rA, rclass:$rB)),
              rclass:$rTrue, rclass:$rFalse),
      (selinstr rclass:$rFalse, rclass:$rTrue,
                (binop (cmpOp1 rclass:$rA, rclass:$rB),
                       (cmpOp2 rclass:$rA, rclass:$rB)))>;

class SELECTBinOpImm<PatFrag cond, RegisterClass rclass, PatLeaf immpred,
                     ValueType inttype,
                     SPUInstr selinstr, SPUInstr binop, SPUInstr cmpOp1,
                     SPUInstr cmpOp2>:
    Pat<(select (inttype (cond rclass:$rA, (inttype immpred:$imm))),
                rclass:$rTrue, rclass:$rFalse),
        (selinstr rclass:$rFalse, rclass:$rTrue,
                  (binop (cmpOp1 rclass:$rA, (inttype immpred:$imm)),
                         (cmpOp2 rclass:$rA, (inttype immpred:$imm))))>;

def : SELECTBinOpReg<setge, R8C, i8, SELBr8, ORr8, CGTBr8, CEQBr8>;
def : SELECTBinOpImm<setge, R8C, immSExt8, i8,
                     SELBr8, ORr8, CGTBIr8, CEQBIr8>;

def : SELECTBinOpReg<setge, R16C, i16, SELBr16, ORr16, CGTHr16, CEQHr16>;
def : SELECTBinOpImm<setge, R16C, i16ImmSExt10, i16,
                     SELBr16, ORr16, CGTHIr16, CEQHIr16>;

def : SELECTBinOpReg<setge, R32C, i32, SELBr32, ORr32, CGTr32, CEQr32>;
def : SELECTBinOpImm<setge, R32C, i32ImmSExt10, i32,
                     SELBr32, ORr32, CGTIr32, CEQIr32>;

def : SELECTBinOpReg<setuge, R8C, i8, SELBr8, ORr8, CLGTBr8, CEQBr8>;
def : SELECTBinOpImm<setuge, R8C, immSExt8, i8,
                     SELBr8, ORr8, CLGTBIr8, CEQBIr8>;

def : SELECTBinOpReg<setuge, R16C, i16, SELBr16, ORr16, CLGTHr16, CEQHr16>;
def : SELECTBinOpImm<setuge, R16C, i16ImmUns10, i16,
                     SELBr16, ORr16, CLGTHIr16, CEQHIr16>;

def : SELECTBinOpReg<setuge, R32C, i32, SELBr32, ORr32, CLGTr32, CEQr32>;
def : SELECTBinOpImm<setuge, R32C, i32ImmUns10, i32,
                     SELBr32, ORr32, CLGTIr32, CEQIr32>;

//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~

let isCall = 1,
  // All calls clobber the non-callee-saved registers:
  Defs = [R0, R1, R2, R3, R4, R5, R6, R7, R8, R9,
          R10,R11,R12,R13,R14,R15,R16,R17,R18,R19,
          R20,R21,R22,R23,R24,R25,R26,R27,R28,R29,
          R30,R31,R32,R33,R34,R35,R36,R37,R38,R39,
          R40,R41,R42,R43,R44,R45,R46,R47,R48,R49,
          R50,R51,R52,R53,R54,R55,R56,R57,R58,R59,
          R60,R61,R62,R63,R64,R65,R66,R67,R68,R69,
          R70,R71,R72,R73,R74,R75,R76,R77,R78,R79],
  // All of these instructions use $lr (aka $0)
  Uses = [R0]  in {
  // Branch relative and set link: Used if we actually know that the target
  // is within [-32768, 32767] bytes of the target
  def BRSL:
    BranchSetLink<0b011001100, (outs), (ins relcalltarget:$func, variable_ops),
      "brsl\t$$lr, $func",
      [(SPUcall (SPUpcrel tglobaladdr:$func, 0))]>;

  // Branch absolute and set link: Used if we actually know that the target
  // is an absolute address
  def BRASL:
    BranchSetLink<0b011001100, (outs), (ins calltarget:$func, variable_ops),
      "brasl\t$$lr, $func",
      [(SPUcall (SPUaform tglobaladdr:$func, 0))]>;

  // Branch indirect and set link if external data. These instructions are not
  // actually generated, matched by an intrinsic:
  def BISLED_00: BISLEDForm<0b11, "bisled\t$$lr, $func", [/* empty pattern */]>;
  def BISLED_E0: BISLEDForm<0b10, "bisled\t$$lr, $func", [/* empty pattern */]>;
  def BISLED_0D: BISLEDForm<0b01, "bisled\t$$lr, $func", [/* empty pattern */]>;
  def BISLED_ED: BISLEDForm<0b00, "bisled\t$$lr, $func", [/* empty pattern */]>;

  // Branch indirect and set link. This is the "X-form" address version of a
  // function call
  def BISL:
    BIForm<0b10010101100, "bisl\t$$lr, $func", [(SPUcall R32C:$func)]>;
}

// Support calls to external symbols:      
def : Pat<(SPUcall (SPUpcrel texternalsym:$func, 0)),
          (BRSL texternalsym:$func)>;
      
def : Pat<(SPUcall (SPUaform texternalsym:$func, 0)),
          (BRASL texternalsym:$func)>;

// Unconditional branches:
let isBranch = 1, isTerminator = 1, hasCtrlDep = 1 in {
  let isBarrier = 1 in {
    def BR :
      UncondBranch<0b001001100, (outs), (ins brtarget:$dest),
        "br\t$dest",
        [(br bb:$dest)]>;

    // Unconditional, absolute address branch
    def BRA:
      UncondBranch<0b001100000, (outs), (ins brtarget:$dest),
        "bra\t$dest",
        [/* no pattern */]>;

    // Indirect branch
    let isIndirectBranch = 1 in {
      def BI:
        BIForm<0b00010101100, "bi\t$func", [(brind R32C:$func)]>;
    }
  }

  // Conditional branches:
  class BRNZInst<dag IOL, list<dag> pattern>:
    RI16Form<0b010000100, (outs), IOL, "brnz\t$rCond,$dest",
             BranchResolv, pattern>;

  class BRNZRegInst<RegisterClass rclass>:
    BRNZInst<(ins rclass:$rCond, brtarget:$dest),
             [(brcond rclass:$rCond, bb:$dest)]>;

  class BRNZVecInst<ValueType vectype>:
    BRNZInst<(ins VECREG:$rCond, brtarget:$dest),
             [(brcond (vectype VECREG:$rCond), bb:$dest)]>;

  multiclass BranchNotZero {
    def v4i32 : BRNZVecInst<v4i32>;
    def r32   : BRNZRegInst<R32C>;
  }

  defm BRNZ : BranchNotZero;

  class BRZInst<dag IOL, list<dag> pattern>:
    RI16Form<0b000000100, (outs), IOL, "brz\t$rT,$dest",
             BranchResolv, pattern>;

  class BRZRegInst<RegisterClass rclass>:
    BRZInst<(ins rclass:$rT, brtarget:$dest), [/* no pattern */]>;

  class BRZVecInst<ValueType vectype>:
    BRZInst<(ins VECREG:$rT, brtarget:$dest), [/* no pattern */]>;

  multiclass BranchZero {
    def v4i32: BRZVecInst<v4i32>;
    def r32:   BRZRegInst<R32C>;
  }

  defm BRZ: BranchZero;

  // Note: LLVM doesn't do branch conditional, indirect. Otherwise these would
  // be useful:
  /*
  class BINZInst<dag IOL, list<dag> pattern>:
   BICondForm<0b10010100100, (outs), IOL, "binz\t$rA, $dest", pattern>;

  class BINZRegInst<RegisterClass rclass>:
    BINZInst<(ins rclass:$rA, brtarget:$dest),
             [(brcond rclass:$rA, R32C:$dest)]>;

  class BINZVecInst<ValueType vectype>:
    BINZInst<(ins VECREG:$rA, R32C:$dest),
             [(brcond (vectype VECREG:$rA), R32C:$dest)]>;

  multiclass BranchNotZeroIndirect {
    def v4i32: BINZVecInst<v4i32>;
    def r32:   BINZRegInst<R32C>;
  }

  defm BINZ: BranchNotZeroIndirect;

  class BIZInst<dag IOL, list<dag> pattern>:
    BICondForm<0b00010100100, (outs), IOL, "biz\t$rA, $func", pattern>;

  class BIZRegInst<RegisterClass rclass>:
    BIZInst<(ins rclass:$rA, R32C:$func), [/* no pattern */]>;

  class BIZVecInst<ValueType vectype>:
    BIZInst<(ins VECREG:$rA, R32C:$func), [/* no pattern */]>;

  multiclass BranchZeroIndirect {
    def v4i32: BIZVecInst<v4i32>;
    def r32:   BIZRegInst<R32C>;
  }

  defm BIZ: BranchZeroIndirect;
  */

  class BRHNZInst<dag IOL, list<dag> pattern>:
    RI16Form<0b011000100, (outs), IOL, "brhnz\t$rCond,$dest", BranchResolv,
             pattern>;

  class BRHNZRegInst<RegisterClass rclass>:
    BRHNZInst<(ins rclass:$rCond, brtarget:$dest),
              [(brcond rclass:$rCond, bb:$dest)]>;

  class BRHNZVecInst<ValueType vectype>:
    BRHNZInst<(ins VECREG:$rCond, brtarget:$dest), [/* no pattern */]>;

  multiclass BranchNotZeroHalfword {
    def v8i16: BRHNZVecInst<v8i16>;
    def r16:   BRHNZRegInst<R16C>;
  }

  defm BRHNZ: BranchNotZeroHalfword;

  class BRHZInst<dag IOL, list<dag> pattern>:
    RI16Form<0b001000100, (outs), IOL, "brhz\t$rT,$dest", BranchResolv,
             pattern>;

  class BRHZRegInst<RegisterClass rclass>:
    BRHZInst<(ins rclass:$rT, brtarget:$dest), [/* no pattern */]>;

  class BRHZVecInst<ValueType vectype>:
    BRHZInst<(ins VECREG:$rT, brtarget:$dest), [/* no pattern */]>;

  multiclass BranchZeroHalfword {
    def v8i16: BRHZVecInst<v8i16>;
    def r16:   BRHZRegInst<R16C>;
  }

  defm BRHZ: BranchZeroHalfword;
}

//===----------------------------------------------------------------------===//
// setcc and brcond patterns:
//===----------------------------------------------------------------------===//

def : Pat<(brcond (i16 (seteq R16C:$rA, 0)), bb:$dest),
          (BRHZr16 R16C:$rA, bb:$dest)>;
def : Pat<(brcond (i16 (setne R16C:$rA, 0)), bb:$dest),
          (BRHNZr16 R16C:$rA, bb:$dest)>;

def : Pat<(brcond (i32 (seteq R32C:$rA, 0)), bb:$dest),
          (BRZr32 R32C:$rA, bb:$dest)>;
def : Pat<(brcond (i32 (setne R32C:$rA, 0)), bb:$dest),
          (BRNZr32 R32C:$rA, bb:$dest)>;

multiclass BranchCondEQ<PatFrag cond, SPUInstr brinst16, SPUInstr brinst32>
{
  def r16imm: Pat<(brcond (i16 (cond R16C:$rA, i16ImmSExt10:$val)), bb:$dest),
                  (brinst16 (CEQHIr16 R16C:$rA, i16ImmSExt10:$val), bb:$dest)>;

  def r16 : Pat<(brcond (i16 (cond R16C:$rA, R16C:$rB)), bb:$dest),
                (brinst16 (CEQHr16 R16C:$rA, R16:$rB), bb:$dest)>;

  def r32imm : Pat<(brcond (i32 (cond R32C:$rA, i32ImmSExt10:$val)), bb:$dest),
                   (brinst32 (CEQIr32 R32C:$rA, i32ImmSExt10:$val), bb:$dest)>;

  def r32 : Pat<(brcond (i32 (cond R32C:$rA, R32C:$rB)), bb:$dest),
                (brinst32 (CEQr32 R32C:$rA, R32C:$rB), bb:$dest)>;
}

defm BRCONDeq : BranchCondEQ<seteq, BRHNZr16, BRNZr32>;
defm BRCONDne : BranchCondEQ<setne, BRHZr16, BRZr32>;

multiclass BranchCondLGT<PatFrag cond, SPUInstr brinst16, SPUInstr brinst32>
{
  def r16imm : Pat<(brcond (i16 (cond R16C:$rA, i16ImmSExt10:$val)), bb:$dest),
                   (brinst16 (CLGTHIr16 R16C:$rA, i16ImmSExt10:$val), bb:$dest)>;

  def r16 : Pat<(brcond (i16 (cond R16C:$rA, R16C:$rB)), bb:$dest),
                (brinst16 (CLGTHr16 R16C:$rA, R16:$rB), bb:$dest)>;

  def r32imm : Pat<(brcond (i32 (cond R32C:$rA, i32ImmSExt10:$val)), bb:$dest),
                   (brinst32 (CLGTIr32 R32C:$rA, i32ImmSExt10:$val), bb:$dest)>;

  def r32 : Pat<(brcond (i32 (cond R32C:$rA, R32C:$rB)), bb:$dest),
                (brinst32 (CLGTr32 R32C:$rA, R32C:$rB), bb:$dest)>;
}

defm BRCONDugt : BranchCondLGT<setugt, BRHNZr16, BRNZr32>;
defm BRCONDule : BranchCondLGT<setule, BRHZr16, BRZr32>;

multiclass BranchCondLGTEQ<PatFrag cond, SPUInstr orinst16, SPUInstr brinst16,
                           SPUInstr orinst32, SPUInstr brinst32>
{
  def r16imm: Pat<(brcond (i16 (cond R16C:$rA, i16ImmSExt10:$val)), bb:$dest),
                  (brinst16 (orinst16 (CLGTHIr16 R16C:$rA, i16ImmSExt10:$val),
                                      (CEQHIr16 R16C:$rA, i16ImmSExt10:$val)),
                            bb:$dest)>;

  def r16: Pat<(brcond (i16 (cond R16C:$rA, R16C:$rB)), bb:$dest),
               (brinst16 (orinst16 (CLGTHr16 R16C:$rA, R16:$rB),
                                   (CEQHr16 R16C:$rA, R16:$rB)),
                         bb:$dest)>;

  def r32imm : Pat<(brcond (i32 (cond R32C:$rA, i32ImmSExt10:$val)), bb:$dest),
                   (brinst32 (orinst32 (CLGTIr32 R32C:$rA, i32ImmSExt10:$val),
                                       (CEQIr32 R32C:$rA, i32ImmSExt10:$val)),
                             bb:$dest)>;

  def r32 : Pat<(brcond (i32 (cond R32C:$rA, R32C:$rB)), bb:$dest),
                (brinst32 (orinst32 (CLGTr32 R32C:$rA, R32C:$rB),
                                    (CEQr32 R32C:$rA, R32C:$rB)),
                          bb:$dest)>;
}

defm BRCONDuge : BranchCondLGTEQ<setuge, ORr16, BRHNZr16, ORr32, BRNZr32>;
defm BRCONDult : BranchCondLGTEQ<setult, ORr16, BRHZr16, ORr32, BRZr32>;

multiclass BranchCondGT<PatFrag cond, SPUInstr brinst16, SPUInstr brinst32>
{
  def r16imm : Pat<(brcond (i16 (cond R16C:$rA, i16ImmSExt10:$val)), bb:$dest),
                   (brinst16 (CGTHIr16 R16C:$rA, i16ImmSExt10:$val), bb:$dest)>;

  def r16 : Pat<(brcond (i16 (cond R16C:$rA, R16C:$rB)), bb:$dest),
                (brinst16 (CGTHr16 R16C:$rA, R16:$rB), bb:$dest)>;

  def r32imm : Pat<(brcond (i32 (cond R32C:$rA, i32ImmSExt10:$val)), bb:$dest),
                   (brinst32 (CGTIr32 R32C:$rA, i32ImmSExt10:$val), bb:$dest)>;

  def r32 : Pat<(brcond (i32 (cond R32C:$rA, R32C:$rB)), bb:$dest),
                (brinst32 (CGTr32 R32C:$rA, R32C:$rB), bb:$dest)>;
}

defm BRCONDgt : BranchCondGT<setgt, BRHNZr16, BRNZr32>;
defm BRCONDle : BranchCondGT<setle, BRHZr16, BRZr32>;

multiclass BranchCondGTEQ<PatFrag cond, SPUInstr orinst16, SPUInstr brinst16,
                          SPUInstr orinst32, SPUInstr brinst32>
{
  def r16imm: Pat<(brcond (i16 (cond R16C:$rA, i16ImmSExt10:$val)), bb:$dest),
                  (brinst16 (orinst16 (CGTHIr16 R16C:$rA, i16ImmSExt10:$val),
                                      (CEQHIr16 R16C:$rA, i16ImmSExt10:$val)),
                            bb:$dest)>;

  def r16: Pat<(brcond (i16 (cond R16C:$rA, R16C:$rB)), bb:$dest),
               (brinst16 (orinst16 (CGTHr16 R16C:$rA, R16:$rB),
                                   (CEQHr16 R16C:$rA, R16:$rB)),
                         bb:$dest)>;

  def r32imm : Pat<(brcond (i32 (cond R32C:$rA, i32ImmSExt10:$val)), bb:$dest),
                   (brinst32 (orinst32 (CGTIr32 R32C:$rA, i32ImmSExt10:$val),
                                       (CEQIr32 R32C:$rA, i32ImmSExt10:$val)),
                             bb:$dest)>;

  def r32 : Pat<(brcond (i32 (cond R32C:$rA, R32C:$rB)), bb:$dest),
                (brinst32 (orinst32 (CGTr32 R32C:$rA, R32C:$rB),
                                    (CEQr32 R32C:$rA, R32C:$rB)),
                          bb:$dest)>;
}

defm BRCONDge : BranchCondGTEQ<setge, ORr16, BRHNZr16, ORr32, BRNZr32>;
defm BRCONDlt : BranchCondGTEQ<setlt, ORr16, BRHZr16, ORr32, BRZr32>;

let isTerminator = 1, isBarrier = 1 in {
  let isReturn = 1 in {
    def RET:
        RETForm<"bi\t$$lr", [(retflag)]>;
  }
}

//===----------------------------------------------------------------------===//
// Single precision floating point instructions
//===----------------------------------------------------------------------===//

class FAInst<dag OOL, dag IOL, list<dag> pattern>:
    RRForm<0b01011000100, OOL, IOL, "fa\t$rT, $rA, $rB",
           SPrecFP, pattern>;

class FAVecInst<ValueType vectype>:
    FAInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
             [(set (vectype VECREG:$rT),
                   (fadd (vectype VECREG:$rA), (vectype VECREG:$rB)))]>;

multiclass SFPAdd
{
  def v4f32: FAVecInst<v4f32>;
  def f32:   FAInst<(outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB),
                    [(set R32FP:$rT, (fadd R32FP:$rA, R32FP:$rB))]>;
}

defm FA : SFPAdd;

class FSInst<dag OOL, dag IOL, list<dag> pattern>:
    RRForm<0b01011000100, OOL, IOL, "fs\t$rT, $rA, $rB",
           SPrecFP, pattern>;

class FSVecInst<ValueType vectype>:
    FSInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
           [(set (vectype VECREG:$rT),
                 (fsub (vectype VECREG:$rA), (vectype VECREG:$rB)))]>;

multiclass SFPSub
{
  def v4f32: FSVecInst<v4f32>;
  def f32:   FSInst<(outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB),
                    [(set R32FP:$rT, (fsub R32FP:$rA, R32FP:$rB))]>;
}

defm FS : SFPSub;

class FMInst<dag OOL, dag IOL, list<dag> pattern>:
    RRForm<0b01100011010, OOL, IOL,
      "fm\t$rT, $rA, $rB", SPrecFP,
      pattern>;

class FMVecInst<ValueType type>:
    FMInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
           [(set (type VECREG:$rT),
                 (fmul (type VECREG:$rA), (type VECREG:$rB)))]>;

multiclass SFPMul
{
  def v4f32: FMVecInst<v4f32>;
  def f32:   FMInst<(outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB),
                     [(set R32FP:$rT, (fmul R32FP:$rA, R32FP:$rB))]>; 
}

defm FM : SFPMul;

// Floating point multiply and add
// e.g. d = c + (a * b)
def FMAv4f32:
    RRRForm<0b0111, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
      "fma\t$rT, $rA, $rB, $rC", SPrecFP,
      [(set (v4f32 VECREG:$rT),
            (fadd (v4f32 VECREG:$rC),
                  (fmul (v4f32 VECREG:$rA), (v4f32 VECREG:$rB))))]>;

def FMAf32:
    RRRForm<0b0111, (outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB, R32FP:$rC),
      "fma\t$rT, $rA, $rB, $rC", SPrecFP,
      [(set R32FP:$rT, (fadd R32FP:$rC, (fmul R32FP:$rA, R32FP:$rB)))]>;

// FP multiply and subtract
// Subtracts value in rC from product
// res = a * b - c
def FMSv4f32 :
    RRRForm<0b0111, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
      "fms\t$rT, $rA, $rB, $rC", SPrecFP,
      [(set (v4f32 VECREG:$rT),
            (fsub (fmul (v4f32 VECREG:$rA), (v4f32 VECREG:$rB)),
                  (v4f32 VECREG:$rC)))]>;

def FMSf32 :
    RRRForm<0b0111, (outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB, R32FP:$rC),
      "fms\t$rT, $rA, $rB, $rC", SPrecFP,
      [(set R32FP:$rT,
            (fsub (fmul R32FP:$rA, R32FP:$rB), R32FP:$rC))]>;

// Floating Negative Mulitply and Subtract
// Subtracts product from value in rC
// res = fneg(fms a b c)
//     = - (a * b - c)
//     = c - a * b
// NOTE: subtraction order
// fsub a b = a - b
// fs a b = b - a?
def FNMSf32 :
    RRRForm<0b1101, (outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB, R32FP:$rC),
      "fnms\t$rT, $rA, $rB, $rC", SPrecFP,
      [(set R32FP:$rT, (fsub R32FP:$rC, (fmul R32FP:$rA, R32FP:$rB)))]>;

def FNMSv4f32 :
    RRRForm<0b1101, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
      "fnms\t$rT, $rA, $rB, $rC", SPrecFP,
      [(set (v4f32 VECREG:$rT),
            (fsub (v4f32 VECREG:$rC),
                  (fmul (v4f32 VECREG:$rA),
                        (v4f32 VECREG:$rB))))]>;




// Floating point reciprocal estimate

class FRESTInst<dag OOL, dag IOL>:
  RRForm_1<0b00110111000, OOL, IOL,
           "frest\t$rT, $rA", SPrecFP,
           [/* no pattern */]>;

def FRESTv4f32 :
    FRESTInst<(outs VECREG:$rT), (ins VECREG:$rA)>;

def FRESTf32 :
    FRESTInst<(outs R32FP:$rT), (ins R32FP:$rA)>;

// Floating point interpolate (used in conjunction with reciprocal estimate)
def FIv4f32 :
    RRForm<0b00101011110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
      "fi\t$rT, $rA, $rB", SPrecFP,
      [/* no pattern */]>;

def FIf32 :
    RRForm<0b00101011110, (outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB),
      "fi\t$rT, $rA, $rB", SPrecFP,
      [/* no pattern */]>;

//--------------------------------------------------------------------------
// Basic single precision floating point comparisons:
//
// Note: There is no support on SPU for single precision NaN. Consequently,
// ordered and unordered comparisons are the same.
//--------------------------------------------------------------------------

def FCEQf32 :
    RRForm<0b01000011110, (outs R32C:$rT), (ins R32FP:$rA, R32FP:$rB),
      "fceq\t$rT, $rA, $rB", SPrecFP,
      [(set R32C:$rT, (setueq R32FP:$rA, R32FP:$rB))]>;

def : Pat<(setoeq R32FP:$rA, R32FP:$rB),
          (FCEQf32 R32FP:$rA, R32FP:$rB)>;

def FCMEQf32 :
    RRForm<0b01010011110, (outs R32C:$rT), (ins R32FP:$rA, R32FP:$rB),
      "fcmeq\t$rT, $rA, $rB", SPrecFP,
      [(set R32C:$rT, (setueq (fabs R32FP:$rA), (fabs R32FP:$rB)))]>;

def : Pat<(setoeq (fabs R32FP:$rA), (fabs R32FP:$rB)),
          (FCMEQf32 R32FP:$rA, R32FP:$rB)>;

def FCGTf32 :
    RRForm<0b01000011010, (outs R32C:$rT), (ins R32FP:$rA, R32FP:$rB),
      "fcgt\t$rT, $rA, $rB", SPrecFP,
      [(set R32C:$rT, (setugt R32FP:$rA, R32FP:$rB))]>;

def : Pat<(setogt R32FP:$rA, R32FP:$rB),
          (FCGTf32 R32FP:$rA, R32FP:$rB)>;

def FCMGTf32 :
    RRForm<0b01010011010, (outs R32C:$rT), (ins R32FP:$rA, R32FP:$rB),
      "fcmgt\t$rT, $rA, $rB", SPrecFP,
      [(set R32C:$rT, (setugt (fabs R32FP:$rA), (fabs R32FP:$rB)))]>;

def : Pat<(setogt (fabs R32FP:$rA), (fabs R32FP:$rB)),
          (FCMGTf32 R32FP:$rA, R32FP:$rB)>;

//--------------------------------------------------------------------------
// Single precision floating point comparisons and SETCC equivalents:
//--------------------------------------------------------------------------

def : SETCCNegCondReg<setune, R32FP, i32, XORIr32, FCEQf32>;
def : SETCCNegCondReg<setone, R32FP, i32, XORIr32, FCEQf32>;

def : SETCCBinOpReg<setuge, R32FP, ORr32, FCGTf32, FCEQf32>;
def : SETCCBinOpReg<setoge, R32FP, ORr32, FCGTf32, FCEQf32>;

def : SETCCBinOpReg<setult, R32FP, NORr32, FCGTf32, FCEQf32>;
def : SETCCBinOpReg<setolt, R32FP, NORr32, FCGTf32, FCEQf32>;

def : Pat<(setule R32FP:$rA, R32FP:$rB),
          (XORIr32 (FCGTf32 R32FP:$rA, R32FP:$rB), 0xffffffff)>;
def : Pat<(setole R32FP:$rA, R32FP:$rB),
          (XORIr32 (FCGTf32 R32FP:$rA, R32FP:$rB), 0xffffffff)>;

// FP Status and Control Register Write
// Why isn't rT a don't care in the ISA?
// Should we create a special RRForm_3 for this guy and zero out the rT?
def FSCRWf32 :
    RRForm_1<0b01011101110, (outs R32FP:$rT), (ins R32FP:$rA),
      "fscrwr\t$rA", SPrecFP,
      [/* This instruction requires an intrinsic. Note: rT is unused. */]>;

// FP Status and Control Register Read
def FSCRRf32 :
    RRForm_2<0b01011101110, (outs R32FP:$rT), (ins),
      "fscrrd\t$rT", SPrecFP,
      [/* This instruction requires an intrinsic */]>;

// llvm instruction space
// How do these map onto cell instructions?
// fdiv rA rB
//   frest rC rB        # c = 1/b (both lines)
//   fi rC rB rC
//   fm rD rA rC        # d = a * 1/b
//   fnms rB rD rB rA # b = - (d * b - a) --should == 0 in a perfect world
//   fma rB rB rC rD            # b = b * c + d
//                              = -(d *b -a) * c + d
//                              = a * c - c ( a *b *c - a)

// fcopysign (???)

// Library calls:
// These llvm instructions will actually map to library calls.
// All that's needed, then, is to check that the appropriate library is
// imported and do a brsl to the proper function name.
// frem # fmod(x, y): x - (x/y) * y
// (Note: fmod(double, double), fmodf(float,float)
// fsqrt?
// fsin?
// fcos?
// Unimplemented SPU instruction space
// floating reciprocal absolute square root estimate (frsqest)

// The following are probably just intrinsics
// status and control register write
// status and control register read

//--------------------------------------
// Floating Point Conversions
// Signed conversions:
def CSiFv4f32:
    CVTIntFPForm<0b0101101110, (outs VECREG:$rT), (ins VECREG:$rA),
      "csflt\t$rT, $rA, 0", SPrecFP,
      [(set (v4f32 VECREG:$rT), (sint_to_fp (v4i32 VECREG:$rA)))]>;

// Convert signed integer to floating point
def CSiFf32 :
    CVTIntFPForm<0b0101101110, (outs R32FP:$rT), (ins R32C:$rA),
      "csflt\t$rT, $rA, 0", SPrecFP,
      [(set R32FP:$rT, (sint_to_fp R32C:$rA))]>;

// Convert unsigned into to float
def CUiFv4f32 :
    CVTIntFPForm<0b1101101110, (outs VECREG:$rT), (ins VECREG:$rA),
      "cuflt\t$rT, $rA, 0", SPrecFP,
      [(set (v4f32 VECREG:$rT), (uint_to_fp (v4i32 VECREG:$rA)))]>;

def CUiFf32 :
    CVTIntFPForm<0b1101101110, (outs R32FP:$rT), (ins R32C:$rA),
      "cuflt\t$rT, $rA, 0", SPrecFP,
      [(set R32FP:$rT, (uint_to_fp R32C:$rA))]>;

// Convert float to unsigned int
// Assume that scale = 0

def CFUiv4f32 :
    CVTIntFPForm<0b1101101110, (outs VECREG:$rT), (ins VECREG:$rA),
      "cfltu\t$rT, $rA, 0", SPrecFP,
      [(set (v4i32 VECREG:$rT), (fp_to_uint (v4f32 VECREG:$rA)))]>;

def CFUif32 :
    CVTIntFPForm<0b1101101110, (outs R32C:$rT), (ins R32FP:$rA),
      "cfltu\t$rT, $rA, 0", SPrecFP,
      [(set R32C:$rT, (fp_to_uint R32FP:$rA))]>;

// Convert float to signed int
// Assume that scale = 0

def CFSiv4f32 :
    CVTIntFPForm<0b1101101110, (outs VECREG:$rT), (ins VECREG:$rA),
      "cflts\t$rT, $rA, 0", SPrecFP,
      [(set (v4i32 VECREG:$rT), (fp_to_sint (v4f32 VECREG:$rA)))]>;

def CFSif32 :
    CVTIntFPForm<0b1101101110, (outs R32C:$rT), (ins R32FP:$rA),
      "cflts\t$rT, $rA, 0", SPrecFP,
      [(set R32C:$rT, (fp_to_sint R32FP:$rA))]>;

//===----------------------------------------------------------------------==//
// Single<->Double precision conversions
//===----------------------------------------------------------------------==//

// NOTE: We use "vec" name suffix here to avoid confusion (e.g. input is a
// v4f32, output is v2f64--which goes in the name?)

// Floating point extend single to double
// NOTE: Not sure if passing in v4f32 to FESDvec is correct since it
// operates on two double-word slots (i.e. 1st and 3rd fp numbers
// are ignored).
def FESDvec :
    RRForm_1<0b00011101110, (outs VECREG:$rT), (ins VECREG:$rA),
      "fesd\t$rT, $rA", SPrecFP,
      [/*(set (v2f64 VECREG:$rT), (fextend (v4f32 VECREG:$rA)))*/]>;

def FESDf32 :
    RRForm_1<0b00011101110, (outs R64FP:$rT), (ins R32FP:$rA),
      "fesd\t$rT, $rA", SPrecFP,
      [(set R64FP:$rT, (fextend R32FP:$rA))]>;

// Floating point round double to single
//def FRDSvec :
//    RRForm_1<0b10011101110, (outs VECREG:$rT), (ins VECREG:$rA),
//      "frds\t$rT, $rA,", SPrecFP,
//      [(set (v4f32 R32FP:$rT), (fround (v2f64 R64FP:$rA)))]>;

def FRDSf64 :
    RRForm_1<0b10011101110, (outs R32FP:$rT), (ins R64FP:$rA),
      "frds\t$rT, $rA", SPrecFP,
      [(set R32FP:$rT, (fround R64FP:$rA))]>;

//ToDo include anyextend?

//===----------------------------------------------------------------------==//
// Double precision floating point instructions
//===----------------------------------------------------------------------==//
def FAf64 :
    RRForm<0b00110011010, (outs R64FP:$rT), (ins R64FP:$rA, R64FP:$rB),
      "dfa\t$rT, $rA, $rB", DPrecFP,
      [(set R64FP:$rT, (fadd R64FP:$rA, R64FP:$rB))]>;

def FAv2f64 :
    RRForm<0b00110011010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
      "dfa\t$rT, $rA, $rB", DPrecFP,
      [(set (v2f64 VECREG:$rT), (fadd (v2f64 VECREG:$rA), (v2f64 VECREG:$rB)))]>;

def FSf64 :
    RRForm<0b10100011010, (outs R64FP:$rT), (ins R64FP:$rA, R64FP:$rB),
      "dfs\t$rT, $rA, $rB", DPrecFP,
      [(set R64FP:$rT, (fsub R64FP:$rA, R64FP:$rB))]>;

def FSv2f64 :
    RRForm<0b10100011010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
      "dfs\t$rT, $rA, $rB", DPrecFP,
      [(set (v2f64 VECREG:$rT),
            (fsub (v2f64 VECREG:$rA), (v2f64 VECREG:$rB)))]>;

def FMf64 :
    RRForm<0b01100011010, (outs R64FP:$rT), (ins R64FP:$rA, R64FP:$rB),
      "dfm\t$rT, $rA, $rB", DPrecFP,
      [(set R64FP:$rT, (fmul R64FP:$rA, R64FP:$rB))]>;

def FMv2f64:
    RRForm<0b00100011010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
      "dfm\t$rT, $rA, $rB", DPrecFP,
      [(set (v2f64 VECREG:$rT),
            (fmul (v2f64 VECREG:$rA), (v2f64 VECREG:$rB)))]>;

def FMAf64:
    RRForm<0b00111010110, (outs R64FP:$rT),
                          (ins R64FP:$rA, R64FP:$rB, R64FP:$rC),
      "dfma\t$rT, $rA, $rB", DPrecFP,
      [(set R64FP:$rT, (fadd R64FP:$rC, (fmul R64FP:$rA, R64FP:$rB)))]>,
    RegConstraint<"$rC = $rT">,
    NoEncode<"$rC">;

def FMAv2f64:
    RRForm<0b00111010110, (outs VECREG:$rT),
                          (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
      "dfma\t$rT, $rA, $rB", DPrecFP,
      [(set (v2f64 VECREG:$rT),
            (fadd (v2f64 VECREG:$rC),
                  (fmul (v2f64 VECREG:$rA), (v2f64 VECREG:$rB))))]>,
    RegConstraint<"$rC = $rT">,
    NoEncode<"$rC">;

def FMSf64 :
    RRForm<0b10111010110, (outs R64FP:$rT),
                          (ins R64FP:$rA, R64FP:$rB, R64FP:$rC),
      "dfms\t$rT, $rA, $rB", DPrecFP,
      [(set R64FP:$rT, (fsub (fmul R64FP:$rA, R64FP:$rB), R64FP:$rC))]>,
    RegConstraint<"$rC = $rT">,
    NoEncode<"$rC">;

def FMSv2f64 :
    RRForm<0b10111010110, (outs VECREG:$rT),
                          (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
      "dfms\t$rT, $rA, $rB", DPrecFP,
      [(set (v2f64 VECREG:$rT),
            (fsub (fmul (v2f64 VECREG:$rA), (v2f64 VECREG:$rB)),
                  (v2f64 VECREG:$rC)))]>;

// DFNMS: - (a * b - c)
// - (a * b) + c => c - (a * b)

class DFNMSInst<dag OOL, dag IOL, list<dag> pattern>:
    RRForm<0b01111010110, OOL, IOL, "dfnms\t$rT, $rA, $rB",
           DPrecFP, pattern>,
    RegConstraint<"$rC = $rT">,
    NoEncode<"$rC">;

class DFNMSVecInst<list<dag> pattern>:
    DFNMSInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
              pattern>;

class DFNMSRegInst<list<dag> pattern>:
    DFNMSInst<(outs R64FP:$rT), (ins R64FP:$rA, R64FP:$rB, R64FP:$rC),
             pattern>;

multiclass DFMultiplySubtract
{
  def v2f64 : DFNMSVecInst<[(set (v2f64 VECREG:$rT), 
                                 (fsub (v2f64 VECREG:$rC),
                                       (fmul (v2f64 VECREG:$rA),
                                             (v2f64 VECREG:$rB))))]>;

  def f64 : DFNMSRegInst<[(set R64FP:$rT,
                               (fsub R64FP:$rC,
                                     (fmul R64FP:$rA, R64FP:$rB)))]>;
}

defm DFNMS : DFMultiplySubtract;

// - (a * b + c)
// - (a * b) - c
def FNMAf64 :
    RRForm<0b11111010110, (outs R64FP:$rT),
                          (ins R64FP:$rA, R64FP:$rB, R64FP:$rC),
      "dfnma\t$rT, $rA, $rB", DPrecFP,
      [(set R64FP:$rT, (fneg (fadd R64FP:$rC, (fmul R64FP:$rA, R64FP:$rB))))]>,
    RegConstraint<"$rC = $rT">,
    NoEncode<"$rC">;

def FNMAv2f64 :
    RRForm<0b11111010110, (outs VECREG:$rT),
                          (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
      "dfnma\t$rT, $rA, $rB", DPrecFP,
      [(set (v2f64 VECREG:$rT),
            (fneg (fadd (v2f64 VECREG:$rC),
                        (fmul (v2f64 VECREG:$rA),
                              (v2f64 VECREG:$rB)))))]>,
    RegConstraint<"$rC = $rT">,
    NoEncode<"$rC">;

//===----------------------------------------------------------------------==//
// Floating point negation and absolute value
//===----------------------------------------------------------------------==//

def : Pat<(fneg (v4f32 VECREG:$rA)),
          (XORfnegvec (v4f32 VECREG:$rA),
                      (v4f32 (ILHUv4i32 0x8000)))>;

def : Pat<(fneg R32FP:$rA),
          (XORfneg32 R32FP:$rA, (ILHUr32 0x8000))>;

// Floating point absolute value
// Note: f64 fabs is custom-selected.

def : Pat<(fabs R32FP:$rA),
          (ANDfabs32 R32FP:$rA, (IOHLr32 (ILHUr32 0x7fff), 0xffff))>;

def : Pat<(fabs (v4f32 VECREG:$rA)),
          (ANDfabsvec (v4f32 VECREG:$rA),
                      (IOHLv4i32 (ILHUv4i32 0x7fff), 0xffff))>;

//===----------------------------------------------------------------------===//
// Hint for branch instructions:
//===----------------------------------------------------------------------===//
def HBRA :
    HBI16Form<0b0001001,(ins hbrtarget:$brinst, brtarget:$btarg), "hbra\t$brinst, $btarg">;

//===----------------------------------------------------------------------===//
// Execution, Load NOP (execute NOPs belong in even pipeline, load NOPs belong
// in the odd pipeline)
//===----------------------------------------------------------------------===//

def ENOP : SPUInstr<(outs), (ins), "nop", ExecNOP> {
  let Pattern = [];

  let Inst{0-10} = 0b10000000010;
  let Inst{11-17} = 0;
  let Inst{18-24} = 0;
  let Inst{25-31} = 0;
}

def LNOP : SPUInstr<(outs), (ins), "lnop", LoadNOP> {
  let Pattern = [];

  let Inst{0-10} = 0b10000000000;
  let Inst{11-17} = 0;
  let Inst{18-24} = 0;
  let Inst{25-31} = 0;
}

//===----------------------------------------------------------------------===//
// Bit conversions (type conversions between vector/packed types)
// NOTE: Promotions are handled using the XS* instructions.
//===----------------------------------------------------------------------===//
def : Pat<(v16i8 (bitconvert (v8i16 VECREG:$src))), (v16i8 VECREG:$src)>;
def : Pat<(v16i8 (bitconvert (v4i32 VECREG:$src))), (v16i8 VECREG:$src)>;
def : Pat<(v16i8 (bitconvert (v2i64 VECREG:$src))), (v16i8 VECREG:$src)>;
def : Pat<(v16i8 (bitconvert (v4f32 VECREG:$src))), (v16i8 VECREG:$src)>;
def : Pat<(v16i8 (bitconvert (v2f64 VECREG:$src))), (v16i8 VECREG:$src)>;

def : Pat<(v8i16 (bitconvert (v16i8 VECREG:$src))), (v8i16 VECREG:$src)>;
def : Pat<(v8i16 (bitconvert (v4i32 VECREG:$src))), (v8i16 VECREG:$src)>;
def : Pat<(v8i16 (bitconvert (v2i64 VECREG:$src))), (v8i16 VECREG:$src)>;
def : Pat<(v8i16 (bitconvert (v4f32 VECREG:$src))), (v8i16 VECREG:$src)>;
def : Pat<(v8i16 (bitconvert (v2f64 VECREG:$src))), (v8i16 VECREG:$src)>;

def : Pat<(v4i32 (bitconvert (v16i8 VECREG:$src))), (v4i32 VECREG:$src)>;
def : Pat<(v4i32 (bitconvert (v8i16 VECREG:$src))), (v4i32 VECREG:$src)>;
def : Pat<(v4i32 (bitconvert (v2i64 VECREG:$src))), (v4i32 VECREG:$src)>;
def : Pat<(v4i32 (bitconvert (v4f32 VECREG:$src))), (v4i32 VECREG:$src)>;
def : Pat<(v4i32 (bitconvert (v2f64 VECREG:$src))), (v4i32 VECREG:$src)>;

def : Pat<(v2i64 (bitconvert (v16i8 VECREG:$src))), (v2i64 VECREG:$src)>;
def : Pat<(v2i64 (bitconvert (v8i16 VECREG:$src))), (v2i64 VECREG:$src)>;
def : Pat<(v2i64 (bitconvert (v4i32 VECREG:$src))), (v2i64 VECREG:$src)>;
def : Pat<(v2i64 (bitconvert (v4f32 VECREG:$src))), (v2i64 VECREG:$src)>;
def : Pat<(v2i64 (bitconvert (v2f64 VECREG:$src))), (v2i64 VECREG:$src)>;

def : Pat<(v4f32 (bitconvert (v16i8 VECREG:$src))), (v4f32 VECREG:$src)>;
def : Pat<(v4f32 (bitconvert (v8i16 VECREG:$src))), (v4f32 VECREG:$src)>;
def : Pat<(v4f32 (bitconvert (v2i64 VECREG:$src))), (v4f32 VECREG:$src)>;
def : Pat<(v4f32 (bitconvert (v4i32 VECREG:$src))), (v4f32 VECREG:$src)>;
def : Pat<(v4f32 (bitconvert (v2f64 VECREG:$src))), (v4f32 VECREG:$src)>;

def : Pat<(v2f64 (bitconvert (v16i8 VECREG:$src))), (v2f64 VECREG:$src)>;
def : Pat<(v2f64 (bitconvert (v8i16 VECREG:$src))), (v2f64 VECREG:$src)>;
def : Pat<(v2f64 (bitconvert (v4i32 VECREG:$src))), (v2f64 VECREG:$src)>;
def : Pat<(v2f64 (bitconvert (v2i64 VECREG:$src))), (v2f64 VECREG:$src)>;
def : Pat<(v2f64 (bitconvert (v4f32 VECREG:$src))), (v2f64 VECREG:$src)>;

def : Pat<(i128 (bitconvert (v16i8 VECREG:$src))),
          (COPY_TO_REGCLASS VECREG:$src, GPRC)>;
def : Pat<(i128 (bitconvert (v8i16 VECREG:$src))),
          (COPY_TO_REGCLASS VECREG:$src, GPRC)>;
def : Pat<(i128 (bitconvert (v4i32 VECREG:$src))),
          (COPY_TO_REGCLASS VECREG:$src, GPRC)>;
def : Pat<(i128 (bitconvert (v2i64 VECREG:$src))),
          (COPY_TO_REGCLASS VECREG:$src, GPRC)>;
def : Pat<(i128 (bitconvert (v4f32 VECREG:$src))),
          (COPY_TO_REGCLASS VECREG:$src, GPRC)>;
def : Pat<(i128 (bitconvert (v2f64 VECREG:$src))),
          (COPY_TO_REGCLASS VECREG:$src, GPRC)>;

def : Pat<(v16i8 (bitconvert (i128 GPRC:$src))),
          (v16i8 (COPY_TO_REGCLASS GPRC:$src, VECREG))>;
def : Pat<(v8i16 (bitconvert (i128 GPRC:$src))),
          (v8i16 (COPY_TO_REGCLASS GPRC:$src, VECREG))>;
def : Pat<(v4i32 (bitconvert (i128 GPRC:$src))),
          (v4i32 (COPY_TO_REGCLASS GPRC:$src, VECREG))>;
def : Pat<(v2i64 (bitconvert (i128 GPRC:$src))),
          (v2i64 (COPY_TO_REGCLASS GPRC:$src, VECREG))>;
def : Pat<(v4f32 (bitconvert (i128 GPRC:$src))),
          (v4f32 (COPY_TO_REGCLASS GPRC:$src, VECREG))>;
def : Pat<(v2f64 (bitconvert (i128 GPRC:$src))),
          (v2f64 (COPY_TO_REGCLASS GPRC:$src, VECREG))>;

def : Pat<(i32 (bitconvert R32FP:$rA)),
          (COPY_TO_REGCLASS R32FP:$rA, R32C)>;

def : Pat<(f32 (bitconvert R32C:$rA)),
          (COPY_TO_REGCLASS R32C:$rA, R32FP)>;

def : Pat<(i64 (bitconvert R64FP:$rA)),
          (COPY_TO_REGCLASS R64FP:$rA, R64C)>;

def : Pat<(f64 (bitconvert R64C:$rA)),
          (COPY_TO_REGCLASS R64C:$rA, R64FP)>;


//===----------------------------------------------------------------------===//
// Instruction patterns:
//===----------------------------------------------------------------------===//

// General 32-bit constants:
def : Pat<(i32 imm:$imm),
          (IOHLr32 (ILHUr32 (HI16 imm:$imm)), (LO16 imm:$imm))>;

// Single precision float constants:
def : Pat<(f32 fpimm:$imm),
          (IOHLf32 (ILHUf32 (HI16_f32 fpimm:$imm)), (LO16_f32 fpimm:$imm))>;

// General constant 32-bit vectors
def : Pat<(v4i32 v4i32Imm:$imm),
          (IOHLv4i32 (v4i32 (ILHUv4i32 (HI16_vec v4i32Imm:$imm))),
                     (LO16_vec v4i32Imm:$imm))>;

// 8-bit constants
def : Pat<(i8 imm:$imm),
          (ILHr8 imm:$imm)>;

//===----------------------------------------------------------------------===//
// Zero/Any/Sign extensions
//===----------------------------------------------------------------------===//

// sext 8->32: Sign extend bytes to words
def : Pat<(sext_inreg R32C:$rSrc, i8),
          (XSHWr32 (XSBHr32 R32C:$rSrc))>;

def : Pat<(i32 (sext R8C:$rSrc)),
          (XSHWr16 (XSBHr8 R8C:$rSrc))>;

// sext 8->64: Sign extend bytes to double word
def : Pat<(sext_inreg R64C:$rSrc, i8),
          (XSWDr64_inreg (XSHWr64 (XSBHr64 R64C:$rSrc)))>;
          
def : Pat<(i64 (sext R8C:$rSrc)),
          (XSWDr64 (XSHWr16 (XSBHr8 R8C:$rSrc)))>;

// zext 8->16: Zero extend bytes to halfwords
def : Pat<(i16 (zext R8C:$rSrc)),
          (ANDHIi8i16 R8C:$rSrc, 0xff)>;

// zext 8->32: Zero extend bytes to words
def : Pat<(i32 (zext R8C:$rSrc)),
          (ANDIi8i32 R8C:$rSrc, 0xff)>;

// zext 8->64: Zero extend bytes to double words
def : Pat<(i64 (zext R8C:$rSrc)),
          (COPY_TO_REGCLASS (SELBv4i32 (ROTQMBYv4i32
                                    (COPY_TO_REGCLASS 
                                       (ANDIi8i32 R8C:$rSrc,0xff), VECREG),
                                    0x4),
                                  (ILv4i32 0x0),
                                  (FSMBIv4i32 0x0f0f)), R64C)>;

// anyext 8->16: Extend 8->16 bits, irrespective of sign, preserves high bits
def : Pat<(i16 (anyext R8C:$rSrc)),
          (ORHIi8i16 R8C:$rSrc, 0)>;

// anyext 8->32: Extend 8->32 bits, irrespective of sign, preserves high bits
def : Pat<(i32 (anyext R8C:$rSrc)),
          (COPY_TO_REGCLASS R8C:$rSrc, R32C)>;

// sext 16->64: Sign extend halfword to double word
def : Pat<(sext_inreg R64C:$rSrc, i16),
          (XSWDr64_inreg (XSHWr64 R64C:$rSrc))>;
          
def : Pat<(sext R16C:$rSrc),
          (XSWDr64 (XSHWr16 R16C:$rSrc))>;

// zext 16->32: Zero extend halfwords to words
def : Pat<(i32 (zext R16C:$rSrc)),
          (ANDi16i32 R16C:$rSrc, (ILAr32 0xffff))>;

def : Pat<(i32 (zext (and R16C:$rSrc, 0xf))),
          (ANDIi16i32 R16C:$rSrc, 0xf)>;

def : Pat<(i32 (zext (and R16C:$rSrc, 0xff))),
          (ANDIi16i32 R16C:$rSrc, 0xff)>;

def : Pat<(i32 (zext (and R16C:$rSrc, 0xfff))),
          (ANDIi16i32 R16C:$rSrc, 0xfff)>;

// anyext 16->32: Extend 16->32 bits, irrespective of sign
def : Pat<(i32 (anyext R16C:$rSrc)),
          (COPY_TO_REGCLASS R16C:$rSrc, R32C)>;

//===----------------------------------------------------------------------===//
// Truncates:
// These truncates are for the SPU's supported types (i8, i16, i32). i64 and
// above are custom lowered.
//===----------------------------------------------------------------------===//

def : Pat<(i8 (trunc GPRC:$src)),
          (COPY_TO_REGCLASS
            (SHUFBgprc GPRC:$src, GPRC:$src,
                       (IOHLv4i32 (ILHUv4i32 0x0f0f), 0x0f0f)), R8C)>;

def : Pat<(i8 (trunc R64C:$src)),
          (COPY_TO_REGCLASS
            (SHUFBv2i64_m32
              (COPY_TO_REGCLASS R64C:$src, VECREG),
              (COPY_TO_REGCLASS R64C:$src, VECREG),
              (IOHLv4i32 (ILHUv4i32 0x0707), 0x0707)), R8C)>;

def : Pat<(i8 (trunc R32C:$src)),
          (COPY_TO_REGCLASS
            (SHUFBv4i32_m32
               (COPY_TO_REGCLASS R32C:$src, VECREG),
               (COPY_TO_REGCLASS R32C:$src, VECREG),
               (IOHLv4i32 (ILHUv4i32 0x0303), 0x0303)), R8C)>;

def : Pat<(i8 (trunc R16C:$src)),
          (COPY_TO_REGCLASS
            (SHUFBv4i32_m32
               (COPY_TO_REGCLASS R16C:$src, VECREG),
               (COPY_TO_REGCLASS R16C:$src, VECREG),
               (IOHLv4i32 (ILHUv4i32 0x0303), 0x0303)), R8C)>;

def : Pat<(i16 (trunc GPRC:$src)),
          (COPY_TO_REGCLASS
            (SHUFBgprc GPRC:$src, GPRC:$src,
                       (IOHLv4i32 (ILHUv4i32 0x0e0f), 0x0e0f)), R16C)>;

def : Pat<(i16 (trunc R64C:$src)),
          (COPY_TO_REGCLASS
            (SHUFBv2i64_m32
              (COPY_TO_REGCLASS R64C:$src, VECREG),
              (COPY_TO_REGCLASS R64C:$src, VECREG),
              (IOHLv4i32 (ILHUv4i32 0x0607), 0x0607)), R16C)>;

def : Pat<(i16 (trunc R32C:$src)),
          (COPY_TO_REGCLASS
            (SHUFBv4i32_m32
               (COPY_TO_REGCLASS R32C:$src, VECREG),
               (COPY_TO_REGCLASS R32C:$src, VECREG),
               (IOHLv4i32 (ILHUv4i32 0x0203), 0x0203)), R16C)>;

def : Pat<(i32 (trunc GPRC:$src)),
          (COPY_TO_REGCLASS
            (SHUFBgprc GPRC:$src, GPRC:$src,
                       (IOHLv4i32 (ILHUv4i32 0x0c0d), 0x0e0f)), R32C)>;

def : Pat<(i32 (trunc R64C:$src)),
          (COPY_TO_REGCLASS
            (SHUFBv2i64_m32
              (COPY_TO_REGCLASS R64C:$src, VECREG),
              (COPY_TO_REGCLASS R64C:$src, VECREG),
              (IOHLv4i32 (ILHUv4i32 0x0405), 0x0607)), R32C)>;

//===----------------------------------------------------------------------===//
// Address generation: SPU, like PPC, has to split addresses into high and
// low parts in order to load them into a register.
//===----------------------------------------------------------------------===//

def : Pat<(SPUaform tglobaladdr:$in, 0),  (ILAlsa tglobaladdr:$in)>;
def : Pat<(SPUaform texternalsym:$in, 0), (ILAlsa texternalsym:$in)>;
def : Pat<(SPUaform tjumptable:$in, 0),   (ILAlsa tjumptable:$in)>;
def : Pat<(SPUaform tconstpool:$in, 0),   (ILAlsa  tconstpool:$in)>;

def : Pat<(SPUindirect (SPUhi tglobaladdr:$in, 0),
                       (SPUlo tglobaladdr:$in, 0)),
          (IOHLlo (ILHUhi tglobaladdr:$in), tglobaladdr:$in)>;

def : Pat<(SPUindirect (SPUhi texternalsym:$in, 0),
                       (SPUlo texternalsym:$in, 0)),
          (IOHLlo (ILHUhi texternalsym:$in), texternalsym:$in)>;

def : Pat<(SPUindirect (SPUhi tjumptable:$in, 0),
                       (SPUlo tjumptable:$in, 0)),
          (IOHLlo (ILHUhi tjumptable:$in), tjumptable:$in)>;

def : Pat<(SPUindirect (SPUhi tconstpool:$in, 0),
                       (SPUlo tconstpool:$in, 0)),
          (IOHLlo (ILHUhi tconstpool:$in), tconstpool:$in)>;

def : Pat<(add (SPUhi tglobaladdr:$in, 0), (SPUlo tglobaladdr:$in, 0)),
          (IOHLlo (ILHUhi tglobaladdr:$in), tglobaladdr:$in)>;

def : Pat<(add (SPUhi texternalsym:$in, 0), (SPUlo texternalsym:$in, 0)),
          (IOHLlo (ILHUhi texternalsym:$in), texternalsym:$in)>;

def : Pat<(add (SPUhi tjumptable:$in, 0), (SPUlo tjumptable:$in, 0)),
          (IOHLlo (ILHUhi tjumptable:$in), tjumptable:$in)>;

def : Pat<(add (SPUhi tconstpool:$in, 0), (SPUlo tconstpool:$in, 0)),
          (IOHLlo (ILHUhi tconstpool:$in), tconstpool:$in)>;

// Intrinsics:
include "CellSDKIntrinsics.td"
// Various math operator instruction sequences
include "SPUMathInstr.td"
// 64-bit "instructions"/support
include "SPU64InstrInfo.td"
// 128-bit "instructions"/support
include "SPU128InstrInfo.td"