summaryrefslogtreecommitdiff
path: root/lib/Target/PowerPC/PPC32ISelSimple.cpp
blob: 923e8d57bc0dcb1c174715744157e96682db8ba3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
//===-- PPC32ISelSimple.cpp - A simple instruction selector PowerPC32 -----===//
// 
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
// 
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "isel"
#include "PowerPC.h"
#include "PowerPCInstrBuilder.h"
#include "PowerPCInstrInfo.h"
#include "PPC32TargetMachine.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/Instructions.h"
#include "llvm/Pass.h"
#include "llvm/CodeGen/IntrinsicLowering.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/Target/MRegisterInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/InstVisitor.h"
#include "Support/Debug.h"
#include "Support/Statistic.h"
#include <vector>
using namespace llvm;

namespace {
  /// TypeClass - Used by the PowerPC backend to group LLVM types by their basic
  /// PPC Representation.
  ///
  enum TypeClass {
    cByte, cShort, cInt, cFP32, cFP64, cLong
  };
}

/// getClass - Turn a primitive type into a "class" number which is based on the
/// size of the type, and whether or not it is floating point.
///
static inline TypeClass getClass(const Type *Ty) {
  switch (Ty->getTypeID()) {
  case Type::SByteTyID:
  case Type::UByteTyID:   return cByte;      // Byte operands are class #0
  case Type::ShortTyID:
  case Type::UShortTyID:  return cShort;     // Short operands are class #1
  case Type::IntTyID:
  case Type::UIntTyID:
  case Type::PointerTyID: return cInt;       // Ints and pointers are class #2

  case Type::FloatTyID:   return cFP32;      // Single float is #3
  case Type::DoubleTyID:  return cFP64;      // Double Point is #4

  case Type::LongTyID:
  case Type::ULongTyID:   return cLong;      // Longs are class #5
  default:
    assert(0 && "Invalid type to getClass!");
    return cByte;  // not reached
  }
}

// getClassB - Just like getClass, but treat boolean values as ints.
static inline TypeClass getClassB(const Type *Ty) {
  if (Ty == Type::BoolTy) return cByte;
  return getClass(Ty);
}

namespace {
  struct ISel : public FunctionPass, InstVisitor<ISel> {
    PPC32TargetMachine &TM;
    MachineFunction *F;                 // The function we are compiling into
    MachineBasicBlock *BB;              // The current MBB we are compiling
    int VarArgsFrameIndex;              // FrameIndex for start of varargs area
    
    std::map<Value*, unsigned> RegMap;  // Mapping between Values and SSA Regs

    // External functions used in the Module
    Function *fmodfFn, *fmodFn, *__cmpdi2Fn, *__moddi3Fn, *__divdi3Fn, 
      *__umoddi3Fn,  *__udivdi3Fn, *__fixsfdiFn, *__fixdfdiFn, *__fixunssfdiFn,
      *__fixunsdfdiFn, *__floatdisfFn, *__floatdidfFn, *mallocFn, *freeFn;

    // MBBMap - Mapping between LLVM BB -> Machine BB
    std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;

    // AllocaMap - Mapping from fixed sized alloca instructions to the
    // FrameIndex for the alloca.
    std::map<AllocaInst*, unsigned> AllocaMap;

    // A Reg to hold the base address used for global loads and stores, and a
    // flag to set whether or not we need to emit it for this function.
    unsigned GlobalBaseReg;
    bool GlobalBaseInitialized;
    
    ISel(TargetMachine &tm) : TM(reinterpret_cast<PPC32TargetMachine&>(tm)),
      F(0), BB(0) {}

    bool doInitialization(Module &M) {
      // Add external functions that we may call
      Type *i = Type::IntTy;
      Type *d = Type::DoubleTy;
      Type *f = Type::FloatTy;
      Type *l = Type::LongTy;
      Type *ul = Type::ULongTy;
      Type *voidPtr = PointerType::get(Type::SByteTy);
      // float fmodf(float, float);
      fmodfFn = M.getOrInsertFunction("fmodf", f, f, f, 0);
      // double fmod(double, double);
      fmodFn = M.getOrInsertFunction("fmod", d, d, d, 0);
      // int __cmpdi2(long, long);
      __cmpdi2Fn = M.getOrInsertFunction("__cmpdi2", i, l, l, 0);
      // long __moddi3(long, long);
      __moddi3Fn = M.getOrInsertFunction("__moddi3", l, l, l, 0);
      // long __divdi3(long, long);
      __divdi3Fn = M.getOrInsertFunction("__divdi3", l, l, l, 0);
      // unsigned long __umoddi3(unsigned long, unsigned long);
      __umoddi3Fn = M.getOrInsertFunction("__umoddi3", ul, ul, ul, 0);
      // unsigned long __udivdi3(unsigned long, unsigned long);
      __udivdi3Fn = M.getOrInsertFunction("__udivdi3", ul, ul, ul, 0);
      // long __fixsfdi(float)
      __fixsfdiFn = M.getOrInsertFunction("__fixsfdi", l, f, 0);
      // long __fixdfdi(double)
      __fixdfdiFn = M.getOrInsertFunction("__fixdfdi", l, d, 0);
      // unsigned long __fixunssfdi(float)
      __fixunssfdiFn = M.getOrInsertFunction("__fixunssfdi", ul, f, 0);
      // unsigned long __fixunsdfdi(double)
      __fixunsdfdiFn = M.getOrInsertFunction("__fixunsdfdi", ul, d, 0);
      // float __floatdisf(long)
      __floatdisfFn = M.getOrInsertFunction("__floatdisf", f, l, 0);
      // double __floatdidf(long)
      __floatdidfFn = M.getOrInsertFunction("__floatdidf", d, l, 0);
      // void* malloc(size_t)
      mallocFn = M.getOrInsertFunction("malloc", voidPtr, Type::UIntTy, 0);
      // void free(void*)
      freeFn = M.getOrInsertFunction("free", Type::VoidTy, voidPtr, 0);
      return false;
    }

    /// runOnFunction - Top level implementation of instruction selection for
    /// the entire function.
    ///
    bool runOnFunction(Function &Fn) {
      // First pass over the function, lower any unknown intrinsic functions
      // with the IntrinsicLowering class.
      LowerUnknownIntrinsicFunctionCalls(Fn);

      F = &MachineFunction::construct(&Fn, TM);

      // Create all of the machine basic blocks for the function...
      for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
        F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));

      BB = &F->front();

      // Make sure we re-emit a set of the global base reg if necessary
      GlobalBaseInitialized = false;

      // Copy incoming arguments off of the stack...
      LoadArgumentsToVirtualRegs(Fn);

      // Instruction select everything except PHI nodes
      visit(Fn);

      // Select the PHI nodes
      SelectPHINodes();

      RegMap.clear();
      MBBMap.clear();
      AllocaMap.clear();
      F = 0;
      // We always build a machine code representation for the function
      return true;
    }

    virtual const char *getPassName() const {
      return "PowerPC Simple Instruction Selection";
    }

    /// visitBasicBlock - This method is called when we are visiting a new basic
    /// block.  This simply creates a new MachineBasicBlock to emit code into
    /// and adds it to the current MachineFunction.  Subsequent visit* for
    /// instructions will be invoked for all instructions in the basic block.
    ///
    void visitBasicBlock(BasicBlock &LLVM_BB) {
      BB = MBBMap[&LLVM_BB];
    }

    /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
    /// function, lowering any calls to unknown intrinsic functions into the
    /// equivalent LLVM code.
    ///
    void LowerUnknownIntrinsicFunctionCalls(Function &F);

    /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
    /// from the stack into virtual registers.
    ///
    void LoadArgumentsToVirtualRegs(Function &F);

    /// SelectPHINodes - Insert machine code to generate phis.  This is tricky
    /// because we have to generate our sources into the source basic blocks,
    /// not the current one.
    ///
    void SelectPHINodes();

    // Visitation methods for various instructions.  These methods simply emit
    // fixed PowerPC code for each instruction.

    // Control flow operators
    void visitReturnInst(ReturnInst &RI);
    void visitBranchInst(BranchInst &BI);

    struct ValueRecord {
      Value *Val;
      unsigned Reg;
      const Type *Ty;
      ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {}
      ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {}
    };
    
    // This struct is for recording the necessary operations to emit the GEP
    struct CollapsedGepOp {
      bool isMul;
      Value *index;
      ConstantSInt *size;
      CollapsedGepOp(bool mul, Value *i, ConstantSInt *s) :
        isMul(mul), index(i), size(s) {}
    };

    void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
                const std::vector<ValueRecord> &Args, bool isVarArg);
    void visitCallInst(CallInst &I);
    void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I);

    // Arithmetic operators
    void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
    void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
    void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
    void visitMul(BinaryOperator &B);

    void visitDiv(BinaryOperator &B) { visitDivRem(B); }
    void visitRem(BinaryOperator &B) { visitDivRem(B); }
    void visitDivRem(BinaryOperator &B);

    // Bitwise operators
    void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
    void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
    void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }

    // Comparison operators...
    void visitSetCondInst(SetCondInst &I);
    unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
                            MachineBasicBlock *MBB,
                            MachineBasicBlock::iterator MBBI);
    void visitSelectInst(SelectInst &SI);
    
    
    // Memory Instructions
    void visitLoadInst(LoadInst &I);
    void visitStoreInst(StoreInst &I);
    void visitGetElementPtrInst(GetElementPtrInst &I);
    void visitAllocaInst(AllocaInst &I);
    void visitMallocInst(MallocInst &I);
    void visitFreeInst(FreeInst &I);
    
    // Other operators
    void visitShiftInst(ShiftInst &I);
    void visitPHINode(PHINode &I) {}      // PHI nodes handled by second pass
    void visitCastInst(CastInst &I);
    void visitVANextInst(VANextInst &I);
    void visitVAArgInst(VAArgInst &I);

    void visitInstruction(Instruction &I) {
      std::cerr << "Cannot instruction select: " << I;
      abort();
    }

    unsigned ExtendOrClear(MachineBasicBlock *MBB,
                           MachineBasicBlock::iterator IP,
                           Value *Op0, Value *Op1);

    /// promote32 - Make a value 32-bits wide, and put it somewhere.
    ///
    void promote32(unsigned targetReg, const ValueRecord &VR);

    /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
    /// constant expression GEP support.
    ///
    void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
                          Value *Src, User::op_iterator IdxBegin,
                          User::op_iterator IdxEnd, unsigned TargetReg,
                          bool CollapseRemainder, ConstantSInt **Remainder,
                          unsigned *PendingAddReg);

    /// emitCastOperation - Common code shared between visitCastInst and
    /// constant expression cast support.
    ///
    void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator IP,
                           Value *Src, const Type *DestTy, unsigned TargetReg);

    /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
    /// and constant expression support.
    ///
    void emitSimpleBinaryOperation(MachineBasicBlock *BB,
                                   MachineBasicBlock::iterator IP,
                                   Value *Op0, Value *Op1,
                                   unsigned OperatorClass, unsigned TargetReg);

    /// emitBinaryFPOperation - This method handles emission of floating point
    /// Add (0), Sub (1), Mul (2), and Div (3) operations.
    void emitBinaryFPOperation(MachineBasicBlock *BB,
                               MachineBasicBlock::iterator IP,
                               Value *Op0, Value *Op1,
                               unsigned OperatorClass, unsigned TargetReg);

    void emitMultiply(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
                      Value *Op0, Value *Op1, unsigned TargetReg);

    void doMultiply(MachineBasicBlock *MBB,
                    MachineBasicBlock::iterator IP,
                    unsigned DestReg, Value *Op0, Value *Op1);
  
    /// doMultiplyConst - This method will multiply the value in Op0Reg by the
    /// value of the ContantInt *CI
    void doMultiplyConst(MachineBasicBlock *MBB, 
                         MachineBasicBlock::iterator IP,
                         unsigned DestReg, Value *Op0, ConstantInt *CI);

    void emitDivRemOperation(MachineBasicBlock *BB,
                             MachineBasicBlock::iterator IP,
                             Value *Op0, Value *Op1, bool isDiv,
                             unsigned TargetReg);

    /// emitSetCCOperation - Common code shared between visitSetCondInst and
    /// constant expression support.
    ///
    void emitSetCCOperation(MachineBasicBlock *BB,
                            MachineBasicBlock::iterator IP,
                            Value *Op0, Value *Op1, unsigned Opcode,
                            unsigned TargetReg);

    /// emitShiftOperation - Common code shared between visitShiftInst and
    /// constant expression support.
    ///
    void emitShiftOperation(MachineBasicBlock *MBB,
                            MachineBasicBlock::iterator IP,
                            Value *Op, Value *ShiftAmount, bool isLeftShift,
                            const Type *ResultTy, unsigned DestReg);
      
    /// emitSelectOperation - Common code shared between visitSelectInst and the
    /// constant expression support.
    ///
    void emitSelectOperation(MachineBasicBlock *MBB,
                             MachineBasicBlock::iterator IP,
                             Value *Cond, Value *TrueVal, Value *FalseVal,
                             unsigned DestReg);

    /// copyGlobalBaseToRegister - Output the instructions required to put the
    /// base address to use for accessing globals into a register.
    ///
    void ISel::copyGlobalBaseToRegister(MachineBasicBlock *MBB,
                                        MachineBasicBlock::iterator IP,
                                        unsigned R);

    /// copyConstantToRegister - Output the instructions required to put the
    /// specified constant into the specified register.
    ///
    void copyConstantToRegister(MachineBasicBlock *MBB,
                                MachineBasicBlock::iterator MBBI,
                                Constant *C, unsigned Reg);

    void emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
                   unsigned LHS, unsigned RHS);

    /// makeAnotherReg - This method returns the next register number we haven't
    /// yet used.
    ///
    /// Long values are handled somewhat specially.  They are always allocated
    /// as pairs of 32 bit integer values.  The register number returned is the
    /// high 32 bits of the long value, and the regNum+1 is the low 32 bits.
    ///
    unsigned makeAnotherReg(const Type *Ty) {
      assert(dynamic_cast<const PPC32RegisterInfo*>(TM.getRegisterInfo()) &&
             "Current target doesn't have PPC reg info??");
      const PPC32RegisterInfo *PPCRI =
        static_cast<const PPC32RegisterInfo*>(TM.getRegisterInfo());
      if (Ty == Type::LongTy || Ty == Type::ULongTy) {
        const TargetRegisterClass *RC = PPCRI->getRegClassForType(Type::IntTy);
        // Create the upper part
        F->getSSARegMap()->createVirtualRegister(RC);
        // Create the lower part.
        return F->getSSARegMap()->createVirtualRegister(RC)-1;
      }

      // Add the mapping of regnumber => reg class to MachineFunction
      const TargetRegisterClass *RC = PPCRI->getRegClassForType(Ty);
      return F->getSSARegMap()->createVirtualRegister(RC);
    }

    /// getReg - This method turns an LLVM value into a register number.
    ///
    unsigned getReg(Value &V) { return getReg(&V); }  // Allow references
    unsigned getReg(Value *V) {
      // Just append to the end of the current bb.
      MachineBasicBlock::iterator It = BB->end();
      return getReg(V, BB, It);
    }
    unsigned getReg(Value *V, MachineBasicBlock *MBB,
                    MachineBasicBlock::iterator IPt);
    
    /// canUseAsImmediateForOpcode - This method returns whether a ConstantInt
    /// is okay to use as an immediate argument to a certain binary operation
    bool canUseAsImmediateForOpcode(ConstantInt *CI, unsigned Opcode);

    /// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
    /// that is to be statically allocated with the initial stack frame
    /// adjustment.
    unsigned getFixedSizedAllocaFI(AllocaInst *AI);
  };
}

/// dyn_castFixedAlloca - If the specified value is a fixed size alloca
/// instruction in the entry block, return it.  Otherwise, return a null
/// pointer.
static AllocaInst *dyn_castFixedAlloca(Value *V) {
  if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
    BasicBlock *BB = AI->getParent();
    if (isa<ConstantUInt>(AI->getArraySize()) && BB ==&BB->getParent()->front())
      return AI;
  }
  return 0;
}

/// getReg - This method turns an LLVM value into a register number.
///
unsigned ISel::getReg(Value *V, MachineBasicBlock *MBB,
                      MachineBasicBlock::iterator IPt) {
  if (Constant *C = dyn_cast<Constant>(V)) {
    unsigned Reg = makeAnotherReg(V->getType());
    copyConstantToRegister(MBB, IPt, C, Reg);
    return Reg;
  } else if (AllocaInst *AI = dyn_castFixedAlloca(V)) {
    unsigned Reg = makeAnotherReg(V->getType());
    unsigned FI = getFixedSizedAllocaFI(AI);
    addFrameReference(BuildMI(*MBB, IPt, PPC::ADDI, 2, Reg), FI, 0, false);
    return Reg;
  }

  unsigned &Reg = RegMap[V];
  if (Reg == 0) {
    Reg = makeAnotherReg(V->getType());
    RegMap[V] = Reg;
  }

  return Reg;
}

/// canUseAsImmediateForOpcode - This method returns whether a ConstantInt
/// is okay to use as an immediate argument to a certain binary operator.
///
/// Operator is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for Xor.
bool ISel::canUseAsImmediateForOpcode(ConstantInt *CI, unsigned Operator) {
  ConstantSInt *Op1Cs;
  ConstantUInt *Op1Cu;
      
  // ADDI, Compare, and non-indexed Load take SIMM
  bool cond1 = (Operator == 0) 
    && (Op1Cs = dyn_cast<ConstantSInt>(CI))
    && (Op1Cs->getValue() <= 32767)
    && (Op1Cs->getValue() >= -32768);

  // SUBI takes -SIMM since it is a mnemonic for ADDI
  bool cond2 = (Operator == 1)
    && (Op1Cs = dyn_cast<ConstantSInt>(CI)) 
    && (Op1Cs->getValue() <= 32768)
    && (Op1Cs->getValue() >= -32767);
      
  // ANDIo, ORI, and XORI take unsigned values
  bool cond3 = (Operator >= 2)
    && (Op1Cs = dyn_cast<ConstantSInt>(CI))
    && (Op1Cs->getValue() >= 0)
    && (Op1Cs->getValue() <= 32767);

  // ADDI and SUBI take SIMMs, so we have to make sure the UInt would fit
  bool cond4 = (Operator < 2)
    && (Op1Cu = dyn_cast<ConstantUInt>(CI)) 
    && (Op1Cu->getValue() <= 32767);

  // ANDIo, ORI, and XORI take UIMMs, so they can be larger
  bool cond5 = (Operator >= 2)
    && (Op1Cu = dyn_cast<ConstantUInt>(CI))
    && (Op1Cu->getValue() <= 65535);

  if (cond1 || cond2 || cond3 || cond4 || cond5)
    return true;

  return false;
}

/// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
/// that is to be statically allocated with the initial stack frame
/// adjustment.
unsigned ISel::getFixedSizedAllocaFI(AllocaInst *AI) {
  // Already computed this?
  std::map<AllocaInst*, unsigned>::iterator I = AllocaMap.lower_bound(AI);
  if (I != AllocaMap.end() && I->first == AI) return I->second;

  const Type *Ty = AI->getAllocatedType();
  ConstantUInt *CUI = cast<ConstantUInt>(AI->getArraySize());
  unsigned TySize = TM.getTargetData().getTypeSize(Ty);
  TySize *= CUI->getValue();   // Get total allocated size...
  unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
      
  // Create a new stack object using the frame manager...
  int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
  AllocaMap.insert(I, std::make_pair(AI, FrameIdx));
  return FrameIdx;
}


/// copyGlobalBaseToRegister - Output the instructions required to put the
/// base address to use for accessing globals into a register.
///
void ISel::copyGlobalBaseToRegister(MachineBasicBlock *MBB,
                                    MachineBasicBlock::iterator IP,
                                    unsigned R) {
  if (!GlobalBaseInitialized) {
    // Insert the set of GlobalBaseReg into the first MBB of the function
    MachineBasicBlock &FirstMBB = F->front();
    MachineBasicBlock::iterator MBBI = FirstMBB.begin();
    GlobalBaseReg = makeAnotherReg(Type::IntTy);
    BuildMI(FirstMBB, MBBI, PPC::IMPLICIT_DEF, 0, PPC::LR);
    BuildMI(FirstMBB, MBBI, PPC::MovePCtoLR, 0, GlobalBaseReg);
    GlobalBaseInitialized = true;
  }
  // Emit our copy of GlobalBaseReg to the destination register in the
  // current MBB
  BuildMI(*MBB, IP, PPC::OR, 2, R).addReg(GlobalBaseReg)
    .addReg(GlobalBaseReg);
}

/// copyConstantToRegister - Output the instructions required to put the
/// specified constant into the specified register.
///
void ISel::copyConstantToRegister(MachineBasicBlock *MBB,
                                  MachineBasicBlock::iterator IP,
                                  Constant *C, unsigned R) {
  if (C->getType()->isIntegral()) {
    unsigned Class = getClassB(C->getType());

    if (Class == cLong) {
      if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(C)) {
        uint64_t uval = CUI->getValue();
        unsigned hiUVal = uval >> 32;
        unsigned loUVal = uval;
        ConstantUInt *CUHi = ConstantUInt::get(Type::UIntTy, hiUVal);
        ConstantUInt *CULo = ConstantUInt::get(Type::UIntTy, loUVal);
        copyConstantToRegister(MBB, IP, CUHi, R);
        copyConstantToRegister(MBB, IP, CULo, R+1);
        return;
      } else if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(C)) {
        int64_t sval = CSI->getValue();
        int hiSVal = sval >> 32;
        int loSVal = sval;
        ConstantSInt *CSHi = ConstantSInt::get(Type::IntTy, hiSVal);
        ConstantSInt *CSLo = ConstantSInt::get(Type::IntTy, loSVal);
        copyConstantToRegister(MBB, IP, CSHi, R);
        copyConstantToRegister(MBB, IP, CSLo, R+1);
        return;
      } else {
        std::cerr << "Unhandled long constant type!\n";
        abort();
      }
    }
    
    assert(Class <= cInt && "Type not handled yet!");

    // Handle bool
    if (C->getType() == Type::BoolTy) {
      BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(C == ConstantBool::True);
      return;
    }
    
    // Handle int
    if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(C)) {
      unsigned uval = CUI->getValue();
      if (uval < 32768) {
        BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(uval);
      } else {
        unsigned Temp = makeAnotherReg(Type::IntTy);
        BuildMI(*MBB, IP, PPC::LIS, 1, Temp).addSImm(uval >> 16);
        BuildMI(*MBB, IP, PPC::ORI, 2, R).addReg(Temp).addImm(uval);
      }
      return;
    } else if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(C)) {
      int sval = CSI->getValue();
      if (sval < 32768 && sval >= -32768) {
        BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(sval);
      } else {
        unsigned Temp = makeAnotherReg(Type::IntTy);
        BuildMI(*MBB, IP, PPC::LIS, 1, Temp).addSImm(sval >> 16);
        BuildMI(*MBB, IP, PPC::ORI, 2, R).addReg(Temp).addImm(sval);
      }
      return;
    }
    std::cerr << "Unhandled integer constant!\n";
    abort();
  } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
    // We need to spill the constant to memory...
    MachineConstantPool *CP = F->getConstantPool();
    unsigned CPI = CP->getConstantPoolIndex(CFP);
    const Type *Ty = CFP->getType();

    assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");

    // Load addr of constant to reg; constant is located at base + distance
    unsigned GlobalBase = makeAnotherReg(Type::IntTy);
    unsigned Reg1 = makeAnotherReg(Type::IntTy);
    unsigned Opcode = (Ty == Type::FloatTy) ? PPC::LFS : PPC::LFD;
    // Move value at base + distance into return reg
    copyGlobalBaseToRegister(MBB, IP, GlobalBase);
    BuildMI(*MBB, IP, PPC::LOADHiAddr, 2, Reg1).addReg(GlobalBase)
      .addConstantPoolIndex(CPI);
    BuildMI(*MBB, IP, Opcode, 2, R).addReg(Reg1).addConstantPoolIndex(CPI);
  } else if (isa<ConstantPointerNull>(C)) {
    // Copy zero (null pointer) to the register.
    BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(0);
  } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
    // GV is located at base + distance
    unsigned GlobalBase = makeAnotherReg(Type::IntTy);
    unsigned TmpReg = makeAnotherReg(GV->getType());
    unsigned Opcode = (GV->hasWeakLinkage() 
                      || GV->isExternal() 
                      || dyn_cast<Function>(GV)) ? PPC::LWZ : PPC::LA;
    
    // Move value at base + distance into return reg
    copyGlobalBaseToRegister(MBB, IP, GlobalBase);
    BuildMI(*MBB, IP, PPC::LOADHiAddr, 2, TmpReg).addReg(GlobalBase)
      .addGlobalAddress(GV);
    BuildMI(*MBB, IP, Opcode, 2, R).addReg(TmpReg).addGlobalAddress(GV);
  
    // Add the GV to the list of things whose addresses have been taken.
    TM.AddressTaken.insert(GV);
  } else {
    std::cerr << "Offending constant: " << *C << "\n";
    assert(0 && "Type not handled yet!");
  }
}

/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
/// the stack into virtual registers.
void ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
  unsigned ArgOffset = 24;
  unsigned GPR_remaining = 8;
  unsigned FPR_remaining = 13;
  unsigned GPR_idx = 0, FPR_idx = 0;
  static const unsigned GPR[] = { 
    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
  };
  static const unsigned FPR[] = {
    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
    PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
  };
    
  MachineFrameInfo *MFI = F->getFrameInfo();
 
  for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) {
    bool ArgLive = !I->use_empty();
    unsigned Reg = ArgLive ? getReg(*I) : 0;
    int FI;          // Frame object index

    switch (getClassB(I->getType())) {
    case cByte:
      if (ArgLive) {
        FI = MFI->CreateFixedObject(4, ArgOffset);
        if (GPR_remaining > 0) {
          BuildMI(BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx]);
          BuildMI(BB, PPC::OR, 2, Reg).addReg(GPR[GPR_idx])
            .addReg(GPR[GPR_idx]);
        } else {
          addFrameReference(BuildMI(BB, PPC::LBZ, 2, Reg), FI);
        }
      }
      break;
    case cShort:
      if (ArgLive) {
        FI = MFI->CreateFixedObject(4, ArgOffset);
        if (GPR_remaining > 0) {
          BuildMI(BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx]);
          BuildMI(BB, PPC::OR, 2, Reg).addReg(GPR[GPR_idx])
            .addReg(GPR[GPR_idx]);
        } else {
          addFrameReference(BuildMI(BB, PPC::LHZ, 2, Reg), FI);
        }
      }
      break;
    case cInt:
      if (ArgLive) {
        FI = MFI->CreateFixedObject(4, ArgOffset);
        if (GPR_remaining > 0) {
          BuildMI(BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx]);
          BuildMI(BB, PPC::OR, 2, Reg).addReg(GPR[GPR_idx])
            .addReg(GPR[GPR_idx]);
        } else {
          addFrameReference(BuildMI(BB, PPC::LWZ, 2, Reg), FI);
        }
      }
      break;
    case cLong:
      if (ArgLive) {
        FI = MFI->CreateFixedObject(8, ArgOffset);
        if (GPR_remaining > 1) {
          BuildMI(BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx]);
          BuildMI(BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx+1]);
          BuildMI(BB, PPC::OR, 2, Reg).addReg(GPR[GPR_idx])
            .addReg(GPR[GPR_idx]);
          BuildMI(BB, PPC::OR, 2, Reg+1).addReg(GPR[GPR_idx+1])
            .addReg(GPR[GPR_idx+1]);
        } else {
          addFrameReference(BuildMI(BB, PPC::LWZ, 2, Reg), FI);
          addFrameReference(BuildMI(BB, PPC::LWZ, 2, Reg+1), FI, 4);
        }
      }
      // longs require 4 additional bytes and use 2 GPRs
      ArgOffset += 4;
      if (GPR_remaining > 1) {
        GPR_remaining--;
        GPR_idx++;
      }
      break;
    case cFP32:
     if (ArgLive) {
        FI = MFI->CreateFixedObject(4, ArgOffset);

        if (FPR_remaining > 0) {
          BuildMI(BB, PPC::IMPLICIT_DEF, 0, FPR[FPR_idx]);
          BuildMI(BB, PPC::FMR, 1, Reg).addReg(FPR[FPR_idx]);
          FPR_remaining--;
          FPR_idx++;
        } else {
          addFrameReference(BuildMI(BB, PPC::LFS, 2, Reg), FI);
        }
      }
      break;
    case cFP64:
      if (ArgLive) {
        FI = MFI->CreateFixedObject(8, ArgOffset);

        if (FPR_remaining > 0) {
          BuildMI(BB, PPC::IMPLICIT_DEF, 0, FPR[FPR_idx]);
          BuildMI(BB, PPC::FMR, 1, Reg).addReg(FPR[FPR_idx]);
          FPR_remaining--;
          FPR_idx++;
        } else {
          addFrameReference(BuildMI(BB, PPC::LFD, 2, Reg), FI);
        }
      }

      // doubles require 4 additional bytes and use 2 GPRs of param space
      ArgOffset += 4;   
      if (GPR_remaining > 0) {
        GPR_remaining--;
        GPR_idx++;
      }
      break;
    default:
      assert(0 && "Unhandled argument type!");
    }
    ArgOffset += 4;  // Each argument takes at least 4 bytes on the stack...
    if (GPR_remaining > 0) {
      GPR_remaining--;    // uses up 2 GPRs
      GPR_idx++;
    }
  }

  // If the function takes variable number of arguments, add a frame offset for
  // the start of the first vararg value... this is used to expand
  // llvm.va_start.
  if (Fn.getFunctionType()->isVarArg())
    VarArgsFrameIndex = MFI->CreateFixedObject(4, ArgOffset);
}


/// SelectPHINodes - Insert machine code to generate phis.  This is tricky
/// because we have to generate our sources into the source basic blocks, not
/// the current one.
///
void ISel::SelectPHINodes() {
  const TargetInstrInfo &TII = *TM.getInstrInfo();
  const Function &LF = *F->getFunction();  // The LLVM function...
  for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
    const BasicBlock *BB = I;
    MachineBasicBlock &MBB = *MBBMap[I];

    // Loop over all of the PHI nodes in the LLVM basic block...
    MachineBasicBlock::iterator PHIInsertPoint = MBB.begin();
    for (BasicBlock::const_iterator I = BB->begin();
         PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I)); ++I) {

      // Create a new machine instr PHI node, and insert it.
      unsigned PHIReg = getReg(*PN);
      MachineInstr *PhiMI = BuildMI(MBB, PHIInsertPoint,
                                    PPC::PHI, PN->getNumOperands(), PHIReg);

      MachineInstr *LongPhiMI = 0;
      if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy)
        LongPhiMI = BuildMI(MBB, PHIInsertPoint,
                            PPC::PHI, PN->getNumOperands(), PHIReg+1);

      // PHIValues - Map of blocks to incoming virtual registers.  We use this
      // so that we only initialize one incoming value for a particular block,
      // even if the block has multiple entries in the PHI node.
      //
      std::map<MachineBasicBlock*, unsigned> PHIValues;

      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
        MachineBasicBlock *PredMBB = 0;
        for (MachineBasicBlock::pred_iterator PI = MBB.pred_begin (),
             PE = MBB.pred_end (); PI != PE; ++PI)
          if (PN->getIncomingBlock(i) == (*PI)->getBasicBlock()) {
            PredMBB = *PI;
            break;
          }
        assert (PredMBB && "Couldn't find incoming machine-cfg edge for phi");

        unsigned ValReg;
        std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
          PHIValues.lower_bound(PredMBB);

        if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
          // We already inserted an initialization of the register for this
          // predecessor.  Recycle it.
          ValReg = EntryIt->second;
        } else {
          // Get the incoming value into a virtual register.
          //
          Value *Val = PN->getIncomingValue(i);

          // If this is a constant or GlobalValue, we may have to insert code
          // into the basic block to compute it into a virtual register.
          if ((isa<Constant>(Val) && !isa<ConstantExpr>(Val)) ||
              isa<GlobalValue>(Val)) {
            // Simple constants get emitted at the end of the basic block,
            // before any terminator instructions.  We "know" that the code to
            // move a constant into a register will never clobber any flags.
            ValReg = getReg(Val, PredMBB, PredMBB->getFirstTerminator());
          } else {
            // Because we don't want to clobber any values which might be in
            // physical registers with the computation of this constant (which
            // might be arbitrarily complex if it is a constant expression),
            // just insert the computation at the top of the basic block.
            MachineBasicBlock::iterator PI = PredMBB->begin();

            // Skip over any PHI nodes though!
            while (PI != PredMBB->end() && PI->getOpcode() == PPC::PHI)
              ++PI;

            ValReg = getReg(Val, PredMBB, PI);
          }

          // Remember that we inserted a value for this PHI for this predecessor
          PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
        }

        PhiMI->addRegOperand(ValReg);
        PhiMI->addMachineBasicBlockOperand(PredMBB);
        if (LongPhiMI) {
          LongPhiMI->addRegOperand(ValReg+1);
          LongPhiMI->addMachineBasicBlockOperand(PredMBB);
        }
      }

      // Now that we emitted all of the incoming values for the PHI node, make
      // sure to reposition the InsertPoint after the PHI that we just added.
      // This is needed because we might have inserted a constant into this
      // block, right after the PHI's which is before the old insert point!
      PHIInsertPoint = LongPhiMI ? LongPhiMI : PhiMI;
      ++PHIInsertPoint;
    }
  }
}


// canFoldSetCCIntoBranchOrSelect - Return the setcc instruction if we can fold
// it into the conditional branch or select instruction which is the only user
// of the cc instruction.  This is the case if the conditional branch is the
// only user of the setcc, and if the setcc is in the same basic block as the
// conditional branch.
//
static SetCondInst *canFoldSetCCIntoBranchOrSelect(Value *V) {
  if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
    if (SCI->hasOneUse()) {
      Instruction *User = cast<Instruction>(SCI->use_back());
      if ((isa<BranchInst>(User) || isa<SelectInst>(User)) &&
          SCI->getParent() == User->getParent())
        return SCI;
    }
  return 0;
}


// canFoldGEPIntoLoadOrStore - Return the GEP instruction if we can fold it into
// the load or store instruction that is the only user of the GEP.
//
static GetElementPtrInst *canFoldGEPIntoLoadOrStore(Value *V) {
  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V))
    if (GEPI->hasOneUse()) {
      Instruction *User = cast<Instruction>(GEPI->use_back());
      if (isa<StoreInst>(User) &&
          GEPI->getParent() == User->getParent() &&
          User->getOperand(0) != GEPI &&
          User->getOperand(1) == GEPI) {
        return GEPI;
      }
      if (isa<LoadInst>(User) &&
          GEPI->getParent() == User->getParent() &&
          User->getOperand(0) == GEPI) {
        return GEPI;
      }
    }
  return 0;
}


// Return a fixed numbering for setcc instructions which does not depend on the
// order of the opcodes.
//
static unsigned getSetCCNumber(unsigned Opcode) {
  switch (Opcode) {
  default: assert(0 && "Unknown setcc instruction!");
  case Instruction::SetEQ: return 0;
  case Instruction::SetNE: return 1;
  case Instruction::SetLT: return 2;
  case Instruction::SetGE: return 3;
  case Instruction::SetGT: return 4;
  case Instruction::SetLE: return 5;
  }
}

static unsigned getPPCOpcodeForSetCCNumber(unsigned Opcode) {
  switch (Opcode) {
  default: assert(0 && "Unknown setcc instruction!");
  case Instruction::SetEQ: return PPC::BEQ;
  case Instruction::SetNE: return PPC::BNE;
  case Instruction::SetLT: return PPC::BLT;
  case Instruction::SetGE: return PPC::BGE;
  case Instruction::SetGT: return PPC::BGT;
  case Instruction::SetLE: return PPC::BLE;
  }
}

/// emitUCOM - emits an unordered FP compare.
void ISel::emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
                     unsigned LHS, unsigned RHS) {
    BuildMI(*MBB, IP, PPC::FCMPU, 2, PPC::CR0).addReg(LHS).addReg(RHS);
}

unsigned ISel::ExtendOrClear(MachineBasicBlock *MBB,
                             MachineBasicBlock::iterator IP,
                             Value *Op0, Value *Op1) {
  const Type *CompTy = Op0->getType();
  unsigned Reg = getReg(Op0, MBB, IP);
  unsigned Class = getClassB(CompTy);

  // Before we do a comparison or SetCC, we have to make sure that we truncate
  // the source registers appropriately.
  if (Class == cByte) {
    unsigned TmpReg = makeAnotherReg(CompTy);
    if (CompTy->isSigned())
      BuildMI(*MBB, IP, PPC::EXTSB, 1, TmpReg).addReg(Reg);
    else
      BuildMI(*MBB, IP, PPC::RLWINM, 4, TmpReg).addReg(Reg).addImm(0)
        .addImm(24).addImm(31);
    Reg = TmpReg;
  } else if (Class == cShort) {
    unsigned TmpReg = makeAnotherReg(CompTy);
    if (CompTy->isSigned())
      BuildMI(*MBB, IP, PPC::EXTSH, 1, TmpReg).addReg(Reg);
    else
      BuildMI(*MBB, IP, PPC::RLWINM, 4, TmpReg).addReg(Reg).addImm(0)
        .addImm(16).addImm(31);
    Reg = TmpReg;
  }
  return Reg;
}

/// EmitComparison - emits a comparison of the two operands, returning the
/// extended setcc code to use.  The result is in CR0.
///
unsigned ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
                              MachineBasicBlock *MBB,
                              MachineBasicBlock::iterator IP) {
  // The arguments are already supposed to be of the same type.
  const Type *CompTy = Op0->getType();
  unsigned Class = getClassB(CompTy);
  unsigned Op0r = ExtendOrClear(MBB, IP, Op0, Op1);
  
  // Use crand for lt, gt and crandc for le, ge
  unsigned CROpcode = (OpNum == 2 || OpNum == 4) ? PPC::CRAND : PPC::CRANDC;
  // ? cr1[lt] : cr1[gt]
  unsigned CR1field = (OpNum == 2 || OpNum == 3) ? 4 : 5;
  // ? cr0[lt] : cr0[gt]
  unsigned CR0field = (OpNum == 2 || OpNum == 5) ? 0 : 1;
  unsigned Opcode = CompTy->isSigned() ? PPC::CMPW : PPC::CMPLW;
  unsigned OpcodeImm = CompTy->isSigned() ? PPC::CMPWI : PPC::CMPLWI;

  // Special case handling of: cmp R, i
  if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
    if (Class == cByte || Class == cShort || Class == cInt) {
      unsigned Op1v = CI->getRawValue() & 0xFFFF;
      unsigned OpClass = (CompTy->isSigned()) ? 0 : 2;
      
      // Treat compare like ADDI for the purposes of immediate suitability
      if (canUseAsImmediateForOpcode(CI, OpClass)) {
        BuildMI(*MBB, IP, OpcodeImm, 2, PPC::CR0).addReg(Op0r).addSImm(Op1v);
      } else {
        unsigned Op1r = getReg(Op1, MBB, IP);
        BuildMI(*MBB, IP, Opcode, 2, PPC::CR0).addReg(Op0r).addReg(Op1r);
      }
      return OpNum;
    } else {
      assert(Class == cLong && "Unknown integer class!");
      unsigned LowCst = CI->getRawValue();
      unsigned HiCst = CI->getRawValue() >> 32;
      if (OpNum < 2) {    // seteq, setne
        unsigned LoLow = makeAnotherReg(Type::IntTy);
        unsigned LoTmp = makeAnotherReg(Type::IntTy);
        unsigned HiLow = makeAnotherReg(Type::IntTy);
        unsigned HiTmp = makeAnotherReg(Type::IntTy);
        unsigned FinalTmp = makeAnotherReg(Type::IntTy);

        BuildMI(*MBB, IP, PPC::XORI, 2, LoLow).addReg(Op0r+1)
          .addImm(LowCst & 0xFFFF);
        BuildMI(*MBB, IP, PPC::XORIS, 2, LoTmp).addReg(LoLow)
          .addImm(LowCst >> 16);
        BuildMI(*MBB, IP, PPC::XORI, 2, HiLow).addReg(Op0r)
          .addImm(HiCst & 0xFFFF);
        BuildMI(*MBB, IP, PPC::XORIS, 2, HiTmp).addReg(HiLow)
          .addImm(HiCst >> 16);
        BuildMI(*MBB, IP, PPC::ORo, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
        return OpNum;
      } else {
        unsigned ConstReg = makeAnotherReg(CompTy);
        copyConstantToRegister(MBB, IP, CI, ConstReg);

        // cr0 = r3 ccOpcode r5 or (r3 == r5 AND r4 ccOpcode r6)
        BuildMI(*MBB, IP, Opcode, 2, PPC::CR0).addReg(Op0r)
          .addReg(ConstReg);
        BuildMI(*MBB, IP, Opcode, 2, PPC::CR1).addReg(Op0r+1)
          .addReg(ConstReg+1);
        BuildMI(*MBB, IP, PPC::CRAND, 3).addImm(2).addImm(2).addImm(CR1field);
        BuildMI(*MBB, IP, PPC::CROR, 3).addImm(CR0field).addImm(CR0field)
          .addImm(2);
        return OpNum;
      }
    }
  }

  unsigned Op1r = getReg(Op1, MBB, IP);

  switch (Class) {
  default: assert(0 && "Unknown type class!");
  case cByte:
  case cShort:
  case cInt:
    BuildMI(*MBB, IP, Opcode, 2, PPC::CR0).addReg(Op0r).addReg(Op1r);
    break;

  case cFP32:
  case cFP64:
    emitUCOM(MBB, IP, Op0r, Op1r);
    break;

  case cLong:
    if (OpNum < 2) {    // seteq, setne
      unsigned LoTmp = makeAnotherReg(Type::IntTy);
      unsigned HiTmp = makeAnotherReg(Type::IntTy);
      unsigned FinalTmp = makeAnotherReg(Type::IntTy);
      BuildMI(*MBB, IP, PPC::XOR, 2, HiTmp).addReg(Op0r).addReg(Op1r);
      BuildMI(*MBB, IP, PPC::XOR, 2, LoTmp).addReg(Op0r+1).addReg(Op1r+1);
      BuildMI(*MBB, IP, PPC::ORo,  2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
      break;  // Allow the sete or setne to be generated from flags set by OR
    } else {
      unsigned TmpReg1 = makeAnotherReg(Type::IntTy);
      unsigned TmpReg2 = makeAnotherReg(Type::IntTy);

      // cr0 = r3 ccOpcode r5 or (r3 == r5 AND r4 ccOpcode r6)
      BuildMI(*MBB, IP, Opcode, 2, PPC::CR0).addReg(Op0r).addReg(Op1r);
      BuildMI(*MBB, IP, Opcode, 2, PPC::CR1).addReg(Op0r+1).addReg(Op1r+1);
      BuildMI(*MBB, IP, PPC::CRAND, 3).addImm(2).addImm(2).addImm(CR1field);
      BuildMI(*MBB, IP, PPC::CROR, 3).addImm(CR0field).addImm(CR0field)
        .addImm(2);
      return OpNum;
    }
  }
  return OpNum;
}

/// visitSetCondInst - emit code to calculate the condition via
/// EmitComparison(), and possibly store a 0 or 1 to a register as a result
///
void ISel::visitSetCondInst(SetCondInst &I) {
  if (canFoldSetCCIntoBranchOrSelect(&I))
    return;

  unsigned DestReg = getReg(I);
  unsigned Opcode = I.getOpcode();
  unsigned PPCOpcode = getPPCOpcodeForSetCCNumber(Opcode);

  // Create an iterator with which to insert the MBB for copying the false value
  // and the MBB to hold the PHI instruction for this SetCC.
  MachineBasicBlock *thisMBB = BB;
  const BasicBlock *LLVM_BB = BB->getBasicBlock();
  ilist<MachineBasicBlock>::iterator It = BB;
  ++It;
  
  //  thisMBB:
  //  ...
  //   cmpTY cr0, r1, r2
  //   %TrueValue = li 1
  //   bCC sinkMBB
  EmitComparison(Opcode, I.getOperand(0), I.getOperand(1), BB, BB->end());
  unsigned TrueValue = makeAnotherReg(I.getType());
  BuildMI(BB, PPC::LI, 1, TrueValue).addSImm(1);
  MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
  MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
  BuildMI(BB, PPCOpcode, 2).addReg(PPC::CR0).addMBB(sinkMBB);
  F->getBasicBlockList().insert(It, copy0MBB);
  F->getBasicBlockList().insert(It, sinkMBB);
  // Update machine-CFG edges
  BB->addSuccessor(copy0MBB);
  BB->addSuccessor(sinkMBB);

  //  copy0MBB:
  //   %FalseValue = li 0
  //   fallthrough
  BB = copy0MBB;
  unsigned FalseValue = makeAnotherReg(I.getType());
  BuildMI(BB, PPC::LI, 1, FalseValue).addSImm(0);
  // Update machine-CFG edges
  BB->addSuccessor(sinkMBB);

  //  sinkMBB:
  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
  //  ...
  BB = sinkMBB;
  BuildMI(BB, PPC::PHI, 4, DestReg).addReg(FalseValue)
    .addMBB(copy0MBB).addReg(TrueValue).addMBB(thisMBB);
}

void ISel::visitSelectInst(SelectInst &SI) {
  unsigned DestReg = getReg(SI);
  MachineBasicBlock::iterator MII = BB->end();
  emitSelectOperation(BB, MII, SI.getCondition(), SI.getTrueValue(),
                      SI.getFalseValue(), DestReg);
}
 
/// emitSelect - Common code shared between visitSelectInst and the constant
/// expression support.
/// FIXME: this is most likely broken in one or more ways.  Namely, PowerPC has
/// no select instruction.  FSEL only works for comparisons against zero.
void ISel::emitSelectOperation(MachineBasicBlock *MBB,
                               MachineBasicBlock::iterator IP,
                               Value *Cond, Value *TrueVal, Value *FalseVal,
                               unsigned DestReg) {
  unsigned SelectClass = getClassB(TrueVal->getType());
  unsigned Opcode;

  // See if we can fold the setcc into the select instruction, or if we have
  // to get the register of the Cond value
  if (SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(Cond)) {
    // We successfully folded the setcc into the select instruction.
    unsigned OpNum = getSetCCNumber(SCI->getOpcode());
    OpNum = EmitComparison(OpNum, SCI->getOperand(0),SCI->getOperand(1),MBB,IP);
    Opcode = getPPCOpcodeForSetCCNumber(SCI->getOpcode());
  } else {
    unsigned CondReg = getReg(Cond, MBB, IP);
    BuildMI(*MBB, IP, PPC::CMPI, 2, PPC::CR0).addReg(CondReg).addSImm(0);
    Opcode = getPPCOpcodeForSetCCNumber(Instruction::SetNE);
  }
  unsigned TrueValue = getReg(TrueVal, BB, BB->end());

  MachineBasicBlock *thisMBB = BB;
  const BasicBlock *LLVM_BB = BB->getBasicBlock();
  ilist<MachineBasicBlock>::iterator It = BB;
  ++It;

  //  thisMBB:
  //  ...
  //   cmpTY cr0, r1, r2
  //   %TrueValue = ...
  //   bCC sinkMBB
  MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
  MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
  BuildMI(BB, Opcode, 2).addReg(PPC::CR0).addMBB(sinkMBB);
  F->getBasicBlockList().insert(It, copy0MBB);
  F->getBasicBlockList().insert(It, sinkMBB);
  // Update machine-CFG edges
  BB->addSuccessor(copy0MBB);
  BB->addSuccessor(sinkMBB);

  //  copy0MBB:
  //   %FalseValue = ...
  //   fallthrough
  BB = copy0MBB;
  unsigned FalseValue = getReg(FalseVal, BB, BB->begin());
  // Update machine-CFG edges
  BB->addSuccessor(sinkMBB);

  //  sinkMBB:
  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
  //  ...
  BB = sinkMBB;
  BuildMI(BB, PPC::PHI, 4, DestReg).addReg(FalseValue)
    .addMBB(copy0MBB).addReg(TrueValue).addMBB(thisMBB);
    
  // For a register pair representing a long value, define the second reg
  // FIXME: Can this really be correct for selecting longs?
  if (getClassB(TrueVal->getType()) == cLong)
    BuildMI(BB, PPC::LI, 1, DestReg+1).addImm(0);
  return;
}



/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
/// operand, in the specified target register.
///
void ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
  bool isUnsigned = VR.Ty->isUnsigned() || VR.Ty == Type::BoolTy;

  Value *Val = VR.Val;
  const Type *Ty = VR.Ty;
  if (Val) {
    if (Constant *C = dyn_cast<Constant>(Val)) {
      Val = ConstantExpr::getCast(C, Type::IntTy);
      if (isa<ConstantExpr>(Val))   // Could not fold
        Val = C;
      else
        Ty = Type::IntTy;           // Folded!
    }

    // If this is a simple constant, just emit a load directly to avoid the copy
    if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
      int TheVal = CI->getRawValue() & 0xFFFFFFFF;

      if (TheVal < 32768 && TheVal >= -32768) {
        BuildMI(BB, PPC::LI, 1, targetReg).addSImm(TheVal);
      } else {
        unsigned TmpReg = makeAnotherReg(Type::IntTy);
        BuildMI(BB, PPC::LIS, 1, TmpReg).addSImm(TheVal >> 16);
        BuildMI(BB, PPC::ORI, 2, targetReg).addReg(TmpReg)
          .addImm(TheVal & 0xFFFF);
      }
      return;
    }
  }

  // Make sure we have the register number for this value...
  unsigned Reg = Val ? getReg(Val) : VR.Reg;
  switch (getClassB(Ty)) {
  case cByte:
    // Extend value into target register (8->32)
    if (isUnsigned)
      BuildMI(BB, PPC::RLWINM, 4, targetReg).addReg(Reg).addZImm(0)
        .addZImm(24).addZImm(31);
    else
      BuildMI(BB, PPC::EXTSB, 1, targetReg).addReg(Reg);
    break;
  case cShort:
    // Extend value into target register (16->32)
    if (isUnsigned)
      BuildMI(BB, PPC::RLWINM, 4, targetReg).addReg(Reg).addZImm(0)
        .addZImm(16).addZImm(31);
    else
      BuildMI(BB, PPC::EXTSH, 1, targetReg).addReg(Reg);
    break;
  case cInt:
    // Move value into target register (32->32)
    BuildMI(BB, PPC::OR, 2, targetReg).addReg(Reg).addReg(Reg);
    break;
  default:
    assert(0 && "Unpromotable operand class in promote32");
  }
}

/// visitReturnInst - implemented with BLR
///
void ISel::visitReturnInst(ReturnInst &I) {
  // Only do the processing if this is a non-void return
  if (I.getNumOperands() > 0) {
    Value *RetVal = I.getOperand(0);
    switch (getClassB(RetVal->getType())) {
    case cByte:   // integral return values: extend or move into r3 and return
    case cShort:
    case cInt:
      promote32(PPC::R3, ValueRecord(RetVal));
      break;
    case cFP32:
    case cFP64: {   // Floats & Doubles: Return in f1
      unsigned RetReg = getReg(RetVal);
      BuildMI(BB, PPC::FMR, 1, PPC::F1).addReg(RetReg);
      break;
    }
    case cLong: {
      unsigned RetReg = getReg(RetVal);
      BuildMI(BB, PPC::OR, 2, PPC::R3).addReg(RetReg).addReg(RetReg);
      BuildMI(BB, PPC::OR, 2, PPC::R4).addReg(RetReg+1).addReg(RetReg+1);
      break;
    }
    default:
      visitInstruction(I);
    }
  }
  BuildMI(BB, PPC::BLR, 1).addImm(0);
}

// getBlockAfter - Return the basic block which occurs lexically after the
// specified one.
static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
  Function::iterator I = BB; ++I;  // Get iterator to next block
  return I != BB->getParent()->end() ? &*I : 0;
}

/// visitBranchInst - Handle conditional and unconditional branches here.  Note
/// that since code layout is frozen at this point, that if we are trying to
/// jump to a block that is the immediate successor of the current block, we can
/// just make a fall-through (but we don't currently).
///
void ISel::visitBranchInst(BranchInst &BI) {
  // Update machine-CFG edges
  BB->addSuccessor(MBBMap[BI.getSuccessor(0)]);
  if (BI.isConditional())
    BB->addSuccessor(MBBMap[BI.getSuccessor(1)]);
  
  BasicBlock *NextBB = getBlockAfter(BI.getParent());  // BB after current one

  if (!BI.isConditional()) {  // Unconditional branch?
    if (BI.getSuccessor(0) != NextBB) 
      BuildMI(BB, PPC::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
    return;
  }
  
  // See if we can fold the setcc into the branch itself...
  SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(BI.getCondition());
  if (SCI == 0) {
    // Nope, cannot fold setcc into this branch.  Emit a branch on a condition
    // computed some other way...
    unsigned condReg = getReg(BI.getCondition());
    BuildMI(BB, PPC::CMPLI, 3, PPC::CR0).addImm(0).addReg(condReg)
      .addImm(0);
    if (BI.getSuccessor(1) == NextBB) {
      if (BI.getSuccessor(0) != NextBB)
        BuildMI(BB, PPC::COND_BRANCH, 3).addReg(PPC::CR0).addImm(PPC::BNE)
          .addMBB(MBBMap[BI.getSuccessor(0)])
          .addMBB(MBBMap[BI.getSuccessor(1)]);
    } else {
      BuildMI(BB, PPC::COND_BRANCH, 3).addReg(PPC::CR0).addImm(PPC::BEQ)
        .addMBB(MBBMap[BI.getSuccessor(1)])
        .addMBB(MBBMap[BI.getSuccessor(0)]);
      if (BI.getSuccessor(0) != NextBB)
        BuildMI(BB, PPC::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
    }
    return;
  }

  unsigned OpNum = getSetCCNumber(SCI->getOpcode());
  unsigned Opcode = getPPCOpcodeForSetCCNumber(SCI->getOpcode());
  MachineBasicBlock::iterator MII = BB->end();
  OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII);
  
  if (BI.getSuccessor(0) != NextBB) {
    BuildMI(BB, PPC::COND_BRANCH, 3).addReg(PPC::CR0).addImm(Opcode)
      .addMBB(MBBMap[BI.getSuccessor(0)])
      .addMBB(MBBMap[BI.getSuccessor(1)]);
    if (BI.getSuccessor(1) != NextBB)
      BuildMI(BB, PPC::B, 1).addMBB(MBBMap[BI.getSuccessor(1)]);
  } else {
    // Change to the inverse condition...
    if (BI.getSuccessor(1) != NextBB) {
      Opcode = PPC32InstrInfo::invertPPCBranchOpcode(Opcode);
      BuildMI(BB, PPC::COND_BRANCH, 3).addReg(PPC::CR0).addImm(Opcode)
        .addMBB(MBBMap[BI.getSuccessor(1)])
        .addMBB(MBBMap[BI.getSuccessor(0)]);
    }
  }
}

/// doCall - This emits an abstract call instruction, setting up the arguments
/// and the return value as appropriate.  For the actual function call itself,
/// it inserts the specified CallMI instruction into the stream.
///
/// FIXME: See Documentation at the following URL for "correct" behavior
/// <http://developer.apple.com/documentation/DeveloperTools/Conceptual/MachORuntime/2rt_powerpc_abi/chapter_9_section_5.html>
void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
                  const std::vector<ValueRecord> &Args, bool isVarArg) {
  // Count how many bytes are to be pushed on the stack, including the linkage
  // area, and parameter passing area.
  unsigned NumBytes = 24;
  unsigned ArgOffset = 24;

  if (!Args.empty()) {
    for (unsigned i = 0, e = Args.size(); i != e; ++i)
      switch (getClassB(Args[i].Ty)) {
      case cByte: case cShort: case cInt:
        NumBytes += 4; break;
      case cLong:
        NumBytes += 8; break;
      case cFP32:
        NumBytes += 4; break;
      case cFP64:
        NumBytes += 8; break;
        break;
      default: assert(0 && "Unknown class!");
      }

    // Just to be safe, we'll always reserve the full 24 bytes of linkage area 
    // plus 32 bytes of argument space in case any called code gets funky on us.
    if (NumBytes < 56) NumBytes = 56;

    // Adjust the stack pointer for the new arguments...
    // These functions are automatically eliminated by the prolog/epilog pass
    BuildMI(BB, PPC::ADJCALLSTACKDOWN, 1).addImm(NumBytes);

    // Arguments go on the stack in reverse order, as specified by the ABI.
    // Offset to the paramater area on the stack is 24.
    int GPR_remaining = 8, FPR_remaining = 13;
    unsigned GPR_idx = 0, FPR_idx = 0;
    static const unsigned GPR[] = { 
      PPC::R3, PPC::R4, PPC::R5, PPC::R6,
      PPC::R7, PPC::R8, PPC::R9, PPC::R10,
    };
    static const unsigned FPR[] = {
      PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, 
      PPC::F7, PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, 
      PPC::F13
    };
    
    for (unsigned i = 0, e = Args.size(); i != e; ++i) {
      unsigned ArgReg;
      switch (getClassB(Args[i].Ty)) {
      case cByte:
      case cShort:
        // Promote arg to 32 bits wide into a temporary register...
        ArgReg = makeAnotherReg(Type::UIntTy);
        promote32(ArgReg, Args[i]);
          
        // Reg or stack?
        if (GPR_remaining > 0) {
          BuildMI(BB, PPC::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
            .addReg(ArgReg);
          CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
        }
        if (GPR_remaining <= 0 || isVarArg) {
          BuildMI(BB, PPC::STW, 3).addReg(ArgReg).addSImm(ArgOffset)
            .addReg(PPC::R1);
        }
        break;
      case cInt:
        ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;

        // Reg or stack?
        if (GPR_remaining > 0) {
          BuildMI(BB, PPC::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
            .addReg(ArgReg);
          CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
        }
        if (GPR_remaining <= 0 || isVarArg) {
          BuildMI(BB, PPC::STW, 3).addReg(ArgReg).addSImm(ArgOffset)
            .addReg(PPC::R1);
        }
        break;
      case cLong:
        ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;

        // Reg or stack?  Note that PPC calling conventions state that long args
        // are passed rN = hi, rN+1 = lo, opposite of LLVM.
        if (GPR_remaining > 1) {
          BuildMI(BB, PPC::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
            .addReg(ArgReg);
          BuildMI(BB, PPC::OR, 2, GPR[GPR_idx+1]).addReg(ArgReg+1)
            .addReg(ArgReg+1);
          CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
          CallMI->addRegOperand(GPR[GPR_idx+1], MachineOperand::Use);
        }
        if (GPR_remaining <= 1 || isVarArg) {
          BuildMI(BB, PPC::STW, 3).addReg(ArgReg).addSImm(ArgOffset)
            .addReg(PPC::R1);
          BuildMI(BB, PPC::STW, 3).addReg(ArgReg+1).addSImm(ArgOffset+4)
            .addReg(PPC::R1);
        }

        ArgOffset += 4;        // 8 byte entry, not 4.
        GPR_remaining -= 1;    // uses up 2 GPRs
        GPR_idx += 1;
        break;
      case cFP32:
        ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
        // Reg or stack?
        if (FPR_remaining > 0) {
          BuildMI(BB, PPC::FMR, 1, FPR[FPR_idx]).addReg(ArgReg);
          CallMI->addRegOperand(FPR[FPR_idx], MachineOperand::Use);
          FPR_remaining--;
          FPR_idx++;
          
          // If this is a vararg function, and there are GPRs left, also
          // pass the float in an int.  Otherwise, put it on the stack.
          if (isVarArg) {
            BuildMI(BB, PPC::STFS, 3).addReg(ArgReg).addSImm(ArgOffset)
            .addReg(PPC::R1);
            if (GPR_remaining > 0) {
              BuildMI(BB, PPC::LWZ, 2, GPR[GPR_idx])
              .addSImm(ArgOffset).addReg(PPC::R1);
              CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
            }
          }
        } else {
          BuildMI(BB, PPC::STFS, 3).addReg(ArgReg).addSImm(ArgOffset)
          .addReg(PPC::R1);
        }
        break;
      case cFP64:
        ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
        // Reg or stack?
        if (FPR_remaining > 0) {
          BuildMI(BB, PPC::FMR, 1, FPR[FPR_idx]).addReg(ArgReg);
          CallMI->addRegOperand(FPR[FPR_idx], MachineOperand::Use);
          FPR_remaining--;
          FPR_idx++;
          // For vararg functions, must pass doubles via int regs as well
          if (isVarArg) {
            BuildMI(BB, PPC::STFD, 3).addReg(ArgReg).addSImm(ArgOffset)
            .addReg(PPC::R1);
            
            // Doubles can be split across reg + stack for varargs
            if (GPR_remaining > 0) {
              BuildMI(BB, PPC::LWZ, 2, GPR[GPR_idx]).addSImm(ArgOffset)
              .addReg(PPC::R1);
              CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
            }
            if (GPR_remaining > 1) {
              BuildMI(BB, PPC::LWZ, 2, GPR[GPR_idx+1])
                .addSImm(ArgOffset+4).addReg(PPC::R1);
              CallMI->addRegOperand(GPR[GPR_idx+1], MachineOperand::Use);
            }
          }
        } else {
          BuildMI(BB, PPC::STFD, 3).addReg(ArgReg).addSImm(ArgOffset)
          .addReg(PPC::R1);
        }
        // Doubles use 8 bytes, and 2 GPRs worth of param space
        ArgOffset += 4;
        GPR_remaining--;
        GPR_idx++;
        break;
        
      default: assert(0 && "Unknown class!");
      }
      ArgOffset += 4;
      GPR_remaining--;
      GPR_idx++;
    }
  } else {
    BuildMI(BB, PPC::ADJCALLSTACKDOWN, 1).addImm(NumBytes);
  }
  
  BuildMI(BB, PPC::IMPLICIT_DEF, 0, PPC::LR);
  BB->push_back(CallMI);
  
  // These functions are automatically eliminated by the prolog/epilog pass
  BuildMI(BB, PPC::ADJCALLSTACKUP, 1).addImm(NumBytes);

  // If there is a return value, scavenge the result from the location the call
  // leaves it in...
  //
  if (Ret.Ty != Type::VoidTy) {
    unsigned DestClass = getClassB(Ret.Ty);
    switch (DestClass) {
    case cByte:
    case cShort:
    case cInt:
      // Integral results are in r3
      BuildMI(BB, PPC::OR, 2, Ret.Reg).addReg(PPC::R3).addReg(PPC::R3);
      break;
    case cFP32:   // Floating-point return values live in f1
    case cFP64:
      BuildMI(BB, PPC::FMR, 1, Ret.Reg).addReg(PPC::F1);
      break;
    case cLong:   // Long values are in r3:r4
      BuildMI(BB, PPC::OR, 2, Ret.Reg).addReg(PPC::R3).addReg(PPC::R3);
      BuildMI(BB, PPC::OR, 2, Ret.Reg+1).addReg(PPC::R4).addReg(PPC::R4);
      break;
    default: assert(0 && "Unknown class!");
    }
  }
}


/// visitCallInst - Push args on stack and do a procedure call instruction.
void ISel::visitCallInst(CallInst &CI) {
  MachineInstr *TheCall;
  Function *F = CI.getCalledFunction();
  if (F) {
    // Is it an intrinsic function call?
    if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
      visitIntrinsicCall(ID, CI);   // Special intrinsics are not handled here
      return;
    }
    // Emit a CALL instruction with PC-relative displacement.
    TheCall = BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(F, true);
    // Add it to the set of functions called to be used by the Printer
    TM.CalledFunctions.insert(F);
  } else {  // Emit an indirect call through the CTR
    unsigned Reg = getReg(CI.getCalledValue());
    BuildMI(BB, PPC::OR, 2, PPC::R12).addReg(Reg).addReg(Reg);
    BuildMI(BB, PPC::MTCTR, 1).addReg(PPC::R12);
    TheCall = BuildMI(PPC::CALLindirect, 2).addZImm(20).addZImm(0)
      .addReg(PPC::R12);
  }

  std::vector<ValueRecord> Args;
  for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
    Args.push_back(ValueRecord(CI.getOperand(i)));

  unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
  bool isVarArg = F ? F->getFunctionType()->isVarArg() : true;
  doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args, isVarArg);
}         


/// dyncastIsNan - Return the operand of an isnan operation if this is an isnan.
///
static Value *dyncastIsNan(Value *V) {
  if (CallInst *CI = dyn_cast<CallInst>(V))
    if (Function *F = CI->getCalledFunction())
      if (F->getIntrinsicID() == Intrinsic::isunordered)
        return CI->getOperand(1);
  return 0;
}

/// isOnlyUsedByUnorderedComparisons - Return true if this value is only used by
/// or's whos operands are all calls to the isnan predicate.
static bool isOnlyUsedByUnorderedComparisons(Value *V) {
  assert(dyncastIsNan(V) && "The value isn't an isnan call!");

  // Check all uses, which will be or's of isnans if this predicate is true.
  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
    Instruction *I = cast<Instruction>(*UI);
    if (I->getOpcode() != Instruction::Or) return false;
    if (I->getOperand(0) != V && !dyncastIsNan(I->getOperand(0))) return false;
    if (I->getOperand(1) != V && !dyncastIsNan(I->getOperand(1))) return false;
  }

  return true;
}

/// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
/// function, lowering any calls to unknown intrinsic functions into the
/// equivalent LLVM code.
///
void ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) {
  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
      if (CallInst *CI = dyn_cast<CallInst>(I++))
        if (Function *F = CI->getCalledFunction())
          switch (F->getIntrinsicID()) {
          case Intrinsic::not_intrinsic:
          case Intrinsic::vastart:
          case Intrinsic::vacopy:
          case Intrinsic::vaend:
          case Intrinsic::returnaddress:
          case Intrinsic::frameaddress:
            // FIXME: should lower these ourselves
            // case Intrinsic::isunordered:
            // case Intrinsic::memcpy: -> doCall().  system memcpy almost
            // guaranteed to be faster than anything we generate ourselves
            // We directly implement these intrinsics
            break;
          case Intrinsic::readio: {
            // On PPC, memory operations are in-order.  Lower this intrinsic
            // into a volatile load.
            Instruction *Before = CI->getPrev();
            LoadInst * LI = new LoadInst(CI->getOperand(1), "", true, CI);
            CI->replaceAllUsesWith(LI);
            BB->getInstList().erase(CI);
            break;
          }
          case Intrinsic::writeio: {
            // On PPC, memory operations are in-order.  Lower this intrinsic
            // into a volatile store.
            Instruction *Before = CI->getPrev();
            StoreInst *SI = new StoreInst(CI->getOperand(1),
                                          CI->getOperand(2), true, CI);
            CI->replaceAllUsesWith(SI);
            BB->getInstList().erase(CI);
            break;
          }
          default:
            // All other intrinsic calls we must lower.
            Instruction *Before = CI->getPrev();
            TM.getIntrinsicLowering().LowerIntrinsicCall(CI);
            if (Before) {        // Move iterator to instruction after call
              I = Before; ++I;
            } else {
              I = BB->begin();
            }
          }
}

void ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) {
  unsigned TmpReg1, TmpReg2, TmpReg3;
  switch (ID) {
  case Intrinsic::vastart:
    // Get the address of the first vararg value...
    TmpReg1 = getReg(CI);
    addFrameReference(BuildMI(BB, PPC::ADDI, 2, TmpReg1), VarArgsFrameIndex, 
                      0, false);
    return;

  case Intrinsic::vacopy:
    TmpReg1 = getReg(CI);
    TmpReg2 = getReg(CI.getOperand(1));
    BuildMI(BB, PPC::OR, 2, TmpReg1).addReg(TmpReg2).addReg(TmpReg2);
    return;
  case Intrinsic::vaend: return;

  case Intrinsic::returnaddress:
    TmpReg1 = getReg(CI);
    if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
      MachineFrameInfo *MFI = F->getFrameInfo();
      unsigned NumBytes = MFI->getStackSize();
      
      BuildMI(BB, PPC::LWZ, 2, TmpReg1).addSImm(NumBytes+8)
        .addReg(PPC::R1);
    } else {
      // Values other than zero are not implemented yet.
      BuildMI(BB, PPC::LI, 1, TmpReg1).addSImm(0);
    }
    return;

  case Intrinsic::frameaddress:
    TmpReg1 = getReg(CI);
    if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
      BuildMI(BB, PPC::OR, 2, TmpReg1).addReg(PPC::R1).addReg(PPC::R1);
    } else {
      // Values other than zero are not implemented yet.
      BuildMI(BB, PPC::LI, 1, TmpReg1).addSImm(0);
    }
    return;
    
#if 0
    // This may be useful for supporting isunordered
  case Intrinsic::isnan:
    // If this is only used by 'isunordered' style comparisons, don't emit it.
    if (isOnlyUsedByUnorderedComparisons(&CI)) return;
    TmpReg1 = getReg(CI.getOperand(1));
    emitUCOM(BB, BB->end(), TmpReg1, TmpReg1);
    TmpReg2 = makeAnotherReg(Type::IntTy);
    BuildMI(BB, PPC::MFCR, TmpReg2);
    TmpReg3 = getReg(CI);
    BuildMI(BB, PPC::RLWINM, 4, TmpReg3).addReg(TmpReg2).addImm(4).addImm(31).addImm(31);
    return;
#endif
    
  default: assert(0 && "Error: unknown intrinsics should have been lowered!");
  }
}

/// visitSimpleBinary - Implement simple binary operators for integral types...
/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for
/// Xor.
///
void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
  unsigned DestReg = getReg(B);
  MachineBasicBlock::iterator MI = BB->end();
  Value *Op0 = B.getOperand(0), *Op1 = B.getOperand(1);
  unsigned Class = getClassB(B.getType());

  emitSimpleBinaryOperation(BB, MI, Op0, Op1, OperatorClass, DestReg);
}

/// emitBinaryFPOperation - This method handles emission of floating point
/// Add (0), Sub (1), Mul (2), and Div (3) operations.
void ISel::emitBinaryFPOperation(MachineBasicBlock *BB,
                                 MachineBasicBlock::iterator IP,
                                 Value *Op0, Value *Op1,
                                 unsigned OperatorClass, unsigned DestReg) {

  static const unsigned OpcodeTab[][4] = {
    { PPC::FADDS, PPC::FSUBS, PPC::FMULS, PPC::FDIVS },  // Float
    { PPC::FADD,  PPC::FSUB,  PPC::FMUL,  PPC::FDIV },   // Double
  };

  // Special case: R1 = op <const fp>, R2
  if (ConstantFP *Op0C = dyn_cast<ConstantFP>(Op0))
    if (Op0C->isExactlyValue(-0.0) && OperatorClass == 1) {
      // -0.0 - X === -X
      unsigned op1Reg = getReg(Op1, BB, IP);
      BuildMI(*BB, IP, PPC::FNEG, 1, DestReg).addReg(op1Reg);
      return;
    }

  unsigned Opcode = OpcodeTab[Op0->getType() == Type::DoubleTy][OperatorClass];
  unsigned Op0r = getReg(Op0, BB, IP);
  unsigned Op1r = getReg(Op1, BB, IP);
  BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
}

/// emitSimpleBinaryOperation - Implement simple binary operators for integral
/// types...  OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for
/// Or, 4 for Xor.
///
/// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
/// and constant expression support.
///
void ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB,
                                     MachineBasicBlock::iterator IP,
                                     Value *Op0, Value *Op1,
                                     unsigned OperatorClass, unsigned DestReg) {
  unsigned Class = getClassB(Op0->getType());

  // Arithmetic and Bitwise operators
  static const unsigned OpcodeTab[] = {
    PPC::ADD, PPC::SUB, PPC::AND, PPC::OR, PPC::XOR
  };
  static const unsigned ImmOpcodeTab[] = {
    PPC::ADDI, PPC::SUBI, PPC::ANDIo, PPC::ORI, PPC::XORI
  };
  static const unsigned RImmOpcodeTab[] = {
    PPC::ADDI, PPC::SUBFIC, PPC::ANDIo, PPC::ORI, PPC::XORI
  };

  // Otherwise, code generate the full operation with a constant.
  static const unsigned BottomTab[] = {
    PPC::ADDC, PPC::SUBC, PPC::AND, PPC::OR, PPC::XOR
  };
  static const unsigned TopTab[] = {
    PPC::ADDE, PPC::SUBFE, PPC::AND, PPC::OR, PPC::XOR
  };
  
  if (Class == cFP32 || Class == cFP64) {
    assert(OperatorClass < 2 && "No logical ops for FP!");
    emitBinaryFPOperation(MBB, IP, Op0, Op1, OperatorClass, DestReg);
    return;
  }

  if (Op0->getType() == Type::BoolTy) {
    if (OperatorClass == 3)
      // If this is an or of two isnan's, emit an FP comparison directly instead
      // of or'ing two isnan's together.
      if (Value *LHS = dyncastIsNan(Op0))
        if (Value *RHS = dyncastIsNan(Op1)) {
          unsigned Op0Reg = getReg(RHS, MBB, IP), Op1Reg = getReg(LHS, MBB, IP);
          unsigned TmpReg = makeAnotherReg(Type::IntTy);
          emitUCOM(MBB, IP, Op0Reg, Op1Reg);
          BuildMI(*MBB, IP, PPC::MFCR, TmpReg);
          BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(TmpReg).addImm(4)
            .addImm(31).addImm(31);
          return;
        }
  }

  // Special case: op <const int>, Reg
  if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0)) {
    // sub 0, X -> subfic
    if (OperatorClass == 1 && canUseAsImmediateForOpcode(CI, 0)) {
      unsigned Op1r = getReg(Op1, MBB, IP);
      int imm = CI->getRawValue() & 0xFFFF;

      if (Class == cLong) {
        BuildMI(*MBB, IP, PPC::SUBFIC, 2, DestReg+1).addReg(Op1r+1)
          .addSImm(imm);
        BuildMI(*MBB, IP, PPC::SUBFZE, 1, DestReg).addReg(Op1r);
      } else {
        BuildMI(*MBB, IP, PPC::SUBFIC, 2, DestReg).addReg(Op1r).addSImm(imm);
      }
      return;
    }
    
    // If it is easy to do, swap the operands and emit an immediate op
    if (Class != cLong && OperatorClass != 1 && 
        canUseAsImmediateForOpcode(CI, OperatorClass)) {
      unsigned Op1r = getReg(Op1, MBB, IP);
      int imm = CI->getRawValue() & 0xFFFF;
    
      if (OperatorClass < 2)
        BuildMI(*MBB, IP, RImmOpcodeTab[OperatorClass], 2, DestReg).addReg(Op1r)
          .addSImm(imm);
      else
        BuildMI(*MBB, IP, RImmOpcodeTab[OperatorClass], 2, DestReg).addReg(Op1r)
          .addZImm(imm);
      return;
    }
  }

  // Special case: op Reg, <const int>
  if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
    unsigned Op0r = getReg(Op0, MBB, IP);

    // xor X, -1 -> not X
    if (OperatorClass == 4 && Op1C->isAllOnesValue()) {
      BuildMI(*MBB, IP, PPC::NOR, 2, DestReg).addReg(Op0r).addReg(Op0r);
      if (Class == cLong)  // Invert the low part too
        BuildMI(*MBB, IP, PPC::NOR, 2, DestReg+1).addReg(Op0r+1)
          .addReg(Op0r+1);
      return;
    }
    
    if (Class != cLong) {
      if (canUseAsImmediateForOpcode(Op1C, OperatorClass)) {
        int immediate = Op1C->getRawValue() & 0xFFFF;
        
        if (OperatorClass < 2)
          BuildMI(*MBB, IP, ImmOpcodeTab[OperatorClass], 2,DestReg).addReg(Op0r)
            .addSImm(immediate);
        else
          BuildMI(*MBB, IP, ImmOpcodeTab[OperatorClass], 2,DestReg).addReg(Op0r)
            .addZImm(immediate);
      } else {
        unsigned Op1r = getReg(Op1, MBB, IP);
        BuildMI(*MBB, IP, OpcodeTab[OperatorClass], 2, DestReg).addReg(Op0r)
          .addReg(Op1r);
      }
      return;
    }

    unsigned Op1r = getReg(Op1, MBB, IP);

    BuildMI(*MBB, IP, BottomTab[OperatorClass], 2, DestReg+1).addReg(Op0r+1)
      .addReg(Op1r+1);
    BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg).addReg(Op0r)
      .addReg(Op1r);
    return;
  }
  
  // We couldn't generate an immediate variant of the op, load both halves into
  // registers and emit the appropriate opcode.
  unsigned Op0r = getReg(Op0, MBB, IP);
  unsigned Op1r = getReg(Op1, MBB, IP);

  if (Class != cLong) {
    unsigned Opcode = OpcodeTab[OperatorClass];
    BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
  } else {
    BuildMI(*MBB, IP, BottomTab[OperatorClass], 2, DestReg+1).addReg(Op0r+1)
      .addReg(Op1r+1);
    BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg).addReg(Op0r)
      .addReg(Op1r);
  }
  return;
}

// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N.  It
// returns zero when the input is not exactly a power of two.
static unsigned ExactLog2(unsigned Val) {
  if (Val == 0 || (Val & (Val-1))) return 0;
  unsigned Count = 0;
  while (Val != 1) {
    Val >>= 1;
    ++Count;
  }
  return Count;
}

/// doMultiply - Emit appropriate instructions to multiply together the
/// Values Op0 and Op1, and put the result in DestReg.
///
void ISel::doMultiply(MachineBasicBlock *MBB,
                      MachineBasicBlock::iterator IP,
                      unsigned DestReg, Value *Op0, Value *Op1) {
  unsigned Class0 = getClass(Op0->getType());
  unsigned Class1 = getClass(Op1->getType());
  
  unsigned Op0r = getReg(Op0, MBB, IP);
  unsigned Op1r = getReg(Op1, MBB, IP);
  
  // 64 x 64 -> 64
  if (Class0 == cLong && Class1 == cLong) {
    unsigned Tmp1 = makeAnotherReg(Type::IntTy);
    unsigned Tmp2 = makeAnotherReg(Type::IntTy);
    unsigned Tmp3 = makeAnotherReg(Type::IntTy);
    unsigned Tmp4 = makeAnotherReg(Type::IntTy);
    BuildMI(*MBB, IP, PPC::MULHWU, 2, Tmp1).addReg(Op0r+1).addReg(Op1r+1);
    BuildMI(*MBB, IP, PPC::MULLW, 2, DestReg+1).addReg(Op0r+1).addReg(Op1r+1);
    BuildMI(*MBB, IP, PPC::MULLW, 2, Tmp2).addReg(Op0r+1).addReg(Op1r);
    BuildMI(*MBB, IP, PPC::ADD, 2, Tmp3).addReg(Tmp1).addReg(Tmp2);
    BuildMI(*MBB, IP, PPC::MULLW, 2, Tmp4).addReg(Op0r).addReg(Op1r+1);
    BuildMI(*MBB, IP, PPC::ADD, 2, DestReg).addReg(Tmp3).addReg(Tmp4);
    return;
  }
  
  // 64 x 32 or less, promote 32 to 64 and do a 64 x 64
  if (Class0 == cLong && Class1 <= cInt) {
    unsigned Tmp0 = makeAnotherReg(Type::IntTy);
    unsigned Tmp1 = makeAnotherReg(Type::IntTy);
    unsigned Tmp2 = makeAnotherReg(Type::IntTy);
    unsigned Tmp3 = makeAnotherReg(Type::IntTy);
    unsigned Tmp4 = makeAnotherReg(Type::IntTy);
    if (Op1->getType()->isSigned())
      BuildMI(*MBB, IP, PPC::SRAWI, 2, Tmp0).addReg(Op1r).addImm(31);
    else
      BuildMI(*MBB, IP, PPC::LI, 2, Tmp0).addSImm(0);
    BuildMI(*MBB, IP, PPC::MULHWU, 2, Tmp1).addReg(Op0r+1).addReg(Op1r);
    BuildMI(*MBB, IP, PPC::MULLW, 2, DestReg+1).addReg(Op0r+1).addReg(Op1r);
    BuildMI(*MBB, IP, PPC::MULLW, 2, Tmp2).addReg(Op0r+1).addReg(Tmp0);
    BuildMI(*MBB, IP, PPC::ADD, 2, Tmp3).addReg(Tmp1).addReg(Tmp2);
    BuildMI(*MBB, IP, PPC::MULLW, 2, Tmp4).addReg(Op0r).addReg(Op1r);
    BuildMI(*MBB, IP, PPC::ADD, 2, DestReg).addReg(Tmp3).addReg(Tmp4);
    return;
  }
  
  // 32 x 32 -> 32
  if (Class0 <= cInt && Class1 <= cInt) {
    BuildMI(*MBB, IP, PPC::MULLW, 2, DestReg).addReg(Op0r).addReg(Op1r);
    return;
  }
  
  assert(0 && "doMultiply cannot operate on unknown type!");
}

/// doMultiplyConst - This method will multiply the value in Op0 by the
/// value of the ContantInt *CI
void ISel::doMultiplyConst(MachineBasicBlock *MBB,
                           MachineBasicBlock::iterator IP,
                           unsigned DestReg, Value *Op0, ConstantInt *CI) {
  unsigned Class = getClass(Op0->getType());

  // Mul op0, 0 ==> 0
  if (CI->isNullValue()) {
    BuildMI(*MBB, IP, PPC::LI, 1, DestReg).addSImm(0);
    if (Class == cLong)
      BuildMI(*MBB, IP, PPC::LI, 1, DestReg+1).addSImm(0);
    return;
  }
  
  // Mul op0, 1 ==> op0
  if (CI->equalsInt(1)) {
    unsigned Op0r = getReg(Op0, MBB, IP);
    BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(Op0r).addReg(Op0r);
    if (Class == cLong)
      BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(Op0r+1).addReg(Op0r+1);
    return;
  }

  // If the element size is exactly a power of 2, use a shift to get it.
  if (unsigned Shift = ExactLog2(CI->getRawValue())) {
    ConstantUInt *ShiftCI = ConstantUInt::get(Type::UByteTy, Shift);
    emitShiftOperation(MBB, IP, Op0, ShiftCI, true, Op0->getType(), DestReg);
    return;
  }
  
  // If 32 bits or less and immediate is in right range, emit mul by immediate
  if (Class == cByte || Class == cShort || Class == cInt) {
    if (canUseAsImmediateForOpcode(CI, 0)) {
      unsigned Op0r = getReg(Op0, MBB, IP);
      unsigned imm = CI->getRawValue() & 0xFFFF;
      BuildMI(*MBB, IP, PPC::MULLI, 2, DestReg).addReg(Op0r).addSImm(imm);
      return;
    }
  }
  
  doMultiply(MBB, IP, DestReg, Op0, CI);
}

void ISel::visitMul(BinaryOperator &I) {
  unsigned ResultReg = getReg(I);

  Value *Op0 = I.getOperand(0);
  Value *Op1 = I.getOperand(1);

  MachineBasicBlock::iterator IP = BB->end();
  emitMultiply(BB, IP, Op0, Op1, ResultReg);
}

void ISel::emitMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
                        Value *Op0, Value *Op1, unsigned DestReg) {
  TypeClass Class = getClass(Op0->getType());

  switch (Class) {
  case cByte:
  case cShort:
  case cInt:
  case cLong:
    if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
      doMultiplyConst(MBB, IP, DestReg, Op0, CI);
    } else {
      doMultiply(MBB, IP, DestReg, Op0, Op1);
    }
    return;
  case cFP32:
  case cFP64:
    emitBinaryFPOperation(MBB, IP, Op0, Op1, 2, DestReg);
    return;
    break;
  }
}


/// visitDivRem - Handle division and remainder instructions... these
/// instruction both require the same instructions to be generated, they just
/// select the result from a different register.  Note that both of these
/// instructions work differently for signed and unsigned operands.
///
void ISel::visitDivRem(BinaryOperator &I) {
  unsigned ResultReg = getReg(I);
  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);

  MachineBasicBlock::iterator IP = BB->end();
  emitDivRemOperation(BB, IP, Op0, Op1, I.getOpcode() == Instruction::Div,
                      ResultReg);
}

void ISel::emitDivRemOperation(MachineBasicBlock *BB,
                               MachineBasicBlock::iterator IP,
                               Value *Op0, Value *Op1, bool isDiv,
                               unsigned ResultReg) {
  const Type *Ty = Op0->getType();
  unsigned Class = getClass(Ty);
  switch (Class) {
  case cFP32:
    if (isDiv) {
      // Floating point divide...
      emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg);
      return;
    } else {
      // Floating point remainder via fmodf(float x, float y);
      unsigned Op0Reg = getReg(Op0, BB, IP);
      unsigned Op1Reg = getReg(Op1, BB, IP);
      MachineInstr *TheCall =
        BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(fmodfFn, true);
      std::vector<ValueRecord> Args;
      Args.push_back(ValueRecord(Op0Reg, Type::FloatTy));
      Args.push_back(ValueRecord(Op1Reg, Type::FloatTy));
      doCall(ValueRecord(ResultReg, Type::FloatTy), TheCall, Args, false);
      TM.CalledFunctions.insert(fmodfFn);
    }
    return;
  case cFP64:
    if (isDiv) {
      // Floating point divide...
      emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg);
      return;
    } else {               
      // Floating point remainder via fmod(double x, double y);
      unsigned Op0Reg = getReg(Op0, BB, IP);
      unsigned Op1Reg = getReg(Op1, BB, IP);
      MachineInstr *TheCall =
        BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(fmodFn, true);
      std::vector<ValueRecord> Args;
      Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy));
      Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy));
      doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args, false);
      TM.CalledFunctions.insert(fmodFn);
    }
    return;
  case cLong: {
    static Function* const Funcs[] =
      { __moddi3Fn, __divdi3Fn, __umoddi3Fn, __udivdi3Fn };
    unsigned Op0Reg = getReg(Op0, BB, IP);
    unsigned Op1Reg = getReg(Op1, BB, IP);
    unsigned NameIdx = Ty->isUnsigned()*2 + isDiv;
    MachineInstr *TheCall =
      BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(Funcs[NameIdx], true);

    std::vector<ValueRecord> Args;
    Args.push_back(ValueRecord(Op0Reg, Type::LongTy));
    Args.push_back(ValueRecord(Op1Reg, Type::LongTy));
    doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args, false);
    TM.CalledFunctions.insert(Funcs[NameIdx]);
    return;
  }
  case cByte: case cShort: case cInt:
    break;          // Small integrals, handled below...
  default: assert(0 && "Unknown class!");
  }

  // Special case signed division by power of 2.
  if (isDiv)
    if (ConstantSInt *CI = dyn_cast<ConstantSInt>(Op1)) {
      assert(Class != cLong && "This doesn't handle 64-bit divides!");
      int V = CI->getValue();

      if (V == 1) {       // X /s 1 => X
        unsigned Op0Reg = getReg(Op0, BB, IP);
        BuildMI(*BB, IP, PPC::OR, 2, ResultReg).addReg(Op0Reg).addReg(Op0Reg);
        return;
      }

      if (V == -1) {      // X /s -1 => -X
        unsigned Op0Reg = getReg(Op0, BB, IP);
        BuildMI(*BB, IP, PPC::NEG, 1, ResultReg).addReg(Op0Reg);
        return;
      }

      unsigned log2V = ExactLog2(V);
      if (log2V != 0 && Ty->isSigned()) {
        unsigned Op0Reg = getReg(Op0, BB, IP);
        unsigned TmpReg = makeAnotherReg(Op0->getType());
        
        BuildMI(*BB, IP, PPC::SRAWI, 2, TmpReg).addReg(Op0Reg).addImm(log2V);
        BuildMI(*BB, IP, PPC::ADDZE, 1, ResultReg).addReg(TmpReg);
        return;
      }
    }

  unsigned Op0Reg = getReg(Op0, BB, IP);
  unsigned Op1Reg = getReg(Op1, BB, IP);
  unsigned Opcode = Ty->isSigned() ? PPC::DIVW : PPC::DIVWU;
  
  if (isDiv) {
    BuildMI(*BB, IP, Opcode, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
  } else { // Remainder
    unsigned TmpReg1 = makeAnotherReg(Op0->getType());
    unsigned TmpReg2 = makeAnotherReg(Op0->getType());
    
    BuildMI(*BB, IP, Opcode, 2, TmpReg1).addReg(Op0Reg).addReg(Op1Reg);
    BuildMI(*BB, IP, PPC::MULLW, 2, TmpReg2).addReg(TmpReg1).addReg(Op1Reg);
    BuildMI(*BB, IP, PPC::SUBF, 2, ResultReg).addReg(TmpReg2).addReg(Op0Reg);
  }
}


/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
/// for constant immediate shift values, and for constant immediate
/// shift values equal to 1. Even the general case is sort of special,
/// because the shift amount has to be in CL, not just any old register.
///
void ISel::visitShiftInst(ShiftInst &I) {
  MachineBasicBlock::iterator IP = BB->end();
  emitShiftOperation(BB, IP, I.getOperand(0), I.getOperand(1),
                     I.getOpcode() == Instruction::Shl, I.getType(),
                     getReg(I));
}

/// emitShiftOperation - Common code shared between visitShiftInst and
/// constant expression support.
///
void ISel::emitShiftOperation(MachineBasicBlock *MBB,
                              MachineBasicBlock::iterator IP,
                              Value *Op, Value *ShiftAmount, bool isLeftShift,
                              const Type *ResultTy, unsigned DestReg) {
  unsigned SrcReg = getReg (Op, MBB, IP);
  bool isSigned = ResultTy->isSigned ();
  unsigned Class = getClass (ResultTy);
  
  // Longs, as usual, are handled specially...
  if (Class == cLong) {
    // If we have a constant shift, we can generate much more efficient code
    // than otherwise...
    //
    if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
      unsigned Amount = CUI->getValue();
      if (Amount < 32) {
        if (isLeftShift) {
          // FIXME: RLWIMI is a use-and-def of DestReg+1, but that violates SSA
          BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
            .addImm(Amount).addImm(0).addImm(31-Amount);
          BuildMI(*MBB, IP, PPC::RLWIMI, 5).addReg(DestReg).addReg(SrcReg+1)
            .addImm(Amount).addImm(32-Amount).addImm(31);
          BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg+1).addReg(SrcReg+1)
            .addImm(Amount).addImm(0).addImm(31-Amount);
        } else {
          // FIXME: RLWIMI is a use-and-def of DestReg, but that violates SSA
          BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg+1).addReg(SrcReg+1)
            .addImm(32-Amount).addImm(Amount).addImm(31);
          BuildMI(*MBB, IP, PPC::RLWIMI, 5).addReg(DestReg+1).addReg(SrcReg)
            .addImm(32-Amount).addImm(0).addImm(Amount-1);
          BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
            .addImm(32-Amount).addImm(Amount).addImm(31);
        }
      } else {                 // Shifting more than 32 bits
        Amount -= 32;
        if (isLeftShift) {
          if (Amount != 0) {
            BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg+1)
              .addImm(Amount).addImm(0).addImm(31-Amount);
          } else {
            BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg+1)
              .addReg(SrcReg+1);
          }
          BuildMI(*MBB, IP, PPC::LI, 1, DestReg+1).addSImm(0);
        } else {
          if (Amount != 0) {
            if (isSigned)
              BuildMI(*MBB, IP, PPC::SRAWI, 2, DestReg+1).addReg(SrcReg)
                .addImm(Amount);
            else
              BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg+1).addReg(SrcReg)
                .addImm(32-Amount).addImm(Amount).addImm(31);
          } else {
            BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg)
              .addReg(SrcReg);
          }
          BuildMI(*MBB, IP,PPC::LI, 1, DestReg).addSImm(0);
        }
      }
    } else {
      unsigned TmpReg1 = makeAnotherReg(Type::IntTy);
      unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
      unsigned TmpReg3 = makeAnotherReg(Type::IntTy);
      unsigned TmpReg4 = makeAnotherReg(Type::IntTy);
      unsigned TmpReg5 = makeAnotherReg(Type::IntTy);
      unsigned TmpReg6 = makeAnotherReg(Type::IntTy);
      unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
      
      if (isLeftShift) {
        BuildMI(*MBB, IP, PPC::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg)
          .addSImm(32);
        BuildMI(*MBB, IP, PPC::SLW, 2, TmpReg2).addReg(SrcReg)
          .addReg(ShiftAmountReg);
        BuildMI(*MBB, IP, PPC::SRW, 2, TmpReg3).addReg(SrcReg+1)
          .addReg(TmpReg1);
        BuildMI(*MBB, IP, PPC::OR, 2,TmpReg4).addReg(TmpReg2).addReg(TmpReg3);
        BuildMI(*MBB, IP, PPC::ADDI, 2, TmpReg5).addReg(ShiftAmountReg)
          .addSImm(-32);
        BuildMI(*MBB, IP, PPC::SLW, 2, TmpReg6).addReg(SrcReg+1)
          .addReg(TmpReg5);
        BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(TmpReg4)
          .addReg(TmpReg6);
        BuildMI(*MBB, IP, PPC::SLW, 2, DestReg+1).addReg(SrcReg+1)
          .addReg(ShiftAmountReg);
      } else {
        if (isSigned) { // shift right algebraic 
          MachineBasicBlock *TmpMBB =new MachineBasicBlock(BB->getBasicBlock());
          MachineBasicBlock *PhiMBB =new MachineBasicBlock(BB->getBasicBlock());
          MachineBasicBlock *OldMBB = BB;
          ilist<MachineBasicBlock>::iterator It = BB; ++It;
          F->getBasicBlockList().insert(It, TmpMBB);
          F->getBasicBlockList().insert(It, PhiMBB);
          BB->addSuccessor(TmpMBB);
          BB->addSuccessor(PhiMBB);

          BuildMI(*MBB, IP, PPC::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg)
            .addSImm(32);
          BuildMI(*MBB, IP, PPC::SRW, 2, TmpReg2).addReg(SrcReg+1)
            .addReg(ShiftAmountReg);
          BuildMI(*MBB, IP, PPC::SLW, 2, TmpReg3).addReg(SrcReg)
            .addReg(TmpReg1);
          BuildMI(*MBB, IP, PPC::OR, 2, TmpReg4).addReg(TmpReg2)
            .addReg(TmpReg3);
          BuildMI(*MBB, IP, PPC::ADDICo, 2, TmpReg5).addReg(ShiftAmountReg)
            .addSImm(-32);
          BuildMI(*MBB, IP, PPC::SRAW, 2, TmpReg6).addReg(SrcReg)
            .addReg(TmpReg5);
          BuildMI(*MBB, IP, PPC::SRAW, 2, DestReg).addReg(SrcReg)
            .addReg(ShiftAmountReg);
          BuildMI(*MBB, IP, PPC::BLE, 2).addReg(PPC::CR0).addMBB(PhiMBB);
 
          // OrMBB:
          //   Select correct least significant half if the shift amount > 32
          BB = TmpMBB;
          unsigned OrReg = makeAnotherReg(Type::IntTy);
          BuildMI(BB, PPC::OR, 2, OrReg).addReg(TmpReg6).addImm(TmpReg6);
          TmpMBB->addSuccessor(PhiMBB);
          
          BB = PhiMBB;
          BuildMI(BB, PPC::PHI, 4, DestReg+1).addReg(TmpReg4).addMBB(OldMBB)
            .addReg(OrReg).addMBB(TmpMBB);
        } else { // shift right logical
          BuildMI(*MBB, IP, PPC::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg)
            .addSImm(32);
          BuildMI(*MBB, IP, PPC::SRW, 2, TmpReg2).addReg(SrcReg+1)
            .addReg(ShiftAmountReg);
          BuildMI(*MBB, IP, PPC::SLW, 2, TmpReg3).addReg(SrcReg)
            .addReg(TmpReg1);
          BuildMI(*MBB, IP, PPC::OR, 2, TmpReg4).addReg(TmpReg2)
            .addReg(TmpReg3);
          BuildMI(*MBB, IP, PPC::ADDI, 2, TmpReg5).addReg(ShiftAmountReg)
            .addSImm(-32);
          BuildMI(*MBB, IP, PPC::SRW, 2, TmpReg6).addReg(SrcReg)
            .addReg(TmpReg5);
          BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(TmpReg4)
            .addReg(TmpReg6);
          BuildMI(*MBB, IP, PPC::SRW, 2, DestReg).addReg(SrcReg)
            .addReg(ShiftAmountReg);
        }
      }
    }
    return;
  }

  if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
    // The shift amount is constant, guaranteed to be a ubyte. Get its value.
    assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
    unsigned Amount = CUI->getValue();

    if (isLeftShift) {
      BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
        .addImm(Amount).addImm(0).addImm(31-Amount);
    } else {
      if (isSigned) {
        BuildMI(*MBB, IP, PPC::SRAWI,2,DestReg).addReg(SrcReg).addImm(Amount);
      } else {
        BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
          .addImm(32-Amount).addImm(Amount).addImm(31);
      }
    }
  } else {                  // The shift amount is non-constant.
    unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);

    if (isLeftShift) {
      BuildMI(*MBB, IP, PPC::SLW, 2, DestReg).addReg(SrcReg)
        .addReg(ShiftAmountReg);
    } else {
      BuildMI(*MBB, IP, isSigned ? PPC::SRAW : PPC::SRW, 2, DestReg)
        .addReg(SrcReg).addReg(ShiftAmountReg);
    }
  }
}

/// LoadNeedsSignExtend - On PowerPC, there is no load byte with sign extend.
/// Therefore, if this is a byte load and the destination type is signed, we
/// would normall need to also emit a sign extend instruction after the load.
/// However, store instructions don't care whether a signed type was sign
/// extended across a whole register.  Also, a SetCC instruction will emit its
/// own sign extension to force the value into the appropriate range, so we
/// need not emit it here.  Ideally, this kind of thing wouldn't be necessary
/// once LLVM's type system is improved.
static bool LoadNeedsSignExtend(LoadInst &LI) {
  if (cByte == getClassB(LI.getType()) && LI.getType()->isSigned()) {
    bool AllUsesAreStoresOrSetCC = true;
    for (Value::use_iterator I = LI.use_begin(), E = LI.use_end(); I != E; ++I)
      if (!isa<StoreInst>(*I) && !isa<SetCondInst>(*I)) {
        AllUsesAreStoresOrSetCC = false;
        break;
      }
    if (!AllUsesAreStoresOrSetCC)
      return true;
  }
  return false;
}

/// visitLoadInst - Implement LLVM load instructions.  Pretty straightforward
/// mapping of LLVM classes to PPC load instructions, with the exception of
/// signed byte loads, which need a sign extension following them.
///
void ISel::visitLoadInst(LoadInst &I) {
  // Immediate opcodes, for reg+imm addressing
  static const unsigned ImmOpcodes[] = { 
    PPC::LBZ, PPC::LHZ, PPC::LWZ, 
    PPC::LFS, PPC::LFD, PPC::LWZ
  };
  // Indexed opcodes, for reg+reg addressing
  static const unsigned IdxOpcodes[] = {
    PPC::LBZX, PPC::LHZX, PPC::LWZX,
    PPC::LFSX, PPC::LFDX, PPC::LWZX
  };

  unsigned Class     = getClassB(I.getType());
  unsigned ImmOpcode = ImmOpcodes[Class];
  unsigned IdxOpcode = IdxOpcodes[Class];
  unsigned DestReg   = getReg(I);
  Value *SourceAddr  = I.getOperand(0);
  
  if (Class == cShort && I.getType()->isSigned()) ImmOpcode = PPC::LHA;
  if (Class == cShort && I.getType()->isSigned()) IdxOpcode = PPC::LHAX;

  if (AllocaInst *AI = dyn_castFixedAlloca(SourceAddr)) {
    unsigned FI = getFixedSizedAllocaFI(AI);
    if (Class == cLong) {
      addFrameReference(BuildMI(BB, ImmOpcode, 2, DestReg), FI);
      addFrameReference(BuildMI(BB, ImmOpcode, 2, DestReg+1), FI, 4);
    } else if (LoadNeedsSignExtend(I)) {
      unsigned TmpReg = makeAnotherReg(I.getType());
      addFrameReference(BuildMI(BB, ImmOpcode, 2, TmpReg), FI);
      BuildMI(BB, PPC::EXTSB, 1, DestReg).addReg(TmpReg);
    } else {
      addFrameReference(BuildMI(BB, ImmOpcode, 2, DestReg), FI);
    }
    return;
  }
  
  // If this load is the only use of the GEP instruction that is its address,
  // then we can fold the GEP directly into the load instruction.
  // emitGEPOperation with a second to last arg of 'true' will place the
  // base register for the GEP into baseReg, and the constant offset from that
  // into offset.  If the offset fits in 16 bits, we can emit a reg+imm store
  // otherwise, we copy the offset into another reg, and use reg+reg addressing.
  if (GetElementPtrInst *GEPI = canFoldGEPIntoLoadOrStore(SourceAddr)) {
    unsigned baseReg = getReg(GEPI);
    unsigned pendingAdd;
    ConstantSInt *offset;
    
    emitGEPOperation(BB, BB->end(), GEPI->getOperand(0), GEPI->op_begin()+1, 
                     GEPI->op_end(), baseReg, true, &offset, &pendingAdd);

    if (pendingAdd == 0 && Class != cLong && 
        canUseAsImmediateForOpcode(offset, 0)) {
      if (LoadNeedsSignExtend(I)) {
        unsigned TmpReg = makeAnotherReg(I.getType());
        BuildMI(BB, ImmOpcode, 2, TmpReg).addSImm(offset->getValue())
          .addReg(baseReg);
        BuildMI(BB, PPC::EXTSB, 1, DestReg).addReg(TmpReg);
      } else {
        BuildMI(BB, ImmOpcode, 2, DestReg).addSImm(offset->getValue())
          .addReg(baseReg);
      }
      return;
    }
    
    unsigned indexReg = (pendingAdd != 0) ? pendingAdd : getReg(offset);

    if (Class == cLong) {
      unsigned indexPlus4 = makeAnotherReg(Type::IntTy);
      BuildMI(BB, PPC::ADDI, 2, indexPlus4).addReg(indexReg).addSImm(4);
      BuildMI(BB, IdxOpcode, 2, DestReg).addReg(indexReg).addReg(baseReg);
      BuildMI(BB, IdxOpcode, 2, DestReg+1).addReg(indexPlus4).addReg(baseReg);
    } else if (LoadNeedsSignExtend(I)) {
      unsigned TmpReg = makeAnotherReg(I.getType());
      BuildMI(BB, IdxOpcode, 2, TmpReg).addReg(indexReg).addReg(baseReg);
      BuildMI(BB, PPC::EXTSB, 1, DestReg).addReg(TmpReg);
    } else {
      BuildMI(BB, IdxOpcode, 2, DestReg).addReg(indexReg).addReg(baseReg);
    }
    return;
  }
  
  // The fallback case, where the load was from a source that could not be
  // folded into the load instruction. 
  unsigned SrcAddrReg = getReg(SourceAddr);
    
  if (Class == cLong) {
    BuildMI(BB, ImmOpcode, 2, DestReg).addSImm(0).addReg(SrcAddrReg);
    BuildMI(BB, ImmOpcode, 2, DestReg+1).addSImm(4).addReg(SrcAddrReg);
  } else if (LoadNeedsSignExtend(I)) {
    unsigned TmpReg = makeAnotherReg(I.getType());
    BuildMI(BB, ImmOpcode, 2, TmpReg).addSImm(0).addReg(SrcAddrReg);
    BuildMI(BB, PPC::EXTSB, 1, DestReg).addReg(TmpReg);
  } else {
    BuildMI(BB, ImmOpcode, 2, DestReg).addSImm(0).addReg(SrcAddrReg);
  }
}

/// visitStoreInst - Implement LLVM store instructions
///
void ISel::visitStoreInst(StoreInst &I) {
  // Immediate opcodes, for reg+imm addressing
  static const unsigned ImmOpcodes[] = {
    PPC::STB, PPC::STH, PPC::STW, 
    PPC::STFS, PPC::STFD, PPC::STW
  };
  // Indexed opcodes, for reg+reg addressing
  static const unsigned IdxOpcodes[] = {
    PPC::STBX, PPC::STHX, PPC::STWX, 
    PPC::STFSX, PPC::STFDX, PPC::STWX
  };
  
  Value *SourceAddr  = I.getOperand(1);
  const Type *ValTy  = I.getOperand(0)->getType();
  unsigned Class     = getClassB(ValTy);
  unsigned ImmOpcode = ImmOpcodes[Class];
  unsigned IdxOpcode = IdxOpcodes[Class];
  unsigned ValReg    = getReg(I.getOperand(0));

  // If this store is the only use of the GEP instruction that is its address,
  // then we can fold the GEP directly into the store instruction.
  // emitGEPOperation with a second to last arg of 'true' will place the
  // base register for the GEP into baseReg, and the constant offset from that
  // into offset.  If the offset fits in 16 bits, we can emit a reg+imm store
  // otherwise, we copy the offset into another reg, and use reg+reg addressing.
  if (GetElementPtrInst *GEPI = canFoldGEPIntoLoadOrStore(SourceAddr)) {
    unsigned baseReg = getReg(GEPI);
    unsigned pendingAdd;
    ConstantSInt *offset;
    
    emitGEPOperation(BB, BB->end(), GEPI->getOperand(0), GEPI->op_begin()+1, 
                     GEPI->op_end(), baseReg, true, &offset, &pendingAdd);

    if (0 == pendingAdd && Class != cLong && 
        canUseAsImmediateForOpcode(offset, 0)) {
      BuildMI(BB, ImmOpcode, 3).addReg(ValReg).addSImm(offset->getValue())
        .addReg(baseReg);
      return;
    }
    
    unsigned indexReg = (pendingAdd != 0) ? pendingAdd : getReg(offset);

    if (Class == cLong) {
      unsigned indexPlus4 = makeAnotherReg(Type::IntTy);
      BuildMI(BB, PPC::ADDI, 2, indexPlus4).addReg(indexReg).addSImm(4);
      BuildMI(BB, IdxOpcode, 3).addReg(ValReg).addReg(indexReg).addReg(baseReg);
      BuildMI(BB, IdxOpcode, 3).addReg(ValReg+1).addReg(indexPlus4)
        .addReg(baseReg);
      return;
    }
    BuildMI(BB, IdxOpcode, 3).addReg(ValReg).addReg(indexReg).addReg(baseReg);
    return;
  }
  
  // If the store address wasn't the only use of a GEP, we fall back to the
  // standard path: store the ValReg at the value in AddressReg.
  unsigned AddressReg  = getReg(I.getOperand(1));
  if (Class == cLong) {
    BuildMI(BB, ImmOpcode, 3).addReg(ValReg).addSImm(0).addReg(AddressReg);
    BuildMI(BB, ImmOpcode, 3).addReg(ValReg+1).addSImm(4).addReg(AddressReg);
    return;
  }
  BuildMI(BB, ImmOpcode, 3).addReg(ValReg).addSImm(0).addReg(AddressReg);
}


/// visitCastInst - Here we have various kinds of copying with or without sign
/// extension going on.
///
void ISel::visitCastInst(CastInst &CI) {
  Value *Op = CI.getOperand(0);

  unsigned SrcClass = getClassB(Op->getType());
  unsigned DestClass = getClassB(CI.getType());

  // If this is a cast from a 32-bit integer to a Long type, and the only uses
  // of the cast are GEP instructions, then the cast does not need to be
  // generated explicitly, it will be folded into the GEP.
  if (DestClass == cLong && SrcClass == cInt) {
    bool AllUsesAreGEPs = true;
    for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
      if (!isa<GetElementPtrInst>(*I)) {
        AllUsesAreGEPs = false;
        break;
      }        
    if (AllUsesAreGEPs) return;
  }
  
  unsigned DestReg = getReg(CI);
  MachineBasicBlock::iterator MI = BB->end();

  // If this is a cast from an byte, short, or int to an integer type of equal
  // or lesser width, and all uses of the cast are store instructions then dont
  // emit them, as the store instruction will implicitly not store the zero or
  // sign extended bytes.
  if (SrcClass <= cInt && SrcClass >= DestClass) {
    bool AllUsesAreStoresOrSetCC = true;
    for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
      if (!isa<StoreInst>(*I) && !isa<SetCondInst>(*I)) {
        AllUsesAreStoresOrSetCC = false;
        break;
      }        
    // Turn this cast directly into a move instruction, which the register
    // allocator will deal with.
    if (AllUsesAreStoresOrSetCC) { 
      unsigned SrcReg = getReg(Op, BB, MI);
      BuildMI(*BB, MI, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
      return; 
    }
  }
  emitCastOperation(BB, MI, Op, CI.getType(), DestReg);
}

/// emitCastOperation - Common code shared between visitCastInst and constant
/// expression cast support.
///
void ISel::emitCastOperation(MachineBasicBlock *MBB,
                             MachineBasicBlock::iterator IP,
                             Value *Src, const Type *DestTy,
                             unsigned DestReg) {
  const Type *SrcTy = Src->getType();
  unsigned SrcClass = getClassB(SrcTy);
  unsigned DestClass = getClassB(DestTy);
  unsigned SrcReg = getReg(Src, MBB, IP);

  // Implement casts to bool by using compare on the operand followed by set if
  // not zero on the result.
  if (DestTy == Type::BoolTy) {
    switch (SrcClass) {
    case cByte:
    case cShort:
    case cInt: {
      unsigned TmpReg = makeAnotherReg(Type::IntTy);
      BuildMI(*MBB, IP, PPC::ADDIC, 2, TmpReg).addReg(SrcReg).addSImm(-1);
      BuildMI(*MBB, IP, PPC::SUBFE, 2, DestReg).addReg(TmpReg).addReg(SrcReg);
      break;
    }
    case cLong: {
      unsigned TmpReg = makeAnotherReg(Type::IntTy);
      unsigned SrcReg2 = makeAnotherReg(Type::IntTy);
      BuildMI(*MBB, IP, PPC::OR, 2, SrcReg2).addReg(SrcReg).addReg(SrcReg+1);
      BuildMI(*MBB, IP, PPC::ADDIC, 2, TmpReg).addReg(SrcReg2).addSImm(-1);
      BuildMI(*MBB, IP, PPC::SUBFE, 2, DestReg).addReg(TmpReg)
        .addReg(SrcReg2);
      break;
    }
    case cFP32:
    case cFP64:
      unsigned TmpReg = makeAnotherReg(Type::IntTy);
      unsigned ConstZero = getReg(ConstantFP::get(Type::DoubleTy, 0.0), BB, IP);
      BuildMI(*MBB, IP, PPC::FCMPU, PPC::CR7).addReg(SrcReg).addReg(ConstZero);
      BuildMI(*MBB, IP, PPC::MFCR, TmpReg);
      BuildMI(*MBB, IP, PPC::RLWINM, DestReg).addReg(TmpReg).addImm(31)
        .addImm(31).addImm(31);
    }
    return;
  }

  // Handle cast of Float -> Double
  if (SrcClass == cFP32 && DestClass == cFP64) {
    BuildMI(*MBB, IP, PPC::FMR, 1, DestReg).addReg(SrcReg);
    return;
  }
  
  // Handle cast of Double -> Float
  if (SrcClass == cFP64 && DestClass == cFP32) {
    BuildMI(*MBB, IP, PPC::FRSP, 1, DestReg).addReg(SrcReg);
    return;
  }
  
  // Handle casts from integer to floating point now...
  if (DestClass == cFP32 || DestClass == cFP64) {

    // Emit a library call for long to float conversion
    if (SrcClass == cLong) {
      Function *floatFn = (DestClass == cFP32) ? __floatdisfFn : __floatdidfFn;
      if (SrcTy->isSigned()) {
        std::vector<ValueRecord> Args;
        Args.push_back(ValueRecord(SrcReg, SrcTy));
        MachineInstr *TheCall =
          BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(floatFn, true);
        doCall(ValueRecord(DestReg, DestTy), TheCall, Args, false);
        TM.CalledFunctions.insert(floatFn);
      } else {
        std::vector<ValueRecord> CmpArgs, ClrArgs, SetArgs;
        unsigned ZeroLong = getReg(ConstantUInt::get(SrcTy, 0));
        unsigned CondReg = makeAnotherReg(Type::IntTy);

        // Update machine-CFG edges
        MachineBasicBlock *ClrMBB = new MachineBasicBlock(BB->getBasicBlock());
        MachineBasicBlock *SetMBB = new MachineBasicBlock(BB->getBasicBlock());
        MachineBasicBlock *PhiMBB = new MachineBasicBlock(BB->getBasicBlock());
        MachineBasicBlock *OldMBB = BB;
        ilist<MachineBasicBlock>::iterator It = BB; ++It;
        F->getBasicBlockList().insert(It, ClrMBB);
        F->getBasicBlockList().insert(It, SetMBB);
        F->getBasicBlockList().insert(It, PhiMBB);
        BB->addSuccessor(ClrMBB);
        BB->addSuccessor(SetMBB);

        CmpArgs.push_back(ValueRecord(SrcReg, SrcTy));
        CmpArgs.push_back(ValueRecord(ZeroLong, SrcTy));
        MachineInstr *TheCall =
          BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(__cmpdi2Fn, true);
        doCall(ValueRecord(CondReg, Type::IntTy), TheCall, CmpArgs, false);
        TM.CalledFunctions.insert(__cmpdi2Fn);
        BuildMI(*MBB, IP, PPC::CMPWI, 2, PPC::CR0).addReg(CondReg).addSImm(0);
        BuildMI(*MBB, IP, PPC::BLE, 2).addReg(PPC::CR0).addMBB(SetMBB);

        // ClrMBB
        BB = ClrMBB;
        unsigned ClrReg = makeAnotherReg(DestTy);
        ClrArgs.push_back(ValueRecord(SrcReg, SrcTy));
        TheCall = BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(floatFn, true);
        doCall(ValueRecord(ClrReg, DestTy), TheCall, ClrArgs, false);
        TM.CalledFunctions.insert(floatFn);
        BuildMI(BB, PPC::B, 1).addMBB(PhiMBB);
        BB->addSuccessor(PhiMBB);
        
        // SetMBB
        BB = SetMBB;
        unsigned SetReg = makeAnotherReg(DestTy);
        unsigned CallReg = makeAnotherReg(DestTy);
        unsigned ShiftedReg = makeAnotherReg(SrcTy);
        ConstantSInt *Const1 = ConstantSInt::get(Type::IntTy, 1);
        emitShiftOperation(BB, BB->end(), Src, Const1, false, SrcTy, ShiftedReg);
        SetArgs.push_back(ValueRecord(ShiftedReg, SrcTy));
        TheCall = BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(floatFn, true);
        doCall(ValueRecord(CallReg, DestTy), TheCall, SetArgs, false);
        TM.CalledFunctions.insert(floatFn);
        unsigned SetOpcode = (DestClass == cFP32) ? PPC::FADDS : PPC::FADD;
        BuildMI(BB, SetOpcode, 2, SetReg).addReg(CallReg).addReg(CallReg);
        BB->addSuccessor(PhiMBB);
        
        // PhiMBB
        BB = PhiMBB;
        BuildMI(BB, PPC::PHI, 4, DestReg).addReg(ClrReg).addMBB(ClrMBB)
          .addReg(SetReg).addMBB(SetMBB);
      }
      return;
    }
    
    // Make sure we're dealing with a full 32 bits
    unsigned TmpReg = makeAnotherReg(Type::IntTy);
    promote32(TmpReg, ValueRecord(SrcReg, SrcTy));

    SrcReg = TmpReg;
    
    // Spill the integer to memory and reload it from there.
    // Also spill room for a special conversion constant
    int ValueFrameIdx =
      F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());

    MachineConstantPool *CP = F->getConstantPool();
    unsigned constantHi = makeAnotherReg(Type::IntTy);
    unsigned TempF = makeAnotherReg(Type::DoubleTy);
    
    if (!SrcTy->isSigned()) {
      ConstantFP *CFP = ConstantFP::get(Type::DoubleTy, 0x1.000000p52);
      unsigned ConstF = getReg(CFP, BB, IP);
      BuildMI(*MBB, IP, PPC::LIS, 1, constantHi).addSImm(0x4330);
      addFrameReference(BuildMI(*MBB, IP, PPC::STW, 3).addReg(constantHi), 
                        ValueFrameIdx);
      addFrameReference(BuildMI(*MBB, IP, PPC::STW, 3).addReg(SrcReg), 
                        ValueFrameIdx, 4);
      addFrameReference(BuildMI(*MBB, IP, PPC::LFD, 2, TempF), ValueFrameIdx);
      BuildMI(*MBB, IP, PPC::FSUB, 2, DestReg).addReg(TempF).addReg(ConstF);
    } else {
      ConstantFP *CFP = ConstantFP::get(Type::DoubleTy, 0x1.000008p52);
      unsigned ConstF = getReg(CFP, BB, IP);
      unsigned TempLo = makeAnotherReg(Type::IntTy);
      BuildMI(*MBB, IP, PPC::LIS, 1, constantHi).addSImm(0x4330);
      addFrameReference(BuildMI(*MBB, IP, PPC::STW, 3).addReg(constantHi), 
                        ValueFrameIdx);
      BuildMI(*MBB, IP, PPC::XORIS, 2, TempLo).addReg(SrcReg).addImm(0x8000);
      addFrameReference(BuildMI(*MBB, IP, PPC::STW, 3).addReg(TempLo), 
                        ValueFrameIdx, 4);
      addFrameReference(BuildMI(*MBB, IP, PPC::LFD, 2, TempF), ValueFrameIdx);
      BuildMI(*MBB, IP, PPC::FSUB, 2, DestReg).addReg(TempF).addReg(ConstF);
    }
    return;
  }

  // Handle casts from floating point to integer now...
  if (SrcClass == cFP32 || SrcClass == cFP64) {
    static Function* const Funcs[] =
      { __fixsfdiFn, __fixdfdiFn, __fixunssfdiFn, __fixunsdfdiFn };
    // emit library call
    if (DestClass == cLong) {
      bool isDouble = SrcClass == cFP64;
      unsigned nameIndex = 2 * DestTy->isSigned() + isDouble;
      std::vector<ValueRecord> Args;
      Args.push_back(ValueRecord(SrcReg, SrcTy));
      Function *floatFn = Funcs[nameIndex];
      MachineInstr *TheCall =
        BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(floatFn, true);
      doCall(ValueRecord(DestReg, DestTy), TheCall, Args, false);
      TM.CalledFunctions.insert(floatFn);
      return;
    }

    int ValueFrameIdx =
      F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());

    if (DestTy->isSigned()) {
      unsigned TempReg = makeAnotherReg(Type::DoubleTy);
      
      // Convert to integer in the FP reg and store it to a stack slot
      BuildMI(*MBB, IP, PPC::FCTIWZ, 1, TempReg).addReg(SrcReg);
      addFrameReference(BuildMI(*MBB, IP, PPC::STFD, 3)
                          .addReg(TempReg), ValueFrameIdx);

      // There is no load signed byte opcode, so we must emit a sign extend for
      // that particular size.  Make sure to source the new integer from the 
      // correct offset.
      if (DestClass == cByte) {
        unsigned TempReg2 = makeAnotherReg(DestTy);
        addFrameReference(BuildMI(*MBB, IP, PPC::LBZ, 2, TempReg2), 
                          ValueFrameIdx, 7);
        BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(TempReg2);
      } else {
        int offset = (DestClass == cShort) ? 6 : 4;
        unsigned LoadOp = (DestClass == cShort) ? PPC::LHA : PPC::LWZ;
        addFrameReference(BuildMI(*MBB, IP, LoadOp, 2, DestReg), 
                          ValueFrameIdx, offset);
      }
    } else {
      unsigned Zero = getReg(ConstantFP::get(Type::DoubleTy, 0.0f));
      double maxInt = (1LL << 32) - 1;
      unsigned MaxInt = getReg(ConstantFP::get(Type::DoubleTy, maxInt));
      double border = 1LL << 31;
      unsigned Border = getReg(ConstantFP::get(Type::DoubleTy, border));
      unsigned UseZero = makeAnotherReg(Type::DoubleTy);
      unsigned UseMaxInt = makeAnotherReg(Type::DoubleTy);
      unsigned UseChoice = makeAnotherReg(Type::DoubleTy);
      unsigned TmpReg = makeAnotherReg(Type::DoubleTy);
      unsigned TmpReg2 = makeAnotherReg(Type::DoubleTy);
      unsigned ConvReg = makeAnotherReg(Type::DoubleTy);
      unsigned IntTmp = makeAnotherReg(Type::IntTy);
      unsigned XorReg = makeAnotherReg(Type::IntTy);
      int FrameIdx = 
        F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData());
      // Update machine-CFG edges
      MachineBasicBlock *XorMBB = new MachineBasicBlock(BB->getBasicBlock());
      MachineBasicBlock *PhiMBB = new MachineBasicBlock(BB->getBasicBlock());
      MachineBasicBlock *OldMBB = BB;
      ilist<MachineBasicBlock>::iterator It = BB; ++It;
      F->getBasicBlockList().insert(It, XorMBB);
      F->getBasicBlockList().insert(It, PhiMBB);
      BB->addSuccessor(XorMBB);
      BB->addSuccessor(PhiMBB);

      // Convert from floating point to unsigned 32-bit value
      // Use 0 if incoming value is < 0.0
      BuildMI(*MBB, IP, PPC::FSEL, 3, UseZero).addReg(SrcReg).addReg(SrcReg)
        .addReg(Zero);
      // Use 2**32 - 1 if incoming value is >= 2**32
      BuildMI(*MBB, IP, PPC::FSUB, 2, UseMaxInt).addReg(MaxInt).addReg(SrcReg);
      BuildMI(*MBB, IP, PPC::FSEL, 3, UseChoice).addReg(UseMaxInt)
        .addReg(UseZero).addReg(MaxInt);
      // Subtract 2**31
      BuildMI(*MBB, IP, PPC::FSUB, 2, TmpReg).addReg(UseChoice).addReg(Border);
      // Use difference if >= 2**31
      BuildMI(*MBB, IP, PPC::FCMPU, 2, PPC::CR0).addReg(UseChoice)
        .addReg(Border);
      BuildMI(*MBB, IP, PPC::FSEL, 3, TmpReg2).addReg(TmpReg).addReg(TmpReg)
        .addReg(UseChoice);
      // Convert to integer
      BuildMI(*MBB, IP, PPC::FCTIWZ, 1, ConvReg).addReg(TmpReg2);
      addFrameReference(BuildMI(*MBB, IP, PPC::STFD, 3).addReg(ConvReg),
                        FrameIdx);
      if (DestClass == cByte) {
        addFrameReference(BuildMI(*MBB, IP, PPC::LBZ, 2, DestReg),
                          FrameIdx, 7);
      } else if (DestClass == cShort) {
        addFrameReference(BuildMI(*MBB, IP, PPC::LHZ, 2, DestReg),
                          FrameIdx, 6);
      } if (DestClass == cInt) {
        addFrameReference(BuildMI(*MBB, IP, PPC::LWZ, 2, IntTmp),
                          FrameIdx, 4);
        BuildMI(*MBB, IP, PPC::BLT, 2).addReg(PPC::CR0).addMBB(PhiMBB);
        BuildMI(*MBB, IP, PPC::B, 1).addMBB(XorMBB);

        // XorMBB:
        //   add 2**31 if input was >= 2**31
        BB = XorMBB;
        BuildMI(BB, PPC::XORIS, 2, XorReg).addReg(IntTmp).addImm(0x8000);
        XorMBB->addSuccessor(PhiMBB);

        // PhiMBB:
        //   DestReg = phi [ IntTmp, OldMBB ], [ XorReg, XorMBB ]
        BB = PhiMBB;
        BuildMI(BB, PPC::PHI, 4, DestReg).addReg(IntTmp).addMBB(OldMBB)
          .addReg(XorReg).addMBB(XorMBB);
      }
    }
    return;
  }

  // Check our invariants
  assert((SrcClass <= cInt || SrcClass == cLong) && 
         "Unhandled source class for cast operation!");
  assert((DestClass <= cInt || DestClass == cLong) && 
         "Unhandled destination class for cast operation!");

  bool sourceUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy;
  bool destUnsigned = DestTy->isUnsigned();

  // Unsigned -> Unsigned, clear if larger, 
  if (sourceUnsigned && destUnsigned) {
    // handle long dest class now to keep switch clean
    if (DestClass == cLong) {
      if (SrcClass == cLong) {
        BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
        BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg+1)
          .addReg(SrcReg+1);
      } else {
        BuildMI(*MBB, IP, PPC::LI, 1, DestReg).addSImm(0);
        BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg)
          .addReg(SrcReg);
      }
      return;
    }

    // handle u{ byte, short, int } x u{ byte, short, int }
    unsigned clearBits = (SrcClass == cByte || DestClass == cByte) ? 24 : 16;
    switch (SrcClass) {
    case cByte:
    case cShort:
      if (SrcClass == DestClass)
        BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
      else
        BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
          .addImm(0).addImm(clearBits).addImm(31);
      break;
    case cLong:
      ++SrcReg;
      // Fall through
    case cInt:
      if (DestClass == cInt)
        BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
      else
        BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
          .addImm(0).addImm(clearBits).addImm(31);
      break;
    }
    return;
  }

  // Signed -> Signed
  if (!sourceUnsigned && !destUnsigned) {
    // handle long dest class now to keep switch clean
    if (DestClass == cLong) {
      if (SrcClass == cLong) {
        BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
        BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg+1)
          .addReg(SrcReg+1);
      } else {
        BuildMI(*MBB, IP, PPC::SRAWI, 2, DestReg).addReg(SrcReg).addImm(31);
        BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg)
          .addReg(SrcReg);
      }
      return;
    }

    // handle { byte, short, int } x { byte, short, int }
    switch (SrcClass) {
    case cByte:
      if (DestClass == cByte)
        BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
      else
        BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg);
      break;
    case cShort:
      if (DestClass == cByte)
        BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg);
      else if (DestClass == cShort)
        BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
      else
        BuildMI(*MBB, IP, PPC::EXTSH, 1, DestReg).addReg(SrcReg);
      break;
    case cLong:
      ++SrcReg;
      // Fall through
    case cInt:
      if (DestClass == cByte)
        BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg);
      else if (DestClass == cShort)
        BuildMI(*MBB, IP, PPC::EXTSH, 1, DestReg).addReg(SrcReg);
      else
        BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
      break;
    }
    return;
  }

  // Unsigned -> Signed
  if (sourceUnsigned && !destUnsigned) {
    // handle long dest class now to keep switch clean
    if (DestClass == cLong) {
      if (SrcClass == cLong) {
        BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
        BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg+1).
          addReg(SrcReg+1);
      } else {
        BuildMI(*MBB, IP, PPC::LI, 1, DestReg).addSImm(0);
        BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg)
          .addReg(SrcReg);
      }
      return;
    }

    // handle u{ byte, short, int } -> { byte, short, int }
    switch (SrcClass) {
    case cByte:
      if (DestClass == cByte)
        // uByte 255 -> signed byte == -1
        BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg);
      else
        // uByte 255 -> signed short/int == 255
        BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg).addImm(0)
          .addImm(24).addImm(31);
      break;
    case cShort:
      if (DestClass == cByte)
        BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg);
      else if (DestClass == cShort)
        BuildMI(*MBB, IP, PPC::EXTSH, 1, DestReg).addReg(SrcReg);
      else
        BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg).addImm(0)
          .addImm(16).addImm(31);
      break;
    case cLong:
      ++SrcReg;
      // Fall through
    case cInt:
      if (DestClass == cByte)
        BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg);
      else if (DestClass == cShort)
        BuildMI(*MBB, IP, PPC::EXTSH, 1, DestReg).addReg(SrcReg);
      else
        BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
      break;
    }
    return;
  }

  // Signed -> Unsigned
  if (!sourceUnsigned && destUnsigned) {
    // handle long dest class now to keep switch clean
    if (DestClass == cLong) {
      if (SrcClass == cLong) {
        BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
        BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg+1)
          .addReg(SrcReg+1);
      } else {
        BuildMI(*MBB, IP, PPC::SRAWI, 2, DestReg).addReg(SrcReg).addImm(31);
        BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg)
          .addReg(SrcReg);
      }
      return;
    }

    // handle { byte, short, int } -> u{ byte, short, int }
    unsigned clearBits = (DestClass == cByte) ? 24 : 16;
    switch (SrcClass) {
    case cByte:
    case cShort:
      if (DestClass == cByte || DestClass == cShort)
        // sbyte -1 -> ubyte 0x000000FF
        BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
          .addImm(0).addImm(clearBits).addImm(31);
      else
        // sbyte -1 -> ubyte 0xFFFFFFFF
        BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
      break;
    case cLong:
      ++SrcReg;
      // Fall through
    case cInt:
      if (DestClass == cInt)
        BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
      else
        BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
          .addImm(0).addImm(clearBits).addImm(31);
      break;
    }
    return;
  }

  // Anything we haven't handled already, we can't (yet) handle at all.
  std::cerr << "Unhandled cast from " << SrcTy->getDescription()
            << "to " << DestTy->getDescription() << '\n';
  abort();
}

/// visitVANextInst - Implement the va_next instruction...
///
void ISel::visitVANextInst(VANextInst &I) {
  unsigned VAList = getReg(I.getOperand(0));
  unsigned DestReg = getReg(I);

  unsigned Size;
  switch (I.getArgType()->getTypeID()) {
  default:
    std::cerr << I;
    assert(0 && "Error: bad type for va_next instruction!");
    return;
  case Type::PointerTyID:
  case Type::UIntTyID:
  case Type::IntTyID:
    Size = 4;
    break;
  case Type::ULongTyID:
  case Type::LongTyID:
  case Type::DoubleTyID:
    Size = 8;
    break;
  }

  // Increment the VAList pointer...
  BuildMI(BB, PPC::ADDI, 2, DestReg).addReg(VAList).addSImm(Size);
}

void ISel::visitVAArgInst(VAArgInst &I) {
  unsigned VAList = getReg(I.getOperand(0));
  unsigned DestReg = getReg(I);

  switch (I.getType()->getTypeID()) {
  default:
    std::cerr << I;
    assert(0 && "Error: bad type for va_next instruction!");
    return;
  case Type::PointerTyID:
  case Type::UIntTyID:
  case Type::IntTyID:
    BuildMI(BB, PPC::LWZ, 2, DestReg).addSImm(0).addReg(VAList);
    break;
  case Type::ULongTyID:
  case Type::LongTyID:
    BuildMI(BB, PPC::LWZ, 2, DestReg).addSImm(0).addReg(VAList);
    BuildMI(BB, PPC::LWZ, 2, DestReg+1).addSImm(4).addReg(VAList);
    break;
  case Type::FloatTyID:
    BuildMI(BB, PPC::LFS, 2, DestReg).addSImm(0).addReg(VAList);
    break;
  case Type::DoubleTyID:
    BuildMI(BB, PPC::LFD, 2, DestReg).addSImm(0).addReg(VAList);
    break;
  }
}

/// visitGetElementPtrInst - instruction-select GEP instructions
///
void ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
  if (canFoldGEPIntoLoadOrStore(&I))
    return;

  unsigned outputReg = getReg(I);
  emitGEPOperation(BB, BB->end(), I.getOperand(0), I.op_begin()+1, I.op_end(), 
                   outputReg, false, 0, 0);
}

/// emitGEPOperation - Common code shared between visitGetElementPtrInst and
/// constant expression GEP support.
///
void ISel::emitGEPOperation(MachineBasicBlock *MBB,
                            MachineBasicBlock::iterator IP,
                            Value *Src, User::op_iterator IdxBegin,
                            User::op_iterator IdxEnd, unsigned TargetReg,
                            bool GEPIsFolded, ConstantSInt **RemainderPtr,
                            unsigned *PendingAddReg) {
  const TargetData &TD = TM.getTargetData();
  const Type *Ty = Src->getType();
  unsigned basePtrReg = getReg(Src, MBB, IP);
  int64_t constValue = 0;
  
  // Record the operations to emit the GEP in a vector so that we can emit them
  // after having analyzed the entire instruction.
  std::vector<CollapsedGepOp> ops;
  
  // GEPs have zero or more indices; we must perform a struct access
  // or array access for each one.
  for (GetElementPtrInst::op_iterator oi = IdxBegin, oe = IdxEnd; oi != oe;
       ++oi) {
    Value *idx = *oi;
    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
      // It's a struct access.  idx is the index into the structure,
      // which names the field. Use the TargetData structure to
      // pick out what the layout of the structure is in memory.
      // Use the (constant) structure index's value to find the
      // right byte offset from the StructLayout class's list of
      // structure member offsets.
      unsigned fieldIndex = cast<ConstantUInt>(idx)->getValue();
      unsigned memberOffset =
        TD.getStructLayout(StTy)->MemberOffsets[fieldIndex];

      // StructType member offsets are always constant values.  Add it to the
      // running total.
      constValue += memberOffset;

      // The next type is the member of the structure selected by the
      // index.
      Ty = StTy->getElementType (fieldIndex);
    } else if (const SequentialType *SqTy = dyn_cast<SequentialType> (Ty)) {
      // Many GEP instructions use a [cast (int/uint) to LongTy] as their
      // operand.  Handle this case directly now...
      if (CastInst *CI = dyn_cast<CastInst>(idx))
        if (CI->getOperand(0)->getType() == Type::IntTy ||
            CI->getOperand(0)->getType() == Type::UIntTy)
          idx = CI->getOperand(0);

      // It's an array or pointer access: [ArraySize x ElementType].
      // We want to add basePtrReg to (idxReg * sizeof ElementType). First, we
      // must find the size of the pointed-to type (Not coincidentally, the next
      // type is the type of the elements in the array).
      Ty = SqTy->getElementType();
      unsigned elementSize = TD.getTypeSize(Ty);
      
      if (ConstantInt *C = dyn_cast<ConstantInt>(idx)) {
        if (ConstantSInt *CS = dyn_cast<ConstantSInt>(C))
          constValue += CS->getValue() * elementSize;
        else if (ConstantUInt *CU = dyn_cast<ConstantUInt>(C))
          constValue += CU->getValue() * elementSize;
        else
          assert(0 && "Invalid ConstantInt GEP index type!");
      } else {
        // Push current gep state to this point as an add
        ops.push_back(CollapsedGepOp(false, 0, 
          ConstantSInt::get(Type::IntTy,constValue)));
        
        // Push multiply gep op and reset constant value
        ops.push_back(CollapsedGepOp(true, idx, 
          ConstantSInt::get(Type::IntTy, elementSize)));
        
        constValue = 0;
      }
    }
  }
  // Emit instructions for all the collapsed ops
  bool pendingAdd = false;
  unsigned pendingAddReg = 0;
  
  for(std::vector<CollapsedGepOp>::iterator cgo_i = ops.begin(),
      cgo_e = ops.end(); cgo_i != cgo_e; ++cgo_i) {
    CollapsedGepOp& cgo = *cgo_i;
    unsigned nextBasePtrReg = makeAnotherReg(Type::IntTy);
  
    // If we didn't emit an add last time through the loop, we need to now so
    // that the base reg is updated appropriately.
    if (pendingAdd) {
      assert(pendingAddReg != 0 && "Uninitialized register in pending add!");
      BuildMI(*MBB, IP, PPC::ADD, 2, nextBasePtrReg).addReg(basePtrReg)
        .addReg(pendingAddReg);
      basePtrReg = nextBasePtrReg;
      nextBasePtrReg = makeAnotherReg(Type::IntTy);
      pendingAddReg = 0;
      pendingAdd = false;
    }

    if (cgo.isMul) {
      // We know the elementSize is a constant, so we can emit a constant mul
      unsigned TmpReg = makeAnotherReg(Type::IntTy);
      doMultiplyConst(MBB, IP, nextBasePtrReg, cgo.index, cgo.size);
      pendingAddReg = basePtrReg;
      pendingAdd = true;
    } else {
      // Try and generate an immediate addition if possible
      if (cgo.size->isNullValue()) {
        BuildMI(*MBB, IP, PPC::OR, 2, nextBasePtrReg).addReg(basePtrReg)
          .addReg(basePtrReg);
      } else if (canUseAsImmediateForOpcode(cgo.size, 0)) {
        BuildMI(*MBB, IP, PPC::ADDI, 2, nextBasePtrReg).addReg(basePtrReg)
          .addSImm(cgo.size->getValue());
      } else {
        unsigned Op1r = getReg(cgo.size, MBB, IP);
        BuildMI(*MBB, IP, PPC::ADD, 2, nextBasePtrReg).addReg(basePtrReg)
          .addReg(Op1r);
      }
    }

    basePtrReg = nextBasePtrReg;
  }
  // Add the current base register plus any accumulated constant value
  ConstantSInt *remainder = ConstantSInt::get(Type::IntTy, constValue);
  
  // If we are emitting this during a fold, copy the current base register to
  // the target, and save the current constant offset so the folding load or
  // store can try and use it as an immediate.
  if (GEPIsFolded) {
    // If this is a folded GEP and the last element was an index, then we need
    // to do some extra work to turn a shift/add/stw into a shift/stwx
    if (pendingAdd && 0 == remainder->getValue()) {
      assert(pendingAddReg != 0 && "Uninitialized register in pending add!");
      *PendingAddReg = pendingAddReg;
    } else {
      *PendingAddReg = 0;
      if (pendingAdd) {
        unsigned nextBasePtrReg = makeAnotherReg(Type::IntTy);
        assert(pendingAddReg != 0 && "Uninitialized register in pending add!");
        BuildMI(*MBB, IP, PPC::ADD, 2, nextBasePtrReg).addReg(basePtrReg)
          .addReg(pendingAddReg);
        basePtrReg = nextBasePtrReg;
      }
    }
    BuildMI (*MBB, IP, PPC::OR, 2, TargetReg).addReg(basePtrReg)
      .addReg(basePtrReg);
    *RemainderPtr = remainder;
    return;
  }

  // If we still have a pending add at this point, emit it now
  if (pendingAdd) {
    unsigned TmpReg = makeAnotherReg(Type::IntTy);
    BuildMI(*MBB, IP, PPC::ADD, 2, TmpReg).addReg(pendingAddReg)
      .addReg(basePtrReg);
    basePtrReg = TmpReg;
  }
  
  // After we have processed all the indices, the result is left in
  // basePtrReg.  Move it to the register where we were expected to
  // put the answer.
  if (remainder->isNullValue()) {
    BuildMI (*MBB, IP, PPC::OR, 2, TargetReg).addReg(basePtrReg)
      .addReg(basePtrReg);
  } else if (canUseAsImmediateForOpcode(remainder, 0)) {
    BuildMI(*MBB, IP, PPC::ADDI, 2, TargetReg).addReg(basePtrReg)
      .addSImm(remainder->getValue());
  } else {
    unsigned Op1r = getReg(remainder, MBB, IP);
    BuildMI(*MBB, IP, PPC::ADD, 2, TargetReg).addReg(basePtrReg).addReg(Op1r);
  }
}

/// visitAllocaInst - If this is a fixed size alloca, allocate space from the
/// frame manager, otherwise do it the hard way.
///
void ISel::visitAllocaInst(AllocaInst &I) {
  // If this is a fixed size alloca in the entry block for the function, we
  // statically stack allocate the space, so we don't need to do anything here.
  //
  if (dyn_castFixedAlloca(&I)) return;
  
  // Find the data size of the alloca inst's getAllocatedType.
  const Type *Ty = I.getAllocatedType();
  unsigned TySize = TM.getTargetData().getTypeSize(Ty);

  // Create a register to hold the temporary result of multiplying the type size
  // constant by the variable amount.
  unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
  
  // TotalSizeReg = mul <numelements>, <TypeSize>
  MachineBasicBlock::iterator MBBI = BB->end();
  ConstantUInt *CUI = ConstantUInt::get(Type::UIntTy, TySize);
  doMultiplyConst(BB, MBBI, TotalSizeReg, I.getArraySize(), CUI);

  // AddedSize = add <TotalSizeReg>, 15
  unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
  BuildMI(BB, PPC::ADDI, 2, AddedSizeReg).addReg(TotalSizeReg).addSImm(15);

  // AlignedSize = and <AddedSize>, ~15
  unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
  BuildMI(BB, PPC::RLWINM, 4, AlignedSize).addReg(AddedSizeReg).addImm(0)
    .addImm(0).addImm(27);
  
  // Subtract size from stack pointer, thereby allocating some space.
  BuildMI(BB, PPC::SUB, 2, PPC::R1).addReg(PPC::R1).addReg(AlignedSize);

  // Put a pointer to the space into the result register, by copying
  // the stack pointer.
  BuildMI(BB, PPC::OR, 2, getReg(I)).addReg(PPC::R1).addReg(PPC::R1);

  // Inform the Frame Information that we have just allocated a variable-sized
  // object.
  F->getFrameInfo()->CreateVariableSizedObject();
}

/// visitMallocInst - Malloc instructions are code generated into direct calls
/// to the library malloc.
///
void ISel::visitMallocInst(MallocInst &I) {
  unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
  unsigned Arg;

  if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
    Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
  } else {
    Arg = makeAnotherReg(Type::UIntTy);
    MachineBasicBlock::iterator MBBI = BB->end();
    ConstantUInt *CUI = ConstantUInt::get(Type::UIntTy, AllocSize);
    doMultiplyConst(BB, MBBI, Arg, I.getOperand(0), CUI);
  }

  std::vector<ValueRecord> Args;
  Args.push_back(ValueRecord(Arg, Type::UIntTy));
  MachineInstr *TheCall = 
    BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(mallocFn, true);
  doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args, false);
  TM.CalledFunctions.insert(mallocFn);
}


/// visitFreeInst - Free instructions are code gen'd to call the free libc
/// function.
///
void ISel::visitFreeInst(FreeInst &I) {
  std::vector<ValueRecord> Args;
  Args.push_back(ValueRecord(I.getOperand(0)));
  MachineInstr *TheCall = 
    BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(freeFn, true);
  doCall(ValueRecord(0, Type::VoidTy), TheCall, Args, false);
  TM.CalledFunctions.insert(freeFn);
}
   
/// createPPC32ISelSimple - This pass converts an LLVM function into a machine
/// code representation is a very simple peep-hole fashion.
///
FunctionPass *llvm::createPPC32ISelSimple(TargetMachine &TM) {
  return new ISel(TM);
}