summaryrefslogtreecommitdiff
path: root/lib/Target/PowerPC/PPCISelDAGToDAG.cpp
blob: 35087a5741ec79f82a86f53bd418f6f4c2a9a406 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
//===-- PPC32ISelDAGToDAG.cpp - PPC32 pattern matching inst selector ------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines a pattern matching instruction selector for 32 bit PowerPC,
// converting from a legalized dag to a PPC dag.
//
//===----------------------------------------------------------------------===//

#include "PowerPC.h"
#include "PPC32TargetMachine.h"
#include "PPC32ISelLowering.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Constants.h"
#include "llvm/GlobalValue.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
using namespace llvm;

namespace {
  Statistic<> FusedFP ("ppc-codegen", "Number of fused fp operations");
  Statistic<> FrameOff("ppc-codegen", "Number of frame idx offsets collapsed");
    
  //===--------------------------------------------------------------------===//
  /// PPC32DAGToDAGISel - PPC32 specific code to select PPC32 machine
  /// instructions for SelectionDAG operations.
  ///
  class PPC32DAGToDAGISel : public SelectionDAGISel {
    PPC32TargetLowering PPC32Lowering;
    unsigned GlobalBaseReg;
  public:
    PPC32DAGToDAGISel(TargetMachine &TM)
      : SelectionDAGISel(PPC32Lowering), PPC32Lowering(TM) {}
    
    virtual bool runOnFunction(Function &Fn) {
      // Make sure we re-emit a set of the global base reg if necessary
      GlobalBaseReg = 0;
      return SelectionDAGISel::runOnFunction(Fn);
    }
   
    /// getI32Imm - Return a target constant with the specified value, of type
    /// i32.
    inline SDOperand getI32Imm(unsigned Imm) {
      return CurDAG->getTargetConstant(Imm, MVT::i32);
    }

    /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC
    /// base register.  Return the virtual register that holds this value.
    SDOperand getGlobalBaseReg();
    
    // Select - Convert the specified operand from a target-independent to a
    // target-specific node if it hasn't already been changed.
    SDOperand Select(SDOperand Op);
    
    SDNode *SelectIntImmediateExpr(SDOperand LHS, SDOperand RHS,
                                   unsigned OCHi, unsigned OCLo,
                                   bool IsArithmetic = false,
                                   bool Negate = false);
    SDNode *SelectBitfieldInsert(SDNode *N);

    /// SelectCC - Select a comparison of the specified values with the
    /// specified condition code, returning the CR# of the expression.
    SDOperand SelectCC(SDOperand LHS, SDOperand RHS, ISD::CondCode CC);

    /// SelectAddr - Given the specified address, return the two operands for a
    /// load/store instruction, and return true if it should be an indexed [r+r]
    /// operation.
    bool SelectAddr(SDOperand Addr, SDOperand &Op1, SDOperand &Op2);

    SDOperand BuildSDIVSequence(SDNode *N);
    SDOperand BuildUDIVSequence(SDNode *N);
    
    /// InstructionSelectBasicBlock - This callback is invoked by
    /// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
    virtual void InstructionSelectBasicBlock(SelectionDAG &DAG);
    
    virtual const char *getPassName() const {
      return "PowerPC DAG->DAG Pattern Instruction Selection";
    } 

// Include the pieces autogenerated from the target description.
#include "PPCGenDAGISel.inc"
    
private:
    SDOperand SelectDYNAMIC_STACKALLOC(SDOperand Op);
    SDOperand SelectADD_PARTS(SDOperand Op);
    SDOperand SelectSUB_PARTS(SDOperand Op);
    SDOperand SelectSETCC(SDOperand Op);
    SDOperand SelectCALL(SDOperand Op);
  };
}

/// InstructionSelectBasicBlock - This callback is invoked by
/// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
void PPC32DAGToDAGISel::InstructionSelectBasicBlock(SelectionDAG &DAG) {
  DEBUG(BB->dump());
  
  // The selection process is inherently a bottom-up recursive process (users
  // select their uses before themselves).  Given infinite stack space, we
  // could just start selecting on the root and traverse the whole graph.  In
  // practice however, this causes us to run out of stack space on large basic
  // blocks.  To avoid this problem, select the entry node, then all its uses,
  // iteratively instead of recursively.
  std::vector<SDOperand> Worklist;
  Worklist.push_back(DAG.getEntryNode());
  
  // Note that we can do this in the PPC target (scanning forward across token
  // chain edges) because no nodes ever get folded across these edges.  On a
  // target like X86 which supports load/modify/store operations, this would
  // have to be more careful.
  while (!Worklist.empty()) {
    SDOperand Node = Worklist.back();
    Worklist.pop_back();
    
    // Chose from the least deep of the top two nodes.
    if (!Worklist.empty() &&
        Worklist.back().Val->getNodeDepth() < Node.Val->getNodeDepth())
      std::swap(Worklist.back(), Node);
    
    if ((Node.Val->getOpcode() >= ISD::BUILTIN_OP_END &&
         Node.Val->getOpcode() < PPCISD::FIRST_NUMBER) ||
        CodeGenMap.count(Node)) continue;
    
    for (SDNode::use_iterator UI = Node.Val->use_begin(),
         E = Node.Val->use_end(); UI != E; ++UI) {
      // Scan the values.  If this use has a value that is a token chain, add it
      // to the worklist.
      SDNode *User = *UI;
      for (unsigned i = 0, e = User->getNumValues(); i != e; ++i)
        if (User->getValueType(i) == MVT::Other) {
          Worklist.push_back(SDOperand(User, i));
          break; 
        }
    }

    // Finally, legalize this node.
    Select(Node);
  }
    
  // Select target instructions for the DAG.
  DAG.setRoot(Select(DAG.getRoot()));
  CodeGenMap.clear();
  DAG.RemoveDeadNodes();
  
  // Emit machine code to BB. 
  ScheduleAndEmitDAG(DAG);
}

/// getGlobalBaseReg - Output the instructions required to put the
/// base address to use for accessing globals into a register.
///
SDOperand PPC32DAGToDAGISel::getGlobalBaseReg() {
  if (!GlobalBaseReg) {
    // Insert the set of GlobalBaseReg into the first MBB of the function
    MachineBasicBlock &FirstMBB = BB->getParent()->front();
    MachineBasicBlock::iterator MBBI = FirstMBB.begin();
    SSARegMap *RegMap = BB->getParent()->getSSARegMap();
    GlobalBaseReg = RegMap->createVirtualRegister(PPC32::GPRCRegisterClass);
    BuildMI(FirstMBB, MBBI, PPC::MovePCtoLR, 0, PPC::LR);
    BuildMI(FirstMBB, MBBI, PPC::MFLR, 1, GlobalBaseReg);
  }
  return CurDAG->getRegister(GlobalBaseReg, MVT::i32);
}


// isIntImmediate - This method tests to see if a constant operand.
// If so Imm will receive the 32 bit value.
static bool isIntImmediate(SDNode *N, unsigned& Imm) {
  if (N->getOpcode() == ISD::Constant) {
    Imm = cast<ConstantSDNode>(N)->getValue();
    return true;
  }
  return false;
}

// isOprShiftImm - Returns true if the specified operand is a shift opcode with
// a immediate shift count less than 32.
static bool isOprShiftImm(SDNode *N, unsigned& Opc, unsigned& SH) {
  Opc = N->getOpcode();
  return (Opc == ISD::SHL || Opc == ISD::SRL || Opc == ISD::SRA) &&
    isIntImmediate(N->getOperand(1).Val, SH) && SH < 32;
}

// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with
// any number of 0s on either side.  The 1s are allowed to wrap from LSB to
// MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs.  0x0F0F0000 is
// not, since all 1s are not contiguous.
static bool isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME) {
  if (isShiftedMask_32(Val)) {
    // look for the first non-zero bit
    MB = CountLeadingZeros_32(Val);
    // look for the first zero bit after the run of ones
    ME = CountLeadingZeros_32((Val - 1) ^ Val);
    return true;
  } else {
    Val = ~Val; // invert mask
    if (isShiftedMask_32(Val)) {
      // effectively look for the first zero bit
      ME = CountLeadingZeros_32(Val) - 1;
      // effectively look for the first one bit after the run of zeros
      MB = CountLeadingZeros_32((Val - 1) ^ Val) + 1;
      return true;
    }
  }
  // no run present
  return false;
}

// isRotateAndMask - Returns true if Mask and Shift can be folded into a rotate
// and mask opcode and mask operation.
static bool isRotateAndMask(SDNode *N, unsigned Mask, bool IsShiftMask,
                            unsigned &SH, unsigned &MB, unsigned &ME) {
  unsigned Shift  = 32;
  unsigned Indeterminant = ~0;  // bit mask marking indeterminant results
  unsigned Opcode = N->getOpcode();
  if (N->getNumOperands() != 2 ||
      !isIntImmediate(N->getOperand(1).Val, Shift) || (Shift > 31))
    return false;
  
  if (Opcode == ISD::SHL) {
    // apply shift left to mask if it comes first
    if (IsShiftMask) Mask = Mask << Shift;
    // determine which bits are made indeterminant by shift
    Indeterminant = ~(0xFFFFFFFFu << Shift);
  } else if (Opcode == ISD::SRA || Opcode == ISD::SRL) { 
    // apply shift right to mask if it comes first
    if (IsShiftMask) Mask = Mask >> Shift;
    // determine which bits are made indeterminant by shift
    Indeterminant = ~(0xFFFFFFFFu >> Shift);
    // adjust for the left rotate
    Shift = 32 - Shift;
  } else {
    return false;
  }
  
  // if the mask doesn't intersect any Indeterminant bits
  if (Mask && !(Mask & Indeterminant)) {
    SH = Shift;
    // make sure the mask is still a mask (wrap arounds may not be)
    return isRunOfOnes(Mask, MB, ME);
  }
  return false;
}

// isOpcWithIntImmediate - This method tests to see if the node is a specific
// opcode and that it has a immediate integer right operand.
// If so Imm will receive the 32 bit value.
static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
  return N->getOpcode() == Opc && isIntImmediate(N->getOperand(1).Val, Imm);
}

// isOprNot - Returns true if the specified operand is an xor with immediate -1.
static bool isOprNot(SDNode *N) {
  unsigned Imm;
  return isOpcWithIntImmediate(N, ISD::XOR, Imm) && (signed)Imm == -1;
}

// Immediate constant composers.
// Lo16 - grabs the lo 16 bits from a 32 bit constant.
// Hi16 - grabs the hi 16 bits from a 32 bit constant.
// HA16 - computes the hi bits required if the lo bits are add/subtracted in
// arithmethically.
static unsigned Lo16(unsigned x)  { return x & 0x0000FFFF; }
static unsigned Hi16(unsigned x)  { return Lo16(x >> 16); }
static unsigned HA16(unsigned x)  { return Hi16((signed)x - (signed short)x); }

// isIntImmediate - This method tests to see if a constant operand.
// If so Imm will receive the 32 bit value.
static bool isIntImmediate(SDOperand N, unsigned& Imm) {
  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
    Imm = (unsigned)CN->getSignExtended();
    return true;
  }
  return false;
}

/// SelectBitfieldInsert - turn an or of two masked values into
/// the rotate left word immediate then mask insert (rlwimi) instruction.
/// Returns true on success, false if the caller still needs to select OR.
///
/// Patterns matched:
/// 1. or shl, and   5. or and, and
/// 2. or and, shl   6. or shl, shr
/// 3. or shr, and   7. or shr, shl
/// 4. or and, shr
SDNode *PPC32DAGToDAGISel::SelectBitfieldInsert(SDNode *N) {
  bool IsRotate = false;
  unsigned TgtMask = 0xFFFFFFFF, InsMask = 0xFFFFFFFF, SH = 0;
  unsigned Value;
  
  SDOperand Op0 = N->getOperand(0);
  SDOperand Op1 = N->getOperand(1);
  
  unsigned Op0Opc = Op0.getOpcode();
  unsigned Op1Opc = Op1.getOpcode();
  
  // Verify that we have the correct opcodes
  if (ISD::SHL != Op0Opc && ISD::SRL != Op0Opc && ISD::AND != Op0Opc)
    return false;
  if (ISD::SHL != Op1Opc && ISD::SRL != Op1Opc && ISD::AND != Op1Opc)
    return false;
  
  // Generate Mask value for Target
  if (isIntImmediate(Op0.getOperand(1), Value)) {
    switch(Op0Opc) {
    case ISD::SHL: TgtMask <<= Value; break;
    case ISD::SRL: TgtMask >>= Value; break;
    case ISD::AND: TgtMask &= Value; break;
    }
  } else {
    return 0;
  }
  
  // Generate Mask value for Insert
  if (!isIntImmediate(Op1.getOperand(1), Value))
    return 0;
  
  switch(Op1Opc) {
  case ISD::SHL:
    SH = Value;
    InsMask <<= SH;
    if (Op0Opc == ISD::SRL) IsRotate = true;
    break;
  case ISD::SRL:
    SH = Value;
    InsMask >>= SH;
    SH = 32-SH;
    if (Op0Opc == ISD::SHL) IsRotate = true;
    break;
  case ISD::AND:
    InsMask &= Value;
    break;
  }
  
  // If both of the inputs are ANDs and one of them has a logical shift by
  // constant as its input, make that AND the inserted value so that we can
  // combine the shift into the rotate part of the rlwimi instruction
  bool IsAndWithShiftOp = false;
  if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) {
    if (Op1.getOperand(0).getOpcode() == ISD::SHL ||
        Op1.getOperand(0).getOpcode() == ISD::SRL) {
      if (isIntImmediate(Op1.getOperand(0).getOperand(1), Value)) {
        SH = Op1.getOperand(0).getOpcode() == ISD::SHL ? Value : 32 - Value;
        IsAndWithShiftOp = true;
      }
    } else if (Op0.getOperand(0).getOpcode() == ISD::SHL ||
               Op0.getOperand(0).getOpcode() == ISD::SRL) {
      if (isIntImmediate(Op0.getOperand(0).getOperand(1), Value)) {
        std::swap(Op0, Op1);
        std::swap(TgtMask, InsMask);
        SH = Op1.getOperand(0).getOpcode() == ISD::SHL ? Value : 32 - Value;
        IsAndWithShiftOp = true;
      }
    }
  }
  
  // Verify that the Target mask and Insert mask together form a full word mask
  // and that the Insert mask is a run of set bits (which implies both are runs
  // of set bits).  Given that, Select the arguments and generate the rlwimi
  // instruction.
  unsigned MB, ME;
  if (((TgtMask & InsMask) == 0) && isRunOfOnes(InsMask, MB, ME)) {
    bool fullMask = (TgtMask ^ InsMask) == 0xFFFFFFFF;
    bool Op0IsAND = Op0Opc == ISD::AND;
    // Check for rotlwi / rotrwi here, a special case of bitfield insert
    // where both bitfield halves are sourced from the same value.
    if (IsRotate && fullMask &&
        N->getOperand(0).getOperand(0) == N->getOperand(1).getOperand(0)) {
      Op0 = CurDAG->getTargetNode(PPC::RLWINM, MVT::i32,
                                  Select(N->getOperand(0).getOperand(0)),
                                  getI32Imm(SH), getI32Imm(0), getI32Imm(31));
      return Op0.Val;
    }
    SDOperand Tmp1 = (Op0IsAND && fullMask) ? Select(Op0.getOperand(0))
                                            : Select(Op0);
    SDOperand Tmp2 = IsAndWithShiftOp ? Select(Op1.getOperand(0).getOperand(0)) 
                                      : Select(Op1.getOperand(0));
    Op0 = CurDAG->getTargetNode(PPC::RLWIMI, MVT::i32, Tmp1, Tmp2,
                                getI32Imm(SH), getI32Imm(MB), getI32Imm(ME));
    return Op0.Val;
  }
  return 0;
}

// SelectIntImmediateExpr - Choose code for integer operations with an immediate
// operand.
SDNode *PPC32DAGToDAGISel::SelectIntImmediateExpr(SDOperand LHS, SDOperand RHS,
                                                  unsigned OCHi, unsigned OCLo,
                                                  bool IsArithmetic,
                                                  bool Negate) {
  // Check to make sure this is a constant.
  ConstantSDNode *CN = dyn_cast<ConstantSDNode>(RHS);
  // Exit if not a constant.
  if (!CN) return 0;
  // Extract immediate.
  unsigned C = (unsigned)CN->getValue();
  // Negate if required (ISD::SUB).
  if (Negate) C = -C;
  // Get the hi and lo portions of constant.
  unsigned Hi = IsArithmetic ? HA16(C) : Hi16(C);
  unsigned Lo = Lo16(C);

  // If two instructions are needed and usage indicates it would be better to
  // load immediate into a register, bail out.
  if (Hi && Lo && CN->use_size() > 2) return false;

  // Select the first operand.
  SDOperand Opr0 = Select(LHS);

  if (Lo)  // Add in the lo-part.
    Opr0 = CurDAG->getTargetNode(OCLo, MVT::i32, Opr0, getI32Imm(Lo));
  if (Hi)  // Add in the hi-part.
    Opr0 = CurDAG->getTargetNode(OCHi, MVT::i32, Opr0, getI32Imm(Hi));
  return Opr0.Val;
}

/// SelectAddr - Given the specified address, return the two operands for a
/// load/store instruction, and return true if it should be an indexed [r+r]
/// operation.
bool PPC32DAGToDAGISel::SelectAddr(SDOperand Addr, SDOperand &Op1,
                                   SDOperand &Op2) {
  unsigned imm = 0;
  if (Addr.getOpcode() == ISD::ADD) {
    if (isIntImmediate(Addr.getOperand(1), imm) && isInt16(imm)) {
      Op1 = getI32Imm(Lo16(imm));
      if (FrameIndexSDNode *FI =
            dyn_cast<FrameIndexSDNode>(Addr.getOperand(0))) {
        ++FrameOff;
        Op2 = CurDAG->getTargetFrameIndex(FI->getIndex(), MVT::i32);
      } else {
        Op2 = Select(Addr.getOperand(0));
      }
      return false;
    } else {
      Op1 = Select(Addr.getOperand(0));
      Op2 = Select(Addr.getOperand(1));
      return true;   // [r+r]
    }
  }

  // Now check if we're dealing with a global, and whether or not we should emit
  // an optimized load or store for statics.
  if (GlobalAddressSDNode *GN = dyn_cast<GlobalAddressSDNode>(Addr)) {
    GlobalValue *GV = GN->getGlobal();
    if (!GV->hasWeakLinkage() && !GV->isExternal()) {
      Op1 = CurDAG->getTargetGlobalAddress(GV, MVT::i32);
      if (PICEnabled)
        Op2 = CurDAG->getTargetNode(PPC::ADDIS, MVT::i32, getGlobalBaseReg(),
                                    Op1);
      else
        Op2 = CurDAG->getTargetNode(PPC::LIS, MVT::i32, Op1);
      return false;
    }
  } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Addr)) {
    Op1 = getI32Imm(0);
    Op2 = CurDAG->getTargetFrameIndex(FI->getIndex(), MVT::i32);
    return false;
  } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Addr)) {
    Op1 = Addr;
    if (PICEnabled)
      Op2 = CurDAG->getTargetNode(PPC::ADDIS, MVT::i32, getGlobalBaseReg(),Op1);
    else
      Op2 = CurDAG->getTargetNode(PPC::LIS, MVT::i32, Op1);
    return false;
  }
  Op1 = getI32Imm(0);
  Op2 = Select(Addr);
  return false;
}

/// SelectCC - Select a comparison of the specified values with the specified
/// condition code, returning the CR# of the expression.
SDOperand PPC32DAGToDAGISel::SelectCC(SDOperand LHS, SDOperand RHS,
                                      ISD::CondCode CC) {
  // Always select the LHS.
  LHS = Select(LHS);

  // Use U to determine whether the SETCC immediate range is signed or not.
  if (MVT::isInteger(LHS.getValueType())) {
    bool U = ISD::isUnsignedIntSetCC(CC);
    unsigned Imm;
    if (isIntImmediate(RHS, Imm) && 
        ((U && isUInt16(Imm)) || (!U && isInt16(Imm))))
      return CurDAG->getTargetNode(U ? PPC::CMPLWI : PPC::CMPWI, MVT::i32,
                                   LHS, getI32Imm(Lo16(Imm)));
    return CurDAG->getTargetNode(U ? PPC::CMPLW : PPC::CMPW, MVT::i32,
                                 LHS, Select(RHS));
  } else if (LHS.getValueType() == MVT::f32) {
    return CurDAG->getTargetNode(PPC::FCMPUS, MVT::i32, LHS, Select(RHS));
  } else {
    return CurDAG->getTargetNode(PPC::FCMPUD, MVT::i32, LHS, Select(RHS));
  }
}

/// getBCCForSetCC - Returns the PowerPC condition branch mnemonic corresponding
/// to Condition.
static unsigned getBCCForSetCC(ISD::CondCode CC) {
  switch (CC) {
  default: assert(0 && "Unknown condition!"); abort();
  case ISD::SETEQ:  return PPC::BEQ;
  case ISD::SETNE:  return PPC::BNE;
  case ISD::SETULT:
  case ISD::SETLT:  return PPC::BLT;
  case ISD::SETULE:
  case ISD::SETLE:  return PPC::BLE;
  case ISD::SETUGT:
  case ISD::SETGT:  return PPC::BGT;
  case ISD::SETUGE:
  case ISD::SETGE:  return PPC::BGE;
  }
  return 0;
}

/// getCRIdxForSetCC - Return the index of the condition register field
/// associated with the SetCC condition, and whether or not the field is
/// treated as inverted.  That is, lt = 0; ge = 0 inverted.
static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool& Inv) {
  switch (CC) {
  default: assert(0 && "Unknown condition!"); abort();
  case ISD::SETULT:
  case ISD::SETLT:  Inv = false;  return 0;
  case ISD::SETUGE:
  case ISD::SETGE:  Inv = true;   return 0;
  case ISD::SETUGT:
  case ISD::SETGT:  Inv = false;  return 1;
  case ISD::SETULE:
  case ISD::SETLE:  Inv = true;   return 1;
  case ISD::SETEQ:  Inv = false;  return 2;
  case ISD::SETNE:  Inv = true;   return 2;
  }
  return 0;
}

// Structure used to return the necessary information to codegen an SDIV as
// a multiply.
struct ms {
  int m; // magic number
  int s; // shift amount
};

struct mu {
  unsigned int m; // magic number
  int a;          // add indicator
  int s;          // shift amount
};

/// magic - calculate the magic numbers required to codegen an integer sdiv as
/// a sequence of multiply and shifts.  Requires that the divisor not be 0, 1,
/// or -1.
static struct ms magic(int d) {
  int p;
  unsigned int ad, anc, delta, q1, r1, q2, r2, t;
  const unsigned int two31 = 0x80000000U;
  struct ms mag;
  
  ad = abs(d);
  t = two31 + ((unsigned int)d >> 31);
  anc = t - 1 - t%ad;   // absolute value of nc
  p = 31;               // initialize p
  q1 = two31/anc;       // initialize q1 = 2p/abs(nc)
  r1 = two31 - q1*anc;  // initialize r1 = rem(2p,abs(nc))
  q2 = two31/ad;        // initialize q2 = 2p/abs(d)
  r2 = two31 - q2*ad;   // initialize r2 = rem(2p,abs(d))
  do {
    p = p + 1;
    q1 = 2*q1;        // update q1 = 2p/abs(nc)
    r1 = 2*r1;        // update r1 = rem(2p/abs(nc))
    if (r1 >= anc) {  // must be unsigned comparison
      q1 = q1 + 1;
      r1 = r1 - anc;
    }
    q2 = 2*q2;        // update q2 = 2p/abs(d)
    r2 = 2*r2;        // update r2 = rem(2p/abs(d))
    if (r2 >= ad) {   // must be unsigned comparison
      q2 = q2 + 1;
      r2 = r2 - ad;
    }
    delta = ad - r2;
  } while (q1 < delta || (q1 == delta && r1 == 0));
  
  mag.m = q2 + 1;
  if (d < 0) mag.m = -mag.m; // resulting magic number
  mag.s = p - 32;            // resulting shift
  return mag;
}

/// magicu - calculate the magic numbers required to codegen an integer udiv as
/// a sequence of multiply, add and shifts.  Requires that the divisor not be 0.
static struct mu magicu(unsigned d)
{
  int p;
  unsigned int nc, delta, q1, r1, q2, r2;
  struct mu magu;
  magu.a = 0;               // initialize "add" indicator
  nc = - 1 - (-d)%d;
  p = 31;                   // initialize p
  q1 = 0x80000000/nc;       // initialize q1 = 2p/nc
  r1 = 0x80000000 - q1*nc;  // initialize r1 = rem(2p,nc)
  q2 = 0x7FFFFFFF/d;        // initialize q2 = (2p-1)/d
  r2 = 0x7FFFFFFF - q2*d;   // initialize r2 = rem((2p-1),d)
  do {
    p = p + 1;
    if (r1 >= nc - r1 ) {
      q1 = 2*q1 + 1;  // update q1
      r1 = 2*r1 - nc; // update r1
    }
    else {
      q1 = 2*q1; // update q1
      r1 = 2*r1; // update r1
    }
    if (r2 + 1 >= d - r2) {
      if (q2 >= 0x7FFFFFFF) magu.a = 1;
      q2 = 2*q2 + 1;     // update q2
      r2 = 2*r2 + 1 - d; // update r2
    }
    else {
      if (q2 >= 0x80000000) magu.a = 1;
      q2 = 2*q2;     // update q2
      r2 = 2*r2 + 1; // update r2
    }
    delta = d - 1 - r2;
  } while (p < 64 && (q1 < delta || (q1 == delta && r1 == 0)));
  magu.m = q2 + 1; // resulting magic number
  magu.s = p - 32;  // resulting shift
  return magu;
}

/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
/// return a DAG expression to select that will generate the same value by
/// multiplying by a magic number.  See:
/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
SDOperand PPC32DAGToDAGISel::BuildSDIVSequence(SDNode *N) {
  int d = (int)cast<ConstantSDNode>(N->getOperand(1))->getValue();
  ms magics = magic(d);
  // Multiply the numerator (operand 0) by the magic value
  SDOperand Q = CurDAG->getNode(ISD::MULHS, MVT::i32, N->getOperand(0),
                                CurDAG->getConstant(magics.m, MVT::i32));
  // If d > 0 and m < 0, add the numerator
  if (d > 0 && magics.m < 0)
    Q = CurDAG->getNode(ISD::ADD, MVT::i32, Q, N->getOperand(0));
  // If d < 0 and m > 0, subtract the numerator.
  if (d < 0 && magics.m > 0)
    Q = CurDAG->getNode(ISD::SUB, MVT::i32, Q, N->getOperand(0));
  // Shift right algebraic if shift value is nonzero
  if (magics.s > 0)
    Q = CurDAG->getNode(ISD::SRA, MVT::i32, Q,
                        CurDAG->getConstant(magics.s, MVT::i32));
  // Extract the sign bit and add it to the quotient
  SDOperand T =
    CurDAG->getNode(ISD::SRL, MVT::i32, Q, CurDAG->getConstant(31, MVT::i32));
  return CurDAG->getNode(ISD::ADD, MVT::i32, Q, T);
}

/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
/// return a DAG expression to select that will generate the same value by
/// multiplying by a magic number.  See:
/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
SDOperand PPC32DAGToDAGISel::BuildUDIVSequence(SDNode *N) {
  unsigned d = (unsigned)cast<ConstantSDNode>(N->getOperand(1))->getValue();
  mu magics = magicu(d);
  // Multiply the numerator (operand 0) by the magic value
  SDOperand Q = CurDAG->getNode(ISD::MULHU, MVT::i32, N->getOperand(0),
                                CurDAG->getConstant(magics.m, MVT::i32));
  if (magics.a == 0) {
    return CurDAG->getNode(ISD::SRL, MVT::i32, Q,
                           CurDAG->getConstant(magics.s, MVT::i32));
  } else {
    SDOperand NPQ = CurDAG->getNode(ISD::SUB, MVT::i32, N->getOperand(0), Q);
    NPQ = CurDAG->getNode(ISD::SRL, MVT::i32, NPQ,
                           CurDAG->getConstant(1, MVT::i32));
    NPQ = CurDAG->getNode(ISD::ADD, MVT::i32, NPQ, Q);
    return CurDAG->getNode(ISD::SRL, MVT::i32, NPQ,
                           CurDAG->getConstant(magics.s-1, MVT::i32));
  }
}

SDOperand PPC32DAGToDAGISel::SelectDYNAMIC_STACKALLOC(SDOperand Op) {
  SDNode *N = Op.Val;

  // FIXME: We are currently ignoring the requested alignment for handling
  // greater than the stack alignment.  This will need to be revisited at some
  // point.  Align = N.getOperand(2);
  if (!isa<ConstantSDNode>(N->getOperand(2)) ||
      cast<ConstantSDNode>(N->getOperand(2))->getValue() != 0) {
    std::cerr << "Cannot allocate stack object with greater alignment than"
    << " the stack alignment yet!";
    abort();
  }
  SDOperand Chain = Select(N->getOperand(0));
  SDOperand Amt   = Select(N->getOperand(1));
  
  SDOperand R1Reg = CurDAG->getRegister(PPC::R1, MVT::i32);
  
  SDOperand R1Val = CurDAG->getCopyFromReg(Chain, PPC::R1, MVT::i32);
  Chain = R1Val.getValue(1);
  
  // Subtract the amount (guaranteed to be a multiple of the stack alignment)
  // from the stack pointer, giving us the result pointer.
  SDOperand Result = CurDAG->getTargetNode(PPC::SUBF, MVT::i32, Amt, R1Val);
  
  // Copy this result back into R1.
  Chain = CurDAG->getNode(ISD::CopyToReg, MVT::Other, Chain, R1Reg, Result);
  
  // Copy this result back out of R1 to make sure we're not using the stack
  // space without decrementing the stack pointer.
  Result = CurDAG->getCopyFromReg(Chain, PPC::R1, MVT::i32);
  
  // Finally, replace the DYNAMIC_STACKALLOC with the copyfromreg.
  CodeGenMap[Op.getValue(0)] = Result;
  CodeGenMap[Op.getValue(1)] = Result.getValue(1);
  return SDOperand(Result.Val, Op.ResNo);
}

SDOperand PPC32DAGToDAGISel::SelectADD_PARTS(SDOperand Op) {
  SDNode *N = Op.Val;
  SDOperand LHSL = Select(N->getOperand(0));
  SDOperand LHSH = Select(N->getOperand(1));
  
  unsigned Imm;
  bool ME = false, ZE = false;
  if (isIntImmediate(N->getOperand(3), Imm)) {
    ME = (signed)Imm == -1;
    ZE = Imm == 0;
  }
  
  std::vector<SDOperand> Result;
  SDOperand CarryFromLo;
  if (isIntImmediate(N->getOperand(2), Imm) &&
      ((signed)Imm >= -32768 || (signed)Imm < 32768)) {
    // Codegen the low 32 bits of the add.  Interestingly, there is no
    // shifted form of add immediate carrying.
    CarryFromLo = CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag,
                                        LHSL, getI32Imm(Imm));
  } else {
    CarryFromLo = CurDAG->getTargetNode(PPC::ADDC, MVT::i32, MVT::Flag,
                                        LHSL, Select(N->getOperand(2)));
  }
  CarryFromLo = CarryFromLo.getValue(1);
  
  // Codegen the high 32 bits, adding zero, minus one, or the full value
  // along with the carry flag produced by addc/addic.
  SDOperand ResultHi;
  if (ZE)
    ResultHi = CurDAG->getTargetNode(PPC::ADDZE, MVT::i32, LHSH, CarryFromLo);
  else if (ME)
    ResultHi = CurDAG->getTargetNode(PPC::ADDME, MVT::i32, LHSH, CarryFromLo);
  else
    ResultHi = CurDAG->getTargetNode(PPC::ADDE, MVT::i32, LHSH,
                                     Select(N->getOperand(3)), CarryFromLo);
  Result.push_back(CarryFromLo.getValue(0));
  Result.push_back(ResultHi);
  
  CodeGenMap[Op.getValue(0)] = Result[0];
  CodeGenMap[Op.getValue(1)] = Result[1];
  return Result[Op.ResNo];
}
SDOperand PPC32DAGToDAGISel::SelectSUB_PARTS(SDOperand Op) {
  SDNode *N = Op.Val;
  SDOperand LHSL = Select(N->getOperand(0));
  SDOperand LHSH = Select(N->getOperand(1));
  SDOperand RHSL = Select(N->getOperand(2));
  SDOperand RHSH = Select(N->getOperand(3));
  
  std::vector<SDOperand> Result;
  Result.push_back(CurDAG->getTargetNode(PPC::SUBFC, MVT::i32, MVT::Flag,
                                         RHSL, LHSL));
  Result.push_back(CurDAG->getTargetNode(PPC::SUBFE, MVT::i32, RHSH, LHSH,
                                         Result[0].getValue(1)));
  CodeGenMap[Op.getValue(0)] = Result[0];
  CodeGenMap[Op.getValue(1)] = Result[1];
  return Result[Op.ResNo];
}

SDOperand PPC32DAGToDAGISel::SelectSETCC(SDOperand Op) {
  SDNode *N = Op.Val;
  unsigned Imm;
  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
  if (isIntImmediate(N->getOperand(1), Imm)) {
    // We can codegen setcc op, imm very efficiently compared to a brcond.
    // Check for those cases here.
    // setcc op, 0
    if (Imm == 0) {
      SDOperand Op = Select(N->getOperand(0));
      switch (CC) {
        default: assert(0 && "Unhandled SetCC condition"); abort();
        case ISD::SETEQ:
          Op = CurDAG->getTargetNode(PPC::CNTLZW, MVT::i32, Op);
          CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Op, getI32Imm(27),
                               getI32Imm(5), getI32Imm(31));
          break;
        case ISD::SETNE: {
          SDOperand AD = CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag,
                                               Op, getI32Imm(~0U));
          CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op, AD.getValue(1));
          break;
        }
        case ISD::SETLT:
          CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Op, getI32Imm(1),
                               getI32Imm(31), getI32Imm(31));
          break;
        case ISD::SETGT: {
          SDOperand T = CurDAG->getTargetNode(PPC::NEG, MVT::i32, Op);
          T = CurDAG->getTargetNode(PPC::ANDC, MVT::i32, T, Op);;
          CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, T, getI32Imm(1),
                               getI32Imm(31), getI32Imm(31));
          break;
        }
      }
      return SDOperand(N, 0);
    } else if (Imm == ~0U) {        // setcc op, -1
      SDOperand Op = Select(N->getOperand(0));
      switch (CC) {
        default: assert(0 && "Unhandled SetCC condition"); abort();
        case ISD::SETEQ:
          Op = CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag,
                                     Op, getI32Imm(1));
          CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, 
                               CurDAG->getTargetNode(PPC::LI, MVT::i32,
                                                     getI32Imm(0)),
                               Op.getValue(1));
          break;
        case ISD::SETNE: {
          Op = CurDAG->getTargetNode(PPC::NOR, MVT::i32, Op, Op);
          SDOperand AD = CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag,
                                               Op, getI32Imm(~0U));
          CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op, AD.getValue(1));
          break;
        }
        case ISD::SETLT: {
          SDOperand AD = CurDAG->getTargetNode(PPC::ADDI, MVT::i32, Op,
                                               getI32Imm(1));
          SDOperand AN = CurDAG->getTargetNode(PPC::AND, MVT::i32, AD, Op);
          CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, AN, getI32Imm(1),
                               getI32Imm(31), getI32Imm(31));
          break;
        }
        case ISD::SETGT:
          Op = CurDAG->getTargetNode(PPC::RLWINM, MVT::i32, Op, getI32Imm(1),
                                     getI32Imm(31), getI32Imm(31));
          CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op, getI32Imm(1));
          break;
      }
      return SDOperand(N, 0);
    }
  }
  
  bool Inv;
  unsigned Idx = getCRIdxForSetCC(CC, Inv);
  SDOperand CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC);
  SDOperand IntCR;
  
  // Force the ccreg into CR7.
  SDOperand CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32);
  
  std::vector<MVT::ValueType> VTs;
  VTs.push_back(MVT::Other);
  VTs.push_back(MVT::Flag);    // NONSTANDARD CopyToReg node: defines a flag
  std::vector<SDOperand> Ops;
  Ops.push_back(CurDAG->getEntryNode());
  Ops.push_back(CR7Reg);
  Ops.push_back(CCReg);
  CCReg = CurDAG->getNode(ISD::CopyToReg, VTs, Ops).getValue(1);
  
  if (TLI.getTargetMachine().getSubtarget<PPCSubtarget>().isGigaProcessor())
    IntCR = CurDAG->getTargetNode(PPC::MFOCRF, MVT::i32, CR7Reg, CCReg);
  else
    IntCR = CurDAG->getTargetNode(PPC::MFCR, MVT::i32, CCReg);
  
  if (!Inv) {
    CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, IntCR,
                         getI32Imm(32-(3-Idx)), getI32Imm(31), getI32Imm(31));
  } else {
    SDOperand Tmp =
    CurDAG->getTargetNode(PPC::RLWINM, MVT::i32, IntCR,
                          getI32Imm(32-(3-Idx)), getI32Imm(31),getI32Imm(31));
    CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1));
  }
  
  return SDOperand(N, 0);
}

SDOperand PPC32DAGToDAGISel::SelectCALL(SDOperand Op) {
  SDNode *N = Op.Val;
  SDOperand Chain = Select(N->getOperand(0));
  
  unsigned CallOpcode;
  std::vector<SDOperand> CallOperands;
  
  if (GlobalAddressSDNode *GASD =
      dyn_cast<GlobalAddressSDNode>(N->getOperand(1))) {
    CallOpcode = PPC::CALLpcrel;
    CallOperands.push_back(CurDAG->getTargetGlobalAddress(GASD->getGlobal(),
                                                          MVT::i32));
  } else if (ExternalSymbolSDNode *ESSDN =
             dyn_cast<ExternalSymbolSDNode>(N->getOperand(1))) {
    CallOpcode = PPC::CALLpcrel;
    CallOperands.push_back(N->getOperand(1));
  } else {
    // Copy the callee address into the CTR register.
    SDOperand Callee = Select(N->getOperand(1));
    Chain = CurDAG->getTargetNode(PPC::MTCTR, MVT::Other, Callee, Chain);
    
    // Copy the callee address into R12 on darwin.
    SDOperand R12 = CurDAG->getRegister(PPC::R12, MVT::i32);
    Chain = CurDAG->getNode(ISD::CopyToReg, MVT::Other, Chain, R12, Callee);
    
    CallOperands.push_back(getI32Imm(20));  // Information to encode indcall
    CallOperands.push_back(getI32Imm(0));   // Information to encode indcall
    CallOperands.push_back(R12);
    CallOpcode = PPC::CALLindirect;
  }
  
  unsigned GPR_idx = 0, FPR_idx = 0;
  static const unsigned GPR[] = {
    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
  };
  static const unsigned FPR[] = {
    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
    PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
  };
  
  SDOperand InFlag;  // Null incoming flag value.
  
  for (unsigned i = 2, e = N->getNumOperands(); i != e; ++i) {
    unsigned DestReg = 0;
    MVT::ValueType RegTy = N->getOperand(i).getValueType();
    if (RegTy == MVT::i32) {
      assert(GPR_idx < 8 && "Too many int args");
      DestReg = GPR[GPR_idx++];
    } else {
      assert(MVT::isFloatingPoint(N->getOperand(i).getValueType()) &&
             "Unpromoted integer arg?");
      assert(FPR_idx < 13 && "Too many fp args");
      DestReg = FPR[FPR_idx++];
    }
    
    if (N->getOperand(i).getOpcode() != ISD::UNDEF) {
      SDOperand Val = Select(N->getOperand(i));
      Chain = CurDAG->getCopyToReg(Chain, DestReg, Val, InFlag);
      InFlag = Chain.getValue(1);
      CallOperands.push_back(CurDAG->getRegister(DestReg, RegTy));
    }
  }
  
  // Finally, once everything is in registers to pass to the call, emit the
  // call itself.
  if (InFlag.Val)
    CallOperands.push_back(InFlag);   // Strong dep on register copies.
  else
    CallOperands.push_back(Chain);    // Weak dep on whatever occurs before
  Chain = CurDAG->getTargetNode(CallOpcode, MVT::Other, MVT::Flag,
                                CallOperands);
  
  std::vector<SDOperand> CallResults;
  
  // If the call has results, copy the values out of the ret val registers.
  switch (N->getValueType(0)) {
    default: assert(0 && "Unexpected ret value!");
    case MVT::Other: break;
    case MVT::i32:
      if (N->getValueType(1) == MVT::i32) {
        Chain = CurDAG->getCopyFromReg(Chain, PPC::R4, MVT::i32, 
                                       Chain.getValue(1)).getValue(1);
        CallResults.push_back(Chain.getValue(0));
        Chain = CurDAG->getCopyFromReg(Chain, PPC::R3, MVT::i32,
                                       Chain.getValue(2)).getValue(1);
        CallResults.push_back(Chain.getValue(0));
      } else {
        Chain = CurDAG->getCopyFromReg(Chain, PPC::R3, MVT::i32,
                                       Chain.getValue(1)).getValue(1);
        CallResults.push_back(Chain.getValue(0));
      }
      break;
    case MVT::f32:
    case MVT::f64:
      Chain = CurDAG->getCopyFromReg(Chain, PPC::F1, N->getValueType(0),
                                     Chain.getValue(1)).getValue(1);
      CallResults.push_back(Chain.getValue(0));
      break;
  }
  
  CallResults.push_back(Chain);
  for (unsigned i = 0, e = CallResults.size(); i != e; ++i)
    CodeGenMap[Op.getValue(i)] = CallResults[i];
  return CallResults[Op.ResNo];
}

// Select - Convert the specified operand from a target-independent to a
// target-specific node if it hasn't already been changed.
SDOperand PPC32DAGToDAGISel::Select(SDOperand Op) {
  SDNode *N = Op.Val;
  if (N->getOpcode() >= ISD::BUILTIN_OP_END &&
      N->getOpcode() < PPCISD::FIRST_NUMBER)
    return Op;   // Already selected.

  // If this has already been converted, use it.
  std::map<SDOperand, SDOperand>::iterator CGMI = CodeGenMap.find(Op);
  if (CGMI != CodeGenMap.end()) return CGMI->second;
  
  switch (N->getOpcode()) {
  default: break;
  case ISD::DYNAMIC_STACKALLOC: return SelectDYNAMIC_STACKALLOC(Op);
  case ISD::ADD_PARTS:          return SelectADD_PARTS(Op);
  case ISD::SUB_PARTS:          return SelectSUB_PARTS(Op);
  case ISD::SETCC:              return SelectSETCC(Op);
  case ISD::CALL:               return SelectCALL(Op);
  case ISD::TAILCALL:           return SelectCALL(Op);

  case ISD::TokenFactor: {
    SDOperand New;
    if (N->getNumOperands() == 2) {
      SDOperand Op0 = Select(N->getOperand(0));
      SDOperand Op1 = Select(N->getOperand(1));
      New = CurDAG->getNode(ISD::TokenFactor, MVT::Other, Op0, Op1);
    } else {
      std::vector<SDOperand> Ops;
      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
        Ops.push_back(Select(N->getOperand(i)));
      New = CurDAG->getNode(ISD::TokenFactor, MVT::Other, Ops);
    }
    
    CodeGenMap[Op] = New;
    return New;
  }
  case ISD::CopyFromReg: {
    SDOperand Chain = Select(N->getOperand(0));
    if (Chain == N->getOperand(0)) return Op; // No change
    SDOperand New = CurDAG->getCopyFromReg(Chain,
         cast<RegisterSDNode>(N->getOperand(1))->getReg(), N->getValueType(0));
    return New.getValue(Op.ResNo);
  }
  case ISD::CopyToReg: {
    SDOperand Chain = Select(N->getOperand(0));
    SDOperand Reg = N->getOperand(1);
    SDOperand Val = Select(N->getOperand(2));
    SDOperand New = CurDAG->getNode(ISD::CopyToReg, MVT::Other,
                                    Chain, Reg, Val);
    CodeGenMap[Op] = New;
    return New;
  }
  case ISD::UNDEF:
    if (N->getValueType(0) == MVT::i32)
      CurDAG->SelectNodeTo(N, PPC::IMPLICIT_DEF_GPR, MVT::i32);
    else if (N->getValueType(0) == MVT::f32)
      CurDAG->SelectNodeTo(N, PPC::IMPLICIT_DEF_F4, MVT::f32);
    else 
      CurDAG->SelectNodeTo(N, PPC::IMPLICIT_DEF_F8, MVT::f64);
    return SDOperand(N, 0);
  case ISD::FrameIndex: {
    int FI = cast<FrameIndexSDNode>(N)->getIndex();
    CurDAG->SelectNodeTo(N, PPC::ADDI, MVT::i32,
                         CurDAG->getTargetFrameIndex(FI, MVT::i32),
                         getI32Imm(0));
    return SDOperand(N, 0);
  }
  case ISD::ConstantPool: {
    Constant *C = cast<ConstantPoolSDNode>(N)->get();
    SDOperand Tmp, CPI = CurDAG->getTargetConstantPool(C, MVT::i32);
    if (PICEnabled)
      Tmp = CurDAG->getTargetNode(PPC::ADDIS, MVT::i32, getGlobalBaseReg(),CPI);
    else
      Tmp = CurDAG->getTargetNode(PPC::LIS, MVT::i32, CPI);
    CurDAG->SelectNodeTo(N, PPC::LA, MVT::i32, Tmp, CPI);
    return SDOperand(N, 0);
  }
  case ISD::GlobalAddress: {
    GlobalValue *GV = cast<GlobalAddressSDNode>(N)->getGlobal();
    SDOperand Tmp;
    SDOperand GA = CurDAG->getTargetGlobalAddress(GV, MVT::i32);
    if (PICEnabled)
      Tmp = CurDAG->getTargetNode(PPC::ADDIS, MVT::i32, getGlobalBaseReg(), GA);
    else
      Tmp = CurDAG->getTargetNode(PPC::LIS, MVT::i32, GA);

    if (GV->hasWeakLinkage() || GV->isExternal())
      CurDAG->SelectNodeTo(N, PPC::LWZ, MVT::i32, GA, Tmp);
    else
      CurDAG->SelectNodeTo(N, PPC::LA, MVT::i32, Tmp, GA);
    return SDOperand(N, 0);
  }
    
  case PPCISD::FSEL: {
    SDOperand Comparison = Select(N->getOperand(0));
    // Extend the comparison to 64-bits.
    if (Comparison.getValueType() == MVT::f32)
      Comparison = CurDAG->getTargetNode(PPC::FMRSD, MVT::f64, Comparison);
    
    unsigned Opc = N->getValueType(0) == MVT::f32 ? PPC::FSELS : PPC::FSELD;
    CurDAG->SelectNodeTo(N, Opc, N->getValueType(0), Comparison,
                         Select(N->getOperand(1)), Select(N->getOperand(2)));
    return SDOperand(N, 0);
  }
  case PPCISD::FCFID:
    CurDAG->SelectNodeTo(N, PPC::FCFID, N->getValueType(0),
                         Select(N->getOperand(0)));
    return SDOperand(N, 0);
  case PPCISD::FCTIDZ:
    CurDAG->SelectNodeTo(N, PPC::FCTIDZ, N->getValueType(0),
                         Select(N->getOperand(0)));
    return SDOperand(N, 0);
  case PPCISD::FCTIWZ:
    CurDAG->SelectNodeTo(N, PPC::FCTIWZ, N->getValueType(0),
                         Select(N->getOperand(0)));
    return SDOperand(N, 0);
  case ISD::FADD: {
    MVT::ValueType Ty = N->getValueType(0);
    if (!NoExcessFPPrecision) {  // Match FMA ops
      if (N->getOperand(0).getOpcode() == ISD::FMUL &&
          N->getOperand(0).Val->hasOneUse()) {
        ++FusedFP; // Statistic
        CurDAG->SelectNodeTo(N, Ty == MVT::f64 ? PPC::FMADD : PPC::FMADDS, Ty,
                             Select(N->getOperand(0).getOperand(0)),
                             Select(N->getOperand(0).getOperand(1)),
                             Select(N->getOperand(1)));
        return SDOperand(N, 0);
      } else if (N->getOperand(1).getOpcode() == ISD::FMUL &&
                 N->getOperand(1).hasOneUse()) {
        ++FusedFP; // Statistic
        CurDAG->SelectNodeTo(N, Ty == MVT::f64 ? PPC::FMADD : PPC::FMADDS, Ty,
                             Select(N->getOperand(1).getOperand(0)),
                             Select(N->getOperand(1).getOperand(1)),
                             Select(N->getOperand(0)));
        return SDOperand(N, 0);
      }
    }
    
    CurDAG->SelectNodeTo(N, Ty == MVT::f64 ? PPC::FADD : PPC::FADDS, Ty,
                         Select(N->getOperand(0)), Select(N->getOperand(1)));
    return SDOperand(N, 0);
  }
  case ISD::FSUB: {
    MVT::ValueType Ty = N->getValueType(0);
    
    if (!NoExcessFPPrecision) {  // Match FMA ops
      if (N->getOperand(0).getOpcode() == ISD::FMUL &&
          N->getOperand(0).Val->hasOneUse()) {
        ++FusedFP; // Statistic
        CurDAG->SelectNodeTo(N, Ty == MVT::f64 ? PPC::FMSUB : PPC::FMSUBS, Ty,
                             Select(N->getOperand(0).getOperand(0)),
                             Select(N->getOperand(0).getOperand(1)),
                             Select(N->getOperand(1)));
        return SDOperand(N, 0);
      } else if (N->getOperand(1).getOpcode() == ISD::FMUL &&
                 N->getOperand(1).Val->hasOneUse()) {
        ++FusedFP; // Statistic
        CurDAG->SelectNodeTo(N, Ty == MVT::f64 ? PPC::FNMSUB : PPC::FNMSUBS, Ty,
                             Select(N->getOperand(1).getOperand(0)),
                             Select(N->getOperand(1).getOperand(1)),
                             Select(N->getOperand(0)));
        return SDOperand(N, 0);
      }
    }
    CurDAG->SelectNodeTo(N, Ty == MVT::f64 ? PPC::FSUB : PPC::FSUBS, Ty,
                         Select(N->getOperand(0)),
                         Select(N->getOperand(1)));
    return SDOperand(N, 0);
  }
  case ISD::SDIV: {
    unsigned Imm;
    if (isIntImmediate(N->getOperand(1), Imm)) {
      if ((signed)Imm > 0 && isPowerOf2_32(Imm)) {
        SDOperand Op =
          CurDAG->getTargetNode(PPC::SRAWI, MVT::i32, MVT::Flag,
                                Select(N->getOperand(0)),
                                getI32Imm(Log2_32(Imm)));
        CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, 
                             Op.getValue(0), Op.getValue(1));
        return SDOperand(N, 0);
      } else if ((signed)Imm < 0 && isPowerOf2_32(-Imm)) {
        SDOperand Op =
          CurDAG->getTargetNode(PPC::SRAWI, MVT::i32, MVT::Flag,
                                Select(N->getOperand(0)),
                                getI32Imm(Log2_32(-Imm)));
        SDOperand PT =
          CurDAG->getTargetNode(PPC::ADDZE, MVT::i32, Op.getValue(0),
                                Op.getValue(1));
        CurDAG->SelectNodeTo(N, PPC::NEG, MVT::i32, PT);
        return SDOperand(N, 0);
      } else if (Imm) {
        SDOperand Result = Select(BuildSDIVSequence(N));
        CodeGenMap[Op] = Result;
        return Result;
      }
    }
    
    // Other cases are autogenerated.
    break;
  }
  case ISD::UDIV: {
    // If this is a divide by constant, we can emit code using some magic
    // constants to implement it as a multiply instead.
    unsigned Imm;
    if (isIntImmediate(N->getOperand(1), Imm) && Imm) {
      SDOperand Result = Select(BuildUDIVSequence(N));
      CodeGenMap[Op] = Result;
      return Result;
    }
    
    // Other cases are autogenerated.
    break;
  }
  case ISD::AND: {
    unsigned Imm;
    // If this is an and of a value rotated between 0 and 31 bits and then and'd
    // with a mask, emit rlwinm
    if (isIntImmediate(N->getOperand(1), Imm) && (isShiftedMask_32(Imm) ||
                                                  isShiftedMask_32(~Imm))) {
      SDOperand Val;
      unsigned SH, MB, ME;
      if (isRotateAndMask(N->getOperand(0).Val, Imm, false, SH, MB, ME)) {
        Val = Select(N->getOperand(0).getOperand(0));
      } else {
        Val = Select(N->getOperand(0));
        isRunOfOnes(Imm, MB, ME);
        SH = 0;
      }
      CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Val, getI32Imm(SH),
                           getI32Imm(MB), getI32Imm(ME));
      return SDOperand(N, 0);
    }
    
    // Other cases are autogenerated.
    break;
  }
  case ISD::OR:
    if (SDNode *I = SelectBitfieldInsert(N))
      return CodeGenMap[Op] = SDOperand(I, 0);
    
    if (SDNode *I = SelectIntImmediateExpr(N->getOperand(0), 
                                           N->getOperand(1),
                                           PPC::ORIS, PPC::ORI))
      return CodeGenMap[Op] = SDOperand(I, 0);
      
    // Other cases are autogenerated.
    break;
  case ISD::SHL: {
    unsigned Imm, SH, MB, ME;
    if (isOpcWithIntImmediate(N->getOperand(0).Val, ISD::AND, Imm) &&
        isRotateAndMask(N, Imm, true, SH, MB, ME))
      CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, 
                           Select(N->getOperand(0).getOperand(0)),
                           getI32Imm(SH), getI32Imm(MB), getI32Imm(ME));
    else if (isIntImmediate(N->getOperand(1), Imm))
      CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Select(N->getOperand(0)),
                           getI32Imm(Imm), getI32Imm(0), getI32Imm(31-Imm));
    else
      CurDAG->SelectNodeTo(N, PPC::SLW, MVT::i32, Select(N->getOperand(0)),
                           Select(N->getOperand(1)));
    return SDOperand(N, 0);
  }
  case ISD::SRL: {
    unsigned Imm, SH, MB, ME;
    if (isOpcWithIntImmediate(N->getOperand(0).Val, ISD::AND, Imm) &&
        isRotateAndMask(N, Imm, true, SH, MB, ME))
      CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, 
                           Select(N->getOperand(0).getOperand(0)),
                           getI32Imm(SH & 0x1F), getI32Imm(MB), getI32Imm(ME));
    else if (isIntImmediate(N->getOperand(1), Imm))
      CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Select(N->getOperand(0)),
                           getI32Imm((32-Imm) & 0x1F), getI32Imm(Imm),
                           getI32Imm(31));
    else
      CurDAG->SelectNodeTo(N, PPC::SRW, MVT::i32, Select(N->getOperand(0)),
                           Select(N->getOperand(1)));
    return SDOperand(N, 0);
  }
  case ISD::SRA: {
    unsigned Imm, SH, MB, ME;
    if (0 &&isOpcWithIntImmediate(N->getOperand(0).Val, ISD::AND, Imm) &&
        isRotateAndMask(N, Imm, true, SH, MB, ME))
      CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, 
                           Select(N->getOperand(0).getOperand(0)),
                           getI32Imm(SH), getI32Imm(MB), getI32Imm(ME));
    else if (isIntImmediate(N->getOperand(1), Imm))
      CurDAG->SelectNodeTo(N, PPC::SRAWI, MVT::i32, Select(N->getOperand(0)), 
                           getI32Imm(Imm));
    else
      CurDAG->SelectNodeTo(N, PPC::SRAW, MVT::i32, Select(N->getOperand(0)),
                           Select(N->getOperand(1)));
    return SDOperand(N, 0);
  }
  case ISD::FMUL: {
    unsigned Opc = N->getValueType(0) == MVT::f32 ? PPC::FMULS : PPC::FMUL;
    CurDAG->SelectNodeTo(N, Opc, N->getValueType(0), Select(N->getOperand(0)), 
                         Select(N->getOperand(1)));
    return SDOperand(N, 0);
  } 
  case ISD::FDIV: {
    unsigned Opc = N->getValueType(0) == MVT::f32 ? PPC::FDIVS : PPC::FDIV;
    CurDAG->SelectNodeTo(N, Opc, N->getValueType(0), Select(N->getOperand(0)), 
                         Select(N->getOperand(1)));
    return SDOperand(N, 0);
  } 
  case ISD::FABS:
    if (N->getValueType(0) == MVT::f32)
      CurDAG->SelectNodeTo(N, PPC::FABSS, MVT::f32, Select(N->getOperand(0)));
    else
      CurDAG->SelectNodeTo(N, PPC::FABSD, MVT::f64, Select(N->getOperand(0)));
    return SDOperand(N, 0);
  case ISD::FNEG: {
    SDOperand Val = Select(N->getOperand(0));
    MVT::ValueType Ty = N->getValueType(0);
    if (Val.Val->hasOneUse()) {
      unsigned Opc;
      switch (Val.isTargetOpcode() ? Val.getTargetOpcode() : 0) {
      default:          Opc = 0;            break;
      case PPC::FABSS:  Opc = PPC::FNABSS;  break;
      case PPC::FABSD:  Opc = PPC::FNABSD;  break;
      case PPC::FMADD:  Opc = PPC::FNMADD;  break;
      case PPC::FMADDS: Opc = PPC::FNMADDS; break;
      case PPC::FMSUB:  Opc = PPC::FNMSUB;  break;
      case PPC::FMSUBS: Opc = PPC::FNMSUBS; break;
      }
      // If we inverted the opcode, then emit the new instruction with the
      // inverted opcode and the original instruction's operands.  Otherwise, 
      // fall through and generate a fneg instruction.
      if (Opc) {
        if (Opc == PPC::FNABSS || Opc == PPC::FNABSD)
          CurDAG->SelectNodeTo(N, Opc, Ty, Val.getOperand(0));
        else
          CurDAG->SelectNodeTo(N, Opc, Ty, Val.getOperand(0),
                               Val.getOperand(1), Val.getOperand(2));
        return SDOperand(N, 0);
      }
    }
    if (Ty == MVT::f32)
      CurDAG->SelectNodeTo(N, PPC::FNEGS, MVT::f32, Val);
    else
      CurDAG->SelectNodeTo(N, PPC::FNEGD, MVT::f64, Val);
    return SDOperand(N, 0);
  }
  case ISD::FSQRT: {
    MVT::ValueType Ty = N->getValueType(0);
    CurDAG->SelectNodeTo(N, Ty == MVT::f64 ? PPC::FSQRT : PPC::FSQRTS, Ty,
                         Select(N->getOperand(0)));
    return SDOperand(N, 0);
  }
  case ISD::LOAD:
  case ISD::EXTLOAD:
  case ISD::ZEXTLOAD:
  case ISD::SEXTLOAD: {
    SDOperand Op1, Op2;
    bool isIdx = SelectAddr(N->getOperand(1), Op1, Op2);

    MVT::ValueType TypeBeingLoaded = (N->getOpcode() == ISD::LOAD) ?
      N->getValueType(0) : cast<VTSDNode>(N->getOperand(3))->getVT();
    unsigned Opc;
    switch (TypeBeingLoaded) {
    default: N->dump(); assert(0 && "Cannot load this type!");
    case MVT::i1:
    case MVT::i8:  Opc = isIdx ? PPC::LBZX : PPC::LBZ; break;
    case MVT::i16:
      if (N->getOpcode() == ISD::SEXTLOAD) { // SEXT load?
        Opc = isIdx ? PPC::LHAX : PPC::LHA;
      } else {
        Opc = isIdx ? PPC::LHZX : PPC::LHZ;
      }
      break;
    case MVT::i32: Opc = isIdx ? PPC::LWZX : PPC::LWZ; break;
    case MVT::f32: Opc = isIdx ? PPC::LFSX : PPC::LFS; break;
    case MVT::f64: Opc = isIdx ? PPC::LFDX : PPC::LFD; break;
    }

    // If this is an f32 -> f64 load, emit the f32 load, then use an 'extending
    // copy'.
    if (TypeBeingLoaded != MVT::f32 || N->getOpcode() == ISD::LOAD) {
        CurDAG->SelectNodeTo(N, Opc, N->getValueType(0), MVT::Other,
                             Op1, Op2, Select(N->getOperand(0)));
      return SDOperand(N, Op.ResNo);
    } else {
      std::vector<SDOperand> Ops;
      Ops.push_back(Op1);
      Ops.push_back(Op2);
      Ops.push_back(Select(N->getOperand(0)));
      SDOperand Res = CurDAG->getTargetNode(Opc, MVT::f32, MVT::Other, Ops);
      SDOperand Ext = CurDAG->getTargetNode(PPC::FMRSD, MVT::f64, Res);
      CodeGenMap[Op.getValue(0)] = Ext;
      CodeGenMap[Op.getValue(1)] = Res.getValue(1);
      if (Op.ResNo)
        return Res.getValue(1);
      else
        return Ext;
    }
  }
  case ISD::TRUNCSTORE:
  case ISD::STORE: {
    SDOperand AddrOp1, AddrOp2;
    bool isIdx = SelectAddr(N->getOperand(2), AddrOp1, AddrOp2);

    unsigned Opc;
    if (N->getOpcode() == ISD::STORE) {
      switch (N->getOperand(1).getValueType()) {
      default: assert(0 && "unknown Type in store");
      case MVT::i32: Opc = isIdx ? PPC::STWX  : PPC::STW; break;
      case MVT::f64: Opc = isIdx ? PPC::STFDX : PPC::STFD; break;
      case MVT::f32: Opc = isIdx ? PPC::STFSX : PPC::STFS; break;
      }
    } else { //ISD::TRUNCSTORE
      switch(cast<VTSDNode>(N->getOperand(4))->getVT()) {
      default: assert(0 && "unknown Type in store");
      case MVT::i8:  Opc = isIdx ? PPC::STBX : PPC::STB; break;
      case MVT::i16: Opc = isIdx ? PPC::STHX : PPC::STH; break;
      }
    }
    
    CurDAG->SelectNodeTo(N, Opc, MVT::Other, Select(N->getOperand(1)),
                         AddrOp1, AddrOp2, Select(N->getOperand(0)));
    return SDOperand(N, 0);
  }
    
  case ISD::SELECT_CC: {
    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
    
    // handle the setcc cases here.  select_cc lhs, 0, 1, 0, cc
    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)))
      if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
        if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
          if (N1C->isNullValue() && N3C->isNullValue() &&
              N2C->getValue() == 1ULL && CC == ISD::SETNE) {
            SDOperand LHS = Select(N->getOperand(0));
            SDOperand Tmp =
              CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag,
                                    LHS, getI32Imm(~0U));
            CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, Tmp, LHS,
                                 Tmp.getValue(1));
            return SDOperand(N, 0);
          }

    SDOperand CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC);
    unsigned BROpc = getBCCForSetCC(CC);

    bool isFP = MVT::isFloatingPoint(N->getValueType(0));
    unsigned SelectCCOp;
    if (MVT::isInteger(N->getValueType(0)))
      SelectCCOp = PPC::SELECT_CC_Int;
    else if (N->getValueType(0) == MVT::f32)
      SelectCCOp = PPC::SELECT_CC_F4;
    else
      SelectCCOp = PPC::SELECT_CC_F8;
    CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), CCReg,
                         Select(N->getOperand(2)), Select(N->getOperand(3)),
                         getI32Imm(BROpc));
    return SDOperand(N, 0);
  }
    
  case ISD::CALLSEQ_START:
  case ISD::CALLSEQ_END: {
    unsigned Amt = cast<ConstantSDNode>(N->getOperand(1))->getValue();
    unsigned Opc = N->getOpcode() == ISD::CALLSEQ_START ?
                       PPC::ADJCALLSTACKDOWN : PPC::ADJCALLSTACKUP;
    CurDAG->SelectNodeTo(N, Opc, MVT::Other,
                         getI32Imm(Amt), Select(N->getOperand(0)));
    return SDOperand(N, 0);
  }
  case ISD::RET: {
    SDOperand Chain = Select(N->getOperand(0));     // Token chain.

    if (N->getNumOperands() == 2) {
      SDOperand Val = Select(N->getOperand(1));
      if (N->getOperand(1).getValueType() == MVT::i32) {
        Chain = CurDAG->getCopyToReg(Chain, PPC::R3, Val);
      } else {
        assert(MVT::isFloatingPoint(N->getOperand(1).getValueType()));
        Chain = CurDAG->getCopyToReg(Chain, PPC::F1, Val);
      }
    } else if (N->getNumOperands() > 1) {
      assert(N->getOperand(1).getValueType() == MVT::i32 &&
             N->getOperand(2).getValueType() == MVT::i32 &&
             N->getNumOperands() == 3 && "Unknown two-register ret value!");
      Chain = CurDAG->getCopyToReg(Chain, PPC::R4, Select(N->getOperand(1)));
      Chain = CurDAG->getCopyToReg(Chain, PPC::R3, Select(N->getOperand(2)));
    }

    // Finally, select this to a blr (return) instruction.
    CurDAG->SelectNodeTo(N, PPC::BLR, MVT::Other, Chain);
    return SDOperand(N, 0);
  }
  case ISD::BR:
    CurDAG->SelectNodeTo(N, PPC::B, MVT::Other, N->getOperand(1),
                         Select(N->getOperand(0)));
    return SDOperand(N, 0);
  case ISD::BR_CC:
  case ISD::BRTWOWAY_CC: {
    SDOperand Chain = Select(N->getOperand(0));
    MachineBasicBlock *Dest =
      cast<BasicBlockSDNode>(N->getOperand(4))->getBasicBlock();
    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
    SDOperand CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC);

    // If this is a two way branch, then grab the fallthrough basic block
    // argument and build a PowerPC branch pseudo-op, suitable for long branch
    // conversion if necessary by the branch selection pass.  Otherwise, emit a
    // standard conditional branch.
    if (N->getOpcode() == ISD::BRTWOWAY_CC) {
      SDOperand CondTrueBlock = N->getOperand(4);
      SDOperand CondFalseBlock = N->getOperand(5);
      
      // If the false case is the current basic block, then this is a self loop.
      // We do not want to emit "Loop: ... brcond Out; br Loop", as it adds an
      // extra dispatch group to the loop.  Instead, invert the condition and
      // emit "Loop: ... br!cond Loop; br Out
      if (cast<BasicBlockSDNode>(CondFalseBlock)->getBasicBlock() == BB) {
        std::swap(CondTrueBlock, CondFalseBlock);
        CC = getSetCCInverse(CC,
                             MVT::isInteger(N->getOperand(2).getValueType()));
      }
      
      unsigned Opc = getBCCForSetCC(CC);
      SDOperand CB = CurDAG->getTargetNode(PPC::COND_BRANCH, MVT::Other,
                                           CondCode, getI32Imm(Opc),
                                           CondTrueBlock, CondFalseBlock,
                                           Chain);
      CurDAG->SelectNodeTo(N, PPC::B, MVT::Other, CondFalseBlock, CB);
    } else {
      // Iterate to the next basic block
      ilist<MachineBasicBlock>::iterator It = BB;
      ++It;

      // If the fallthrough path is off the end of the function, which would be
      // undefined behavior, set it to be the same as the current block because
      // we have nothing better to set it to, and leaving it alone will cause
      // the PowerPC Branch Selection pass to crash.
      if (It == BB->getParent()->end()) It = Dest;
      CurDAG->SelectNodeTo(N, PPC::COND_BRANCH, MVT::Other, CondCode,
                           getI32Imm(getBCCForSetCC(CC)), N->getOperand(4),
                           CurDAG->getBasicBlock(It), Chain);
    }
    return SDOperand(N, 0);
  }
  }
  
  return SelectCode(Op);
}


/// createPPC32ISelDag - This pass converts a legalized DAG into a 
/// PowerPC-specific DAG, ready for instruction scheduling.
///
FunctionPass *llvm::createPPC32ISelDag(TargetMachine &TM) {
  return new PPC32DAGToDAGISel(TM);
}