summaryrefslogtreecommitdiff
path: root/lib/Target/Mips/Mips64InstrInfo.td
blob: 3e65f999b5cfcb5287fcb39fcdadcaadf67189fe (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
//===- Mips64InstrInfo.td - Mips64 Instruction Information -*- tablegen -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes Mips64 instructions.
//
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
// Mips64 Instruction Predicate Definitions.
//===----------------------------------------------------------------------===//
def HasMips64    : Predicate<"Subtarget.hasMips64()">;
def HasMips64r2  : Predicate<"Subtarget.hasMips64r2()">;

//===----------------------------------------------------------------------===//
// Mips Operand, Complex Patterns and Transformations Definitions.
//===----------------------------------------------------------------------===//

// Instruction operand types
def simm16_64      : Operand<i64>;
def shamt_64       : Operand<i64>;

// Unsigned Operand
def uimm16_64      : Operand<i64> {
  let PrintMethod = "printUnsignedImm";
}

// Transformation Function - get Imm - 32.
def Subtract32 : SDNodeXForm<imm, [{
  return getI32Imm((unsigned)N->getZExtValue() - 32);
}]>;

// imm32_63 predicate - True if imm is in range [32, 63].
def imm32_63 : ImmLeaf<i64,
                       [{return (int32_t)Imm >= 32 && (int32_t)Imm < 64;}],
                       Subtract32>;

//===----------------------------------------------------------------------===//
// Instructions specific format
//===----------------------------------------------------------------------===//

// Arithmetic 3 register operands
class ArithR64<bits<6> op, bits<6> func, string instr_asm, SDNode OpNode,
               InstrItinClass itin, bit isComm = 0>:
  FR<op, func, (outs CPU64Regs:$dst), (ins CPU64Regs:$b, CPU64Regs:$c),
     !strconcat(instr_asm, "\t$dst, $b, $c"),
     [(set CPU64Regs:$dst, (OpNode CPU64Regs:$b, CPU64Regs:$c))], itin> {
  let isCommutable = isComm;
}

// Arithmetic 2 register operands
class ArithI64<bits<6> op, string instr_asm, SDNode OpNode,
               Operand Od, PatLeaf imm_type> :
  FI<op, (outs CPU64Regs:$dst), (ins CPU64Regs:$b, Od:$c),
     !strconcat(instr_asm, "\t$dst, $b, $c"),
     [(set CPU64Regs:$dst, (OpNode CPU64Regs:$b, imm_type:$c))], IIAlu>;

//  Logical
let isCommutable = 1 in
class LogicR64<bits<6> func, string instr_asm, SDNode OpNode>:
  FR<0x00, func, (outs CPU64Regs:$dst), (ins CPU64Regs:$b, CPU64Regs:$c),
     !strconcat(instr_asm, "\t$dst, $b, $c"),
     [(set CPU64Regs:$dst, (OpNode CPU64Regs:$b, CPU64Regs:$c))], IIAlu>;

class LogicI64<bits<6> op, string instr_asm, SDNode OpNode>:
  FI<op, (outs CPU64Regs:$dst), (ins CPU64Regs:$b, uimm16_64:$c),
     !strconcat(instr_asm, "\t$dst, $b, $c"),
     [(set CPU64Regs:$dst, (OpNode CPU64Regs:$b, immZExt16:$c))], IIAlu>;

// Shifts
class LogicR_shift_rotate_imm64<bits<6> func, bits<5> _rs, string instr_asm,
                                SDNode OpNode, PatFrag PF>:
  FR<0x00, func, (outs CPU64Regs:$dst), (ins CPU64Regs:$b, shamt_64:$c),
     !strconcat(instr_asm, "\t$dst, $b, $c"),
     [(set CPU64Regs:$dst, (OpNode CPU64Regs:$b, (i64 PF:$c)))],
     IIAlu> {
  let rs = _rs;
}

class LogicR_shift_rotate_reg64<bits<6> func, bits<5> _shamt, string instr_asm,
                                SDNode OpNode>:
  FR<0x00, func, (outs CPU64Regs:$dst), (ins CPU64Regs:$c, CPU64Regs:$b),
     !strconcat(instr_asm, "\t$dst, $b, $c"),
     [(set CPU64Regs:$dst, (OpNode CPU64Regs:$b, CPU64Regs:$c))], IIAlu> {
  let shamt = _shamt;
}

// Move from Hi/Lo
let shamt = 0 in {
let rs = 0, rt = 0 in
class MoveFromLOHI64<bits<6> func, string instr_asm>:
  FR<0x00, func, (outs CPU64Regs:$dst), (ins),
     !strconcat(instr_asm, "\t$dst"), [], IIHiLo>;

let rt = 0, rd = 0 in
class MoveToLOHI64<bits<6> func, string instr_asm>:
  FR<0x00, func, (outs), (ins CPU64Regs:$src),
     !strconcat(instr_asm, "\t$src"), [], IIHiLo>;
}

//===----------------------------------------------------------------------===//
// Instruction definition
//===----------------------------------------------------------------------===//

/// Arithmetic Instructions (ALU Immediate)
def DADDiu   : ArithI64<0x19, "daddiu", add, simm16_64, immSExt16>;
def DANDi    : LogicI64<0x0c, "andi", and>;
def DORi     : LogicI64<0x0d, "ori",  or>;
def DXORi    : LogicI64<0x0e, "xori",  xor>;

/// Arithmetic Instructions (3-Operand, R-Type)
def DADDu    : ArithR64<0x00, 0x2d, "daddu", add, IIAlu, 1>;
def DSUBu    : ArithR64<0x00, 0x2f, "dsubu", sub, IIAlu>;
def DAND     : LogicR64<0x24, "and", and>;
def DOR      : LogicR64<0x25, "or", or>;
def DXOR     : LogicR64<0x26, "xor", xor>;

/// Shift Instructions
def DSLL     : LogicR_shift_rotate_imm64<0x38, 0x00, "dsll", shl, immZExt5>;
def DSRL     : LogicR_shift_rotate_imm64<0x3a, 0x00, "dsrl", srl, immZExt5>;
def DSRA     : LogicR_shift_rotate_imm64<0x3b, 0x00, "dsra", sra, immZExt5>;
def DSLL32   : LogicR_shift_rotate_imm64<0x3c, 0x00, "dsll32", shl, imm32_63>;
def DSRL32   : LogicR_shift_rotate_imm64<0x3e, 0x00, "dsrl32", srl, imm32_63>;
def DSRA32   : LogicR_shift_rotate_imm64<0x3f, 0x00, "dsra32", sra, imm32_63>;
def DSLLV    : LogicR_shift_rotate_reg64<0x24, 0x00, "dsllv", shl>;
def DSRLV    : LogicR_shift_rotate_reg64<0x26, 0x00, "dsrlv", srl>;
def DSRAV    : LogicR_shift_rotate_reg64<0x27, 0x00, "dsrav", sra>;

// Rotate Instructions
let Predicates = [HasMips64r2] in {
  def DROTR    : LogicR_shift_rotate_imm64<0x3a, 0x01, "drotr", rotr, immZExt5>;
  def DROTR32  : LogicR_shift_rotate_imm64<0x3e, 0x01, "drotr32", rotr,
                                           imm32_63>;
  def DROTRV   : LogicR_shift_rotate_reg64<0x16, 0x01, "drotrv", rotr>;
}

let Defs = [HI64] in
  def MTHI64  : MoveToLOHI64<0x11, "mthi">;
let Defs = [LO64] in
  def MTLO64  : MoveToLOHI64<0x13, "mtlo">;

let Uses = [HI64] in
  def MFHI64  : MoveFromLOHI64<0x10, "mfhi">;
let Uses = [LO64] in
  def MFLO64  : MoveFromLOHI64<0x12, "mflo">;

//===----------------------------------------------------------------------===//
//  Arbitrary patterns that map to one or more instructions
//===----------------------------------------------------------------------===//

// Small immediates
def : Pat<(i64 immSExt16:$in),
          (DADDiu ZERO_64, imm:$in)>;
def : Pat<(i64 immZExt16:$in),
          (DORi ZERO_64, imm:$in)>;