summaryrefslogtreecommitdiff
path: root/lib/Target/Mips/Mips64InstrInfo.td
blob: 2996986508d930537043e62afbb6fbed113d92a5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
//===- Mips64InstrInfo.td - Mips64 Instruction Information -*- tablegen -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes Mips64 instructions.
//
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
// Mips Operand, Complex Patterns and Transformations Definitions.
//===----------------------------------------------------------------------===//

// Instruction operand types
def shamt_64       : Operand<i64>;

// Unsigned Operand
def uimm16_64      : Operand<i64> {
  let PrintMethod = "printUnsignedImm";
}

// Transformation Function - get Imm - 32.
def Subtract32 : SDNodeXForm<imm, [{
  return getImm(N, (unsigned)N->getZExtValue() - 32);
}]>;

// shamt field must fit in 5 bits.
def immZExt5_64 : ImmLeaf<i64, [{return Imm == (Imm & 0x1f);}]>;

// imm32_63 predicate - True if imm is in range [32, 63].
def imm32_63 : ImmLeaf<i32,
                       [{return (int32_t)Imm >= 32 && (int32_t)Imm < 64;}],
                       Subtract32>;

// Is a 32-bit int.
def immSExt32 : ImmLeaf<i64, [{return isInt<32>(Imm);}]>;

// Transformation Function - get the higher 16 bits.
def HIGHER : SDNodeXForm<imm, [{
  return getImm(N, (N->getZExtValue() >> 32) & 0xFFFF);
}]>;

// Transformation Function - get the highest 16 bits.
def HIGHEST : SDNodeXForm<imm, [{
  return getImm(N, (N->getZExtValue() >> 48) & 0xFFFF);
}]>;

//===----------------------------------------------------------------------===//
// Instructions specific format
//===----------------------------------------------------------------------===//
// Shifts
// 64-bit shift instructions.
class shift_rotate_imm64<bits<6> func, bits<5> isRotate, string instr_asm,
                         SDNode OpNode>:
  shift_rotate_imm<func, isRotate, instr_asm, OpNode, immZExt5, shamt,
                   CPU64Regs>;

class shift_rotate_imm64_32<bits<6> func, bits<5> isRotate, string instr_asm,
                            SDNode OpNode>:
  shift_rotate_imm<func, isRotate, instr_asm, OpNode, imm32_63, shamt,
                   CPU64Regs>;

// Jump and Link (Call)
let isCall=1, hasDelaySlot=1,
  // All calls clobber the non-callee saved registers...
  Defs = [AT, V0, V1, A0, A1, A2, A3, T0, T1, T2, T3, T4, T5, T6, T7, T8, T9,
          K0, K1, D0, D1, D2, D3, D4, D5, D6, D7, D8, D9], Uses = [GP] in {
  class JumpLink64<bits<6> op, string instr_asm>:
    FJ<op, (outs), (ins calltarget64:$target, variable_ops),
       !strconcat(instr_asm, "\t$target"), [(MipsJmpLink imm:$target)],
       IIBranch>;

  class JumpLinkReg64<bits<6> op, bits<6> func, string instr_asm>:
    FR<op, func, (outs), (ins CPU64Regs:$rs, variable_ops),
       !strconcat(instr_asm, "\t$rs"),
       [(MipsJmpLink CPU64Regs:$rs)], IIBranch> {
    let rt = 0;
    let rd = 31;
    let shamt = 0;
  }

  class BranchLink64<string instr_asm>:
    FI<0x1, (outs), (ins CPU64Regs:$rs, brtarget:$imm16, variable_ops),
       !strconcat(instr_asm, "\t$rs, $imm16"), [], IIBranch>;
}

// Mul, Div
class Mult64<bits<6> func, string instr_asm, InstrItinClass itin>:
  Mult<func, instr_asm, itin, CPU64Regs, [HI64, LO64]>;
class Div64<SDNode op, bits<6> func, string instr_asm, InstrItinClass itin>:
  Div<op, func, instr_asm, itin, CPU64Regs, [HI64, LO64]>;

multiclass Atomic2Ops64<PatFrag Op, string Opstr> {
  def #NAME# : Atomic2Ops<Op, Opstr, CPU64Regs, CPURegs>, Requires<[NotN64]>;
  def _P8    : Atomic2Ops<Op, Opstr, CPU64Regs, CPU64Regs>, Requires<[IsN64]>;
}

multiclass AtomicCmpSwap64<PatFrag Op, string Width>  {
  def #NAME# : AtomicCmpSwap<Op, Width, CPU64Regs, CPURegs>, Requires<[NotN64]>;
  def _P8    : AtomicCmpSwap<Op, Width, CPU64Regs, CPU64Regs>,
               Requires<[IsN64]>;
}

let usesCustomInserter = 1, Predicates = [HasMips64] in {
  defm ATOMIC_LOAD_ADD_I64  : Atomic2Ops64<atomic_load_add_64, "load_add_64">;
  defm ATOMIC_LOAD_SUB_I64  : Atomic2Ops64<atomic_load_sub_64, "load_sub_64">;
  defm ATOMIC_LOAD_AND_I64  : Atomic2Ops64<atomic_load_and_64, "load_and_64">;
  defm ATOMIC_LOAD_OR_I64   : Atomic2Ops64<atomic_load_or_64, "load_or_64">;
  defm ATOMIC_LOAD_XOR_I64  : Atomic2Ops64<atomic_load_xor_64, "load_xor_64">;
  defm ATOMIC_LOAD_NAND_I64 : Atomic2Ops64<atomic_load_nand_64, "load_nand_64">;
  defm ATOMIC_SWAP_I64      : Atomic2Ops64<atomic_swap_64, "swap_64">;
  defm ATOMIC_CMP_SWAP_I64  : AtomicCmpSwap64<atomic_cmp_swap_64, "64">;
}

//===----------------------------------------------------------------------===//
// Instruction definition
//===----------------------------------------------------------------------===//

/// Arithmetic Instructions (ALU Immediate)
def DADDiu   : ArithLogicI<0x19, "daddiu", add, simm16_64, immSExt16,
                           CPU64Regs>;
def DANDi    : ArithLogicI<0x0c, "andi", and, uimm16_64, immZExt16, CPU64Regs>;
def SLTi64   : SetCC_I<0x0a, "slti", setlt, simm16_64, immSExt16, CPU64Regs>;
def SLTiu64  : SetCC_I<0x0b, "sltiu", setult, simm16_64, immSExt16, CPU64Regs>;
def ORi64    : ArithLogicI<0x0d, "ori", or, uimm16_64, immZExt16, CPU64Regs>;
def XORi64   : ArithLogicI<0x0e, "xori", xor, uimm16_64, immZExt16, CPU64Regs>;
def LUi64    : LoadUpper<0x0f, "lui", CPU64Regs, uimm16_64>;

/// Arithmetic Instructions (3-Operand, R-Type)
def DADDu    : ArithLogicR<0x00, 0x2d, "daddu", add, IIAlu, CPU64Regs, 1>;
def DSUBu    : ArithLogicR<0x00, 0x2f, "dsubu", sub, IIAlu, CPU64Regs>;
def SLT64    : SetCC_R<0x00, 0x2a, "slt", setlt, CPU64Regs>;
def SLTu64   : SetCC_R<0x00, 0x2b, "sltu", setult, CPU64Regs>;
def AND64    : ArithLogicR<0x00, 0x24, "and", and, IIAlu, CPU64Regs, 1>;
def OR64     : ArithLogicR<0x00, 0x25, "or", or, IIAlu, CPU64Regs, 1>;
def XOR64    : ArithLogicR<0x00, 0x26, "xor", xor, IIAlu, CPU64Regs, 1>;
def NOR64    : LogicNOR<0x00, 0x27, "nor", CPU64Regs>;

/// Shift Instructions
def DSLL     : shift_rotate_imm64<0x38, 0x00, "dsll", shl>;
def DSRL     : shift_rotate_imm64<0x3a, 0x00, "dsrl", srl>;
def DSRA     : shift_rotate_imm64<0x3b, 0x00, "dsra", sra>;
def DSLL32   : shift_rotate_imm64_32<0x3c, 0x00, "dsll32", shl>;
def DSRL32   : shift_rotate_imm64_32<0x3e, 0x00, "dsrl32", srl>;
def DSRA32   : shift_rotate_imm64_32<0x3f, 0x00, "dsra32", sra>;
def DSLLV    : shift_rotate_reg<0x24, 0x00, "dsllv", shl, CPU64Regs>;
def DSRLV    : shift_rotate_reg<0x26, 0x00, "dsrlv", srl, CPU64Regs>;
def DSRAV    : shift_rotate_reg<0x27, 0x00, "dsrav", sra, CPU64Regs>;

// Rotate Instructions
let Predicates = [HasMips64r2] in {
  def DROTR    : shift_rotate_imm64<0x3a, 0x01, "drotr", rotr>;
  def DROTR32  : shift_rotate_imm64_32<0x3e, 0x01, "drotr32", rotr>;
  def DROTRV   : shift_rotate_reg<0x16, 0x01, "drotrv", rotr, CPU64Regs>;
}

/// Load and Store Instructions
///  aligned 
defm LB64    : LoadM64<0x20, "lb",  sextloadi8>;
defm LBu64   : LoadM64<0x24, "lbu", zextloadi8>;
defm LH64    : LoadM64<0x21, "lh",  sextloadi16_a>;
defm LHu64   : LoadM64<0x25, "lhu", zextloadi16_a>;
defm LW64    : LoadM64<0x23, "lw",  sextloadi32_a>;
defm LWu64   : LoadM64<0x27, "lwu", zextloadi32_a>;
defm SB64    : StoreM64<0x28, "sb", truncstorei8>;
defm SH64    : StoreM64<0x29, "sh", truncstorei16_a>;
defm SW64    : StoreM64<0x2b, "sw", truncstorei32_a>;
defm LD      : LoadM64<0x37, "ld",  load_a>;
defm SD      : StoreM64<0x3f, "sd", store_a>;

///  unaligned
defm ULH64     : LoadM64<0x21, "ulh",  sextloadi16_u, 1>;
defm ULHu64    : LoadM64<0x25, "ulhu", zextloadi16_u, 1>;
defm ULW64     : LoadM64<0x23, "ulw",  sextloadi32_u, 1>;
defm USH64     : StoreM64<0x29, "ush", truncstorei16_u, 1>;
defm USW64     : StoreM64<0x2b, "usw", truncstorei32_u, 1>;
defm ULD       : LoadM64<0x37, "uld",  load_u, 1>;
defm USD       : StoreM64<0x3f, "usd", store_u, 1>;

/// Load-linked, Store-conditional
def LLD    : LLBase<0x34, "lld", CPU64Regs, mem>, Requires<[NotN64]>;
def LLD_P8 : LLBase<0x34, "lld", CPU64Regs, mem64>, Requires<[IsN64]>;
def SCD    : SCBase<0x3c, "scd", CPU64Regs, mem>, Requires<[NotN64]>;
def SCD_P8 : SCBase<0x3c, "scd", CPU64Regs, mem64>, Requires<[IsN64]>;

/// Jump and Branch Instructions
def JR64   : JumpFR<0x00, 0x08, "jr", CPU64Regs>;
def JAL64  : JumpLink64<0x03, "jal">;
def JALR64 : JumpLinkReg64<0x00, 0x09, "jalr">;
def BEQ64  : CBranch<0x04, "beq", seteq, CPU64Regs>;
def BNE64  : CBranch<0x05, "bne", setne, CPU64Regs>;
def BGEZ64 : CBranchZero<0x01, 1, "bgez", setge, CPU64Regs>;
def BGTZ64 : CBranchZero<0x07, 0, "bgtz", setgt, CPU64Regs>;
def BLEZ64 : CBranchZero<0x07, 0, "blez", setle, CPU64Regs>;
def BLTZ64 : CBranchZero<0x01, 0, "bltz", setlt, CPU64Regs>;

/// Multiply and Divide Instructions.
def DMULT    : Mult64<0x1c, "dmult", IIImul>;
def DMULTu   : Mult64<0x1d, "dmultu", IIImul>;
def DSDIV    : Div64<MipsDivRem, 0x1e, "ddiv", IIIdiv>;
def DUDIV    : Div64<MipsDivRemU, 0x1f, "ddivu", IIIdiv>;

def MTHI64 : MoveToLOHI<0x11, "mthi", CPU64Regs, [HI64]>;
def MTLO64 : MoveToLOHI<0x13, "mtlo", CPU64Regs, [LO64]>;
def MFHI64 : MoveFromLOHI<0x10, "mfhi", CPU64Regs, [HI64]>;
def MFLO64 : MoveFromLOHI<0x12, "mflo", CPU64Regs, [LO64]>;

/// Count Leading
def DCLZ : CountLeading0<0x24, "dclz", CPU64Regs>;
def DCLO : CountLeading1<0x25, "dclo", CPU64Regs>;

def LEA_ADDiu64 : EffectiveAddress<"addiu\t$rt, $addr", CPU64Regs, mem_ea_64>;

let Uses = [SP_64] in
def DynAlloc64 : EffectiveAddress<"daddiu\t$rt, $addr", CPU64Regs, mem_ea_64>,
                 Requires<[IsN64]>;

def RDHWR64 : ReadHardware<CPU64Regs, HWRegs64>;

def DEXT : ExtBase<3, "dext", CPU64Regs>;
def DINS : InsBase<7, "dins", CPU64Regs>;

def DSLL64_32 : FR<0x3c, 0x00, (outs CPU64Regs:$rd), (ins CPURegs:$rt),
                   "dsll32\t$rd, $rt, 0", [], IIAlu>;

def SLL64_32 : FR<0x0, 0x00, (outs CPU64Regs:$rd), (ins CPURegs:$rt),
                  "sll\t$rd, $rt, 0", [], IIAlu>;

//===----------------------------------------------------------------------===//
//  Arbitrary patterns that map to one or more instructions
//===----------------------------------------------------------------------===//

// Small immediates
def : Pat<(i64 immSExt16:$in),
          (DADDiu ZERO_64, imm:$in)>;
def : Pat<(i64 immZExt16:$in),
          (ORi64 ZERO_64, imm:$in)>;

// 32-bit immediates
def : Pat<(i64 immSExt32:$imm),
          (ORi64 (LUi64 (HI16 imm:$imm)), (LO16 imm:$imm))>;

// Arbitrary immediates
def : Pat<(i64 imm:$imm),
          (ORi64 (DSLL (ORi64 (DSLL (ORi64 (LUi64 (HIGHEST imm:$imm)),
           (HIGHER imm:$imm)), 16), (HI16 imm:$imm)), 16),
           (LO16 imm:$imm))>;

// extended loads
let Predicates = [NotN64] in {
  def : Pat<(extloadi32_a addr:$a), (DSRL32 (DSLL32 (LW64 addr:$a), 0), 0)>;
  def : Pat<(zextloadi32_u addr:$a), (DSRL32 (DSLL32 (ULW64 addr:$a), 0), 0)>;
}
let Predicates = [IsN64] in {
  def : Pat<(extloadi32_a addr:$a), (DSRL32 (DSLL32 (LW64_P8 addr:$a), 0), 0)>;
  def : Pat<(zextloadi32_u addr:$a), 
            (DSRL32 (DSLL32 (ULW64_P8 addr:$a), 0), 0)>;
}

// hi/lo relocs
def : Pat<(MipsHi tglobaladdr:$in), (LUi64 tglobaladdr:$in)>;
def : Pat<(MipsHi tblockaddress:$in), (LUi64 tblockaddress:$in)>;
def : Pat<(MipsHi tjumptable:$in), (LUi64 tjumptable:$in)>;
def : Pat<(MipsHi tconstpool:$in), (LUi64 tconstpool:$in)>;
def : Pat<(MipsHi tglobaltlsaddr:$in), (LUi64 tglobaltlsaddr:$in)>;

def : Pat<(MipsLo tglobaladdr:$in), (DADDiu ZERO_64, tglobaladdr:$in)>;
def : Pat<(MipsLo tblockaddress:$in), (DADDiu ZERO_64, tblockaddress:$in)>;
def : Pat<(MipsLo tjumptable:$in), (DADDiu ZERO_64, tjumptable:$in)>;
def : Pat<(MipsLo tconstpool:$in), (DADDiu ZERO_64, tconstpool:$in)>;
def : Pat<(MipsLo tglobaltlsaddr:$in), (DADDiu ZERO_64, tglobaltlsaddr:$in)>;

def : Pat<(add CPU64Regs:$hi, (MipsLo tglobaladdr:$lo)),
          (DADDiu CPU64Regs:$hi, tglobaladdr:$lo)>;
def : Pat<(add CPU64Regs:$hi, (MipsLo tblockaddress:$lo)),
          (DADDiu CPU64Regs:$hi, tblockaddress:$lo)>;
def : Pat<(add CPU64Regs:$hi, (MipsLo tjumptable:$lo)),
          (DADDiu CPU64Regs:$hi, tjumptable:$lo)>;
def : Pat<(add CPU64Regs:$hi, (MipsLo tconstpool:$lo)),
          (DADDiu CPU64Regs:$hi, tconstpool:$lo)>;
def : Pat<(add CPU64Regs:$hi, (MipsLo tglobaltlsaddr:$lo)),
          (DADDiu CPU64Regs:$hi, tglobaltlsaddr:$lo)>;

def : WrapperPat<tglobaladdr, DADDiu, GP_64>;
def : WrapperPat<tconstpool, DADDiu, GP_64>;
def : WrapperPat<texternalsym, DADDiu, GP_64>;
def : WrapperPat<tblockaddress, DADDiu, GP_64>;
def : WrapperPat<tjumptable, DADDiu, GP_64>;
def : WrapperPat<tglobaltlsaddr, DADDiu, GP_64>;

defm : BrcondPats<CPU64Regs, BEQ64, BNE64, SLT64, SLTu64, SLTi64, SLTiu64,
                  ZERO_64>;

// setcc patterns
defm : SeteqPats<CPU64Regs, SLTiu64, XOR64, SLTu64, ZERO_64>;
defm : SetlePats<CPU64Regs, SLT64, SLTu64>;
defm : SetgtPats<CPU64Regs, SLT64, SLTu64>;
defm : SetgePats<CPU64Regs, SLT64, SLTu64>;
defm : SetgeImmPats<CPU64Regs, SLTi64, SLTiu64>;

// select MipsDynAlloc
def : Pat<(MipsDynAlloc addr:$f), (DynAlloc64 addr:$f)>, Requires<[IsN64]>;

// truncate
def : Pat<(i32 (trunc CPU64Regs:$src)),
          (SLL (EXTRACT_SUBREG CPU64Regs:$src, sub_32), 0)>, Requires<[IsN64]>;
 
// 32-to-64-bit extension
def : Pat<(i64 (anyext CPURegs:$src)), (SLL64_32 CPURegs:$src)>;
def : Pat<(i64 (zext CPURegs:$src)), (DSRL32 (DSLL64_32 CPURegs:$src), 0)>;