summaryrefslogtreecommitdiff
path: root/lib/Target/Mips/MipsInstrFPU.td
blob: 7638f5486a4b5950068ab5bebbd52d31c82d21db (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
//===- MipsInstrFPU.td - Mips FPU Instruction Information --*- tablegen -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes the Mips FPU instruction set.
//
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
// Floating Point Instructions
// ------------------------
// * 64bit fp:
//    - 32 64-bit registers (default mode)
//    - 16 even 32-bit registers (32-bit compatible mode) for
//      single and double access.
// * 32bit fp:
//    - 16 even 32-bit registers - single and double (aliased)
//    - 32 32-bit registers (within single-only mode)
//===----------------------------------------------------------------------===//

// Floating Point Compare and Branch
def SDT_MipsFPBrcond : SDTypeProfile<0, 2, [SDTCisInt<0>,
                                            SDTCisVT<1, OtherVT>]>;
def SDT_MipsFPCmp : SDTypeProfile<0, 3, [SDTCisSameAs<0, 1>, SDTCisFP<1>,
                                         SDTCisVT<2, i32>]>;
def SDT_MipsCMovFP : SDTypeProfile<1, 2, [SDTCisSameAs<0, 1>,
                                          SDTCisSameAs<1, 2>]>;
def SDT_MipsBuildPairF64 : SDTypeProfile<1, 2, [SDTCisVT<0, f64>,
                                                SDTCisVT<1, i32>,
                                                SDTCisSameAs<1, 2>]>;
def SDT_MipsExtractElementF64 : SDTypeProfile<1, 2, [SDTCisVT<0, i32>,
                                                     SDTCisVT<1, f64>,
                                                     SDTCisVT<2, i32>]>;

def MipsFPCmp : SDNode<"MipsISD::FPCmp", SDT_MipsFPCmp, [SDNPOutGlue]>;
def MipsCMovFP_T : SDNode<"MipsISD::CMovFP_T", SDT_MipsCMovFP, [SDNPInGlue]>;
def MipsCMovFP_F : SDNode<"MipsISD::CMovFP_F", SDT_MipsCMovFP, [SDNPInGlue]>;
def MipsFPBrcond : SDNode<"MipsISD::FPBrcond", SDT_MipsFPBrcond,
                          [SDNPHasChain, SDNPOptInGlue]>;
def MipsBuildPairF64 : SDNode<"MipsISD::BuildPairF64", SDT_MipsBuildPairF64>;
def MipsExtractElementF64 : SDNode<"MipsISD::ExtractElementF64",
                                   SDT_MipsExtractElementF64>;

// Operand for printing out a condition code.
let PrintMethod = "printFCCOperand" in
  def condcode : Operand<i32>;

//===----------------------------------------------------------------------===//
// Feature predicates.
//===----------------------------------------------------------------------===//

def IsFP64bit        : Predicate<"Subtarget.isFP64bit()">;
def NotFP64bit       : Predicate<"!Subtarget.isFP64bit()">;
def IsSingleFloat    : Predicate<"Subtarget.isSingleFloat()">;
def IsNotSingleFloat : Predicate<"!Subtarget.isSingleFloat()">;

//===----------------------------------------------------------------------===//
// Instruction Class Templates
//
// A set of multiclasses is used to address the register usage.
//
// S32 - single precision in 16 32bit even fp registers
//       single precision in 32 32bit fp registers in SingleOnly mode
// S64 - single precision in 32 64bit fp registers (In64BitMode)
// D32 - double precision in 16 32bit even fp registers
// D64 - double precision in 32 64bit fp registers (In64BitMode)
//
// Only S32 and D32 are supported right now.
//===----------------------------------------------------------------------===//

// FP load.
class FPLoad<bits<6> op, string opstr, PatFrag FOp, RegisterClass RC,
             Operand MemOpnd>:
  FMem<op, (outs RC:$ft), (ins MemOpnd:$addr),
      !strconcat(opstr, "\t$ft, $addr"), [(set RC:$ft, (FOp addr:$addr))],
      IILoad>;

// FP store.
class FPStore<bits<6> op, string opstr, PatFrag FOp, RegisterClass RC,
              Operand MemOpnd>:
  FMem<op, (outs), (ins RC:$ft, MemOpnd:$addr),
      !strconcat(opstr, "\t$ft, $addr"), [(store RC:$ft, addr:$addr)],
      IIStore>;

// Instructions that convert an FP value to 32-bit fixed point.
multiclass FFR1_W_M<bits<6> funct, string opstr> {
  def _S   : FFR1<funct, 16, opstr, "w.s", FGR32, FGR32>;
  def _D32 : FFR1<funct, 17, opstr, "w.d", FGR32, AFGR64>,
             Requires<[NotFP64bit]>;
  def _D64 : FFR1<funct, 17, opstr, "w.d", FGR32, FGR64>,
             Requires<[IsFP64bit]>;
}

// Instructions that convert an FP value to 64-bit fixed point.
let Predicates = [IsFP64bit] in
multiclass FFR1_L_M<bits<6> funct, string opstr> {
  def _S   : FFR1<funct, 16, opstr, "l.s", FGR64, FGR32>;
  def _D64 : FFR1<funct, 17, opstr, "l.d", FGR64, FGR64>;
}

// FP-to-FP conversion instructions.
multiclass FFR1P_M<bits<6> funct, string opstr, SDNode OpNode> {
  def _S   : FFR1P<funct, 16, opstr, "s", FGR32, FGR32, OpNode>;
  def _D32 : FFR1P<funct, 17, opstr, "d", AFGR64, AFGR64, OpNode>,
             Requires<[NotFP64bit]>;
  def _D64 : FFR1P<funct, 17, opstr, "d", FGR64, FGR64, OpNode>,
             Requires<[IsFP64bit]>;
}

multiclass FFR2P_M<bits<6> funct, string opstr, SDNode OpNode, bit isComm = 0> {
  let isCommutable = isComm in {
  def _S   : FFR2P<funct, 16, opstr, "s", FGR32, OpNode>;
  def _D32 : FFR2P<funct, 17, opstr, "d", AFGR64, OpNode>,
             Requires<[NotFP64bit]>;
  def _D64 : FFR2P<funct, 17, opstr, "d", FGR64, OpNode>,
             Requires<[IsFP64bit]>;
  }
}

//===----------------------------------------------------------------------===//
// Floating Point Instructions
//===----------------------------------------------------------------------===//
defm ROUND_W : FFR1_W_M<0xc, "round">;
defm ROUND_L : FFR1_L_M<0x8, "round">;
defm TRUNC_W : FFR1_W_M<0xd, "trunc">;
defm TRUNC_L : FFR1_L_M<0x9, "trunc">;
defm CEIL_W  : FFR1_W_M<0xe, "ceil">;
defm CEIL_L  : FFR1_L_M<0xa, "ceil">;
defm FLOOR_W : FFR1_W_M<0xf, "floor">;
defm FLOOR_L : FFR1_L_M<0xb, "floor">;
defm CVT_W   : FFR1_W_M<0x24, "cvt">;
defm CVT_L   : FFR1_L_M<0x25, "cvt">;

def CVT_S_W : FFR1<0x20, 20, "cvt", "s.w", FGR32, FGR32>;

let Predicates = [NotFP64bit] in {
  def CVT_S_D32 : FFR1<0x20, 17, "cvt", "s.d", FGR32, AFGR64>;
  def CVT_D32_W : FFR1<0x21, 20, "cvt", "d.w", AFGR64, FGR32>;
  def CVT_D32_S : FFR1<0x21, 16, "cvt", "d.s", AFGR64, FGR32>;
}

let Predicates = [IsFP64bit] in {
 def CVT_S_D64 : FFR1<0x20, 17, "cvt", "s.d", FGR32, FGR64>;
 def CVT_S_L   : FFR1<0x20, 21, "cvt", "s.l", FGR32, FGR64>;
 def CVT_D64_W : FFR1<0x21, 20, "cvt", "d.w", FGR64, FGR32>;
 def CVT_D64_S : FFR1<0x21, 16, "cvt", "d.s", FGR64, FGR32>;
 def CVT_D64_L : FFR1<0x21, 21, "cvt", "d.l", FGR64, FGR64>;
}

defm FABS    : FFR1P_M<0x5, "abs",  fabs>;
defm FNEG    : FFR1P_M<0x7, "neg",  fneg>;
defm FSQRT   : FFR1P_M<0x4, "sqrt", fsqrt>;

// The odd-numbered registers are only referenced when doing loads,
// stores, and moves between floating-point and integer registers.
// When defining instructions, we reference all 32-bit registers,
// regardless of register aliasing.

class FFRGPR<bits<5> _fmt, dag outs, dag ins, string asmstr, list<dag> pattern>:
             FFR<0x11, 0x0, _fmt, outs, ins, asmstr, pattern> {
  bits<5> rt;
  let ft = rt;
  let fd = 0;
}

/// Move Control Registers From/To CPU Registers
def CFC1  : FFRGPR<0x2, (outs CPURegs:$rt), (ins CCR:$fs),
                  "cfc1\t$rt, $fs", []>;

def CTC1  : FFRGPR<0x6, (outs CCR:$fs), (ins CPURegs:$rt),
                  "ctc1\t$rt, $fs", []>;

def MFC1  : FFRGPR<0x00, (outs CPURegs:$rt), (ins FGR32:$fs),
                  "mfc1\t$rt, $fs",
                  [(set CPURegs:$rt, (bitconvert FGR32:$fs))]>;

def MTC1  : FFRGPR<0x04, (outs FGR32:$fs), (ins CPURegs:$rt),
                  "mtc1\t$rt, $fs",
                  [(set FGR32:$fs, (bitconvert CPURegs:$rt))]>;

def DMFC1 : FFRGPR<0x01, (outs CPU64Regs:$rt), (ins FGR64:$fs),
                  "dmfc1\t$rt, $fs",
                  [(set CPU64Regs:$rt, (bitconvert FGR64:$fs))]>;

def DMTC1 : FFRGPR<0x05, (outs FGR64:$fs), (ins CPU64Regs:$rt),
                  "dmtc1\t$rt, $fs",
                  [(set FGR64:$fs, (bitconvert CPU64Regs:$rt))]>;

def FMOV_S   : FFR1<0x6, 16, "mov", "s", FGR32, FGR32>;
def FMOV_D32 : FFR1<0x6, 17, "mov", "d", AFGR64, AFGR64>,
               Requires<[NotFP64bit]>;
def FMOV_D64 : FFR1<0x6, 17, "mov", "d", FGR64, FGR64>,
               Requires<[IsFP64bit]>;

/// Floating Point Memory Instructions
let Predicates = [IsN64] in {
  def LWC1_P8   : FPLoad<0x31, "lwc1", load, FGR32, mem64>;
  def SWC1_P8   : FPStore<0x39, "swc1", store, FGR32, mem64>;
  def LDC164_P8 : FPLoad<0x35, "ldc1", load, FGR64, mem64>;
  def SDC164_P8 : FPStore<0x3d, "sdc1", store, FGR64, mem64>;
}

let Predicates = [NotN64] in {
  def LWC1   : FPLoad<0x31, "lwc1", load, FGR32, mem>;
  def SWC1   : FPStore<0x39, "swc1", store, FGR32, mem>;
  let Predicates = [HasMips64] in {
    def LDC164 : FPLoad<0x35, "ldc1", load, FGR64, mem>;
    def SDC164 : FPStore<0x3d, "sdc1", store, FGR64, mem>;
  }
  let Predicates = [NotMips64] in {
    def LDC1   : FPLoad<0x35, "ldc1", load, AFGR64, mem>;
    def SDC1   : FPStore<0x3d, "sdc1", store, AFGR64, mem>;
  }
}

/// Floating-point Aritmetic
defm FADD : FFR2P_M<0x00, "add", fadd, 1>;
defm FDIV : FFR2P_M<0x03, "div", fdiv>;
defm FMUL : FFR2P_M<0x02, "mul", fmul, 1>;
defm FSUB : FFR2P_M<0x01, "sub", fsub>;

//===----------------------------------------------------------------------===//
// Floating Point Branch Codes
//===----------------------------------------------------------------------===//
// Mips branch codes. These correspond to condcode in MipsInstrInfo.h.
// They must be kept in synch.
def MIPS_BRANCH_F  : PatLeaf<(i32 0)>;
def MIPS_BRANCH_T  : PatLeaf<(i32 1)>;

/// Floating Point Branch of False/True (Likely)
let isBranch=1, isTerminator=1, hasDelaySlot=1, base=0x8, Uses=[FCR31] in
  class FBRANCH<bits<1> nd, bits<1> tf, PatLeaf op, string asmstr> :
      FFI<0x11, (outs), (ins brtarget:$dst), !strconcat(asmstr, "\t$dst"),
        [(MipsFPBrcond op, bb:$dst)]> {
  let Inst{20-18} = 0;
  let Inst{17} = nd;
  let Inst{16} = tf;
}

def BC1F  : FBRANCH<0, 0, MIPS_BRANCH_F,  "bc1f">;
def BC1T  : FBRANCH<0, 1, MIPS_BRANCH_T,  "bc1t">;

//===----------------------------------------------------------------------===//
// Floating Point Flag Conditions
//===----------------------------------------------------------------------===//
// Mips condition codes. They must correspond to condcode in MipsInstrInfo.h.
// They must be kept in synch.
def MIPS_FCOND_F    : PatLeaf<(i32 0)>;
def MIPS_FCOND_UN   : PatLeaf<(i32 1)>;
def MIPS_FCOND_OEQ  : PatLeaf<(i32 2)>;
def MIPS_FCOND_UEQ  : PatLeaf<(i32 3)>;
def MIPS_FCOND_OLT  : PatLeaf<(i32 4)>;
def MIPS_FCOND_ULT  : PatLeaf<(i32 5)>;
def MIPS_FCOND_OLE  : PatLeaf<(i32 6)>;
def MIPS_FCOND_ULE  : PatLeaf<(i32 7)>;
def MIPS_FCOND_SF   : PatLeaf<(i32 8)>;
def MIPS_FCOND_NGLE : PatLeaf<(i32 9)>;
def MIPS_FCOND_SEQ  : PatLeaf<(i32 10)>;
def MIPS_FCOND_NGL  : PatLeaf<(i32 11)>;
def MIPS_FCOND_LT   : PatLeaf<(i32 12)>;
def MIPS_FCOND_NGE  : PatLeaf<(i32 13)>;
def MIPS_FCOND_LE   : PatLeaf<(i32 14)>;
def MIPS_FCOND_NGT  : PatLeaf<(i32 15)>;

class FCMP<bits<5> fmt, RegisterClass RC, string typestr> :
  FCC<fmt, (outs), (ins RC:$fs, RC:$ft, condcode:$cc),
      !strconcat("c.$cc.", typestr, "\t$fs, $ft"),
      [(MipsFPCmp RC:$fs, RC:$ft, imm:$cc)]>;

/// Floating Point Compare
let Defs=[FCR31] in {
  def FCMP_S32 : FCMP<0x10, FGR32, "s">;
  def FCMP_D32 : FCMP<0x11, AFGR64, "d">, Requires<[NotFP64bit]>;
  def FCMP_D64 : FCMP<0x11, FGR64, "d">, Requires<[IsFP64bit]>;
}

//===----------------------------------------------------------------------===//
// Floating Point Pseudo-Instructions
//===----------------------------------------------------------------------===//
def MOVCCRToCCR : MipsPseudo<(outs CCR:$dst), (ins CCR:$src),
                             "# MOVCCRToCCR", []>;

// This pseudo instr gets expanded into 2 mtc1 instrs after register
// allocation.
def BuildPairF64 :
  MipsPseudo<(outs AFGR64:$dst),
             (ins CPURegs:$lo, CPURegs:$hi), "",
             [(set AFGR64:$dst, (MipsBuildPairF64 CPURegs:$lo, CPURegs:$hi))]>;

// This pseudo instr gets expanded into 2 mfc1 instrs after register
// allocation.
// if n is 0, lower part of src is extracted.
// if n is 1, higher part of src is extracted.
def ExtractElementF64 :
  MipsPseudo<(outs CPURegs:$dst),
             (ins AFGR64:$src, i32imm:$n), "",
             [(set CPURegs:$dst,
               (MipsExtractElementF64 AFGR64:$src, imm:$n))]>;

//===----------------------------------------------------------------------===//
// Floating Point Patterns
//===----------------------------------------------------------------------===//
def fpimm0 : PatLeaf<(fpimm), [{
  return N->isExactlyValue(+0.0);
}]>;

def fpimm0neg : PatLeaf<(fpimm), [{
  return N->isExactlyValue(-0.0);
}]>;

def : Pat<(f32 fpimm0), (MTC1 ZERO)>;
def : Pat<(f32 fpimm0neg), (FNEG_S (MTC1 ZERO))>;

def : Pat<(f32 (sint_to_fp CPURegs:$src)), (CVT_S_W (MTC1 CPURegs:$src))>;
def : Pat<(i32 (fp_to_sint FGR32:$src)), (MFC1 (TRUNC_W_S FGR32:$src))>;

let Predicates = [NotFP64bit] in {
  def : Pat<(f64 (sint_to_fp CPURegs:$src)), (CVT_D32_W (MTC1 CPURegs:$src))>;
  def : Pat<(i32 (fp_to_sint AFGR64:$src)), (MFC1 (TRUNC_W_D32 AFGR64:$src))>;
  def : Pat<(f32 (fround AFGR64:$src)), (CVT_S_D32 AFGR64:$src)>;
  def : Pat<(f64 (fextend FGR32:$src)), (CVT_D32_S FGR32:$src)>;
}

let Predicates = [IsFP64bit] in {
  def : Pat<(f64 fpimm0), (DMTC1 ZERO_64)>;
  def : Pat<(f64 fpimm0neg), (FNEG_D64 (DMTC1 ZERO_64))>;

  def : Pat<(f64 (sint_to_fp CPURegs:$src)), (CVT_D64_W (MTC1 CPURegs:$src))>;
  def : Pat<(f32 (sint_to_fp CPU64Regs:$src)),
            (CVT_S_L (DMTC1 CPU64Regs:$src))>;
  def : Pat<(f64 (sint_to_fp CPU64Regs:$src)),
            (CVT_D64_L (DMTC1 CPU64Regs:$src))>;

  def : Pat<(i32 (fp_to_sint FGR64:$src)), (MFC1 (TRUNC_W_D64 FGR64:$src))>;
  def : Pat<(i64 (fp_to_sint FGR64:$src)), (DMFC1 (TRUNC_L_D64 FGR64:$src))>;

  def : Pat<(f32 (fround FGR64:$src)), (CVT_S_D64 FGR64:$src)>;
  def : Pat<(f64 (fextend FGR32:$src)), (CVT_D64_S FGR32:$src)>;
}