summaryrefslogtreecommitdiff
path: root/lib/Target/PowerPC/PPCISelDAGToDAG.cpp
blob: 372d2387ff747884e3660ed2bbb28c49e84caf40 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
//===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines a pattern matching instruction selector for PowerPC,
// converting from a legalized dag to a PPC dag.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "ppc-codegen"
#include "PPC.h"
#include "PPCPredicates.h"
#include "PPCTargetMachine.h"
#include "PPCISelLowering.h"
#include "PPCHazardRecognizers.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Constants.h"
#include "llvm/GlobalValue.h"
#include "llvm/Intrinsics.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/Compiler.h"
#include <queue>
#include <set>
using namespace llvm;

namespace {
  //===--------------------------------------------------------------------===//
  /// PPCDAGToDAGISel - PPC specific code to select PPC machine
  /// instructions for SelectionDAG operations.
  ///
  class VISIBILITY_HIDDEN PPCDAGToDAGISel : public SelectionDAGISel {
    PPCTargetMachine &TM;
    PPCTargetLowering PPCLowering;
    const PPCSubtarget &PPCSubTarget;
    unsigned GlobalBaseReg;
  public:
    PPCDAGToDAGISel(PPCTargetMachine &tm)
      : SelectionDAGISel(PPCLowering), TM(tm),
        PPCLowering(*TM.getTargetLowering()),
        PPCSubTarget(*TM.getSubtargetImpl()) {}
    
    virtual bool runOnFunction(Function &Fn) {
      // Make sure we re-emit a set of the global base reg if necessary
      GlobalBaseReg = 0;
      SelectionDAGISel::runOnFunction(Fn);
      
      InsertVRSaveCode(Fn);
      return true;
    }
   
    /// getI32Imm - Return a target constant with the specified value, of type
    /// i32.
    inline SDOperand getI32Imm(unsigned Imm) {
      return CurDAG->getTargetConstant(Imm, MVT::i32);
    }

    /// getI64Imm - Return a target constant with the specified value, of type
    /// i64.
    inline SDOperand getI64Imm(uint64_t Imm) {
      return CurDAG->getTargetConstant(Imm, MVT::i64);
    }
    
    /// getSmallIPtrImm - Return a target constant of pointer type.
    inline SDOperand getSmallIPtrImm(unsigned Imm) {
      return CurDAG->getTargetConstant(Imm, PPCLowering.getPointerTy());
    }
    
    /// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s 
    /// with any number of 0s on either side.  The 1s are allowed to wrap from
    /// LSB to MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs.
    /// 0x0F0F0000 is not, since all 1s are not contiguous.
    static bool isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME);


    /// isRotateAndMask - Returns true if Mask and Shift can be folded into a
    /// rotate and mask opcode and mask operation.
    static bool isRotateAndMask(SDNode *N, unsigned Mask, bool IsShiftMask,
                                unsigned &SH, unsigned &MB, unsigned &ME);
    
    /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC
    /// base register.  Return the virtual register that holds this value.
    SDNode *getGlobalBaseReg();
    
    // Select - Convert the specified operand from a target-independent to a
    // target-specific node if it hasn't already been changed.
    SDNode *Select(SDOperand Op);
    
    SDNode *SelectBitfieldInsert(SDNode *N);

    /// SelectCC - Select a comparison of the specified values with the
    /// specified condition code, returning the CR# of the expression.
    SDOperand SelectCC(SDOperand LHS, SDOperand RHS, ISD::CondCode CC);

    /// SelectAddrImm - Returns true if the address N can be represented by
    /// a base register plus a signed 16-bit displacement [r+imm].
    bool SelectAddrImm(SDOperand Op, SDOperand N, SDOperand &Disp,
                       SDOperand &Base) {
      return PPCLowering.SelectAddressRegImm(N, Disp, Base, *CurDAG);
    }
    
    /// SelectAddrImmOffs - Return true if the operand is valid for a preinc
    /// immediate field.  Because preinc imms have already been validated, just
    /// accept it.
    bool SelectAddrImmOffs(SDOperand Op, SDOperand N, SDOperand &Out) const {
      Out = N;
      return true;
    }
      
    /// SelectAddrIdx - Given the specified addressed, check to see if it can be
    /// represented as an indexed [r+r] operation.  Returns false if it can
    /// be represented by [r+imm], which are preferred.
    bool SelectAddrIdx(SDOperand Op, SDOperand N, SDOperand &Base,
                       SDOperand &Index) {
      return PPCLowering.SelectAddressRegReg(N, Base, Index, *CurDAG);
    }
    
    /// SelectAddrIdxOnly - Given the specified addressed, force it to be
    /// represented as an indexed [r+r] operation.
    bool SelectAddrIdxOnly(SDOperand Op, SDOperand N, SDOperand &Base,
                           SDOperand &Index) {
      return PPCLowering.SelectAddressRegRegOnly(N, Base, Index, *CurDAG);
    }

    /// SelectAddrImmShift - Returns true if the address N can be represented by
    /// a base register plus a signed 14-bit displacement [r+imm*4].  Suitable
    /// for use by STD and friends.
    bool SelectAddrImmShift(SDOperand Op, SDOperand N, SDOperand &Disp,
                            SDOperand &Base) {
      return PPCLowering.SelectAddressRegImmShift(N, Disp, Base, *CurDAG);
    }
      
    /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
    /// inline asm expressions.
    virtual bool SelectInlineAsmMemoryOperand(const SDOperand &Op,
                                              char ConstraintCode,
                                              std::vector<SDOperand> &OutOps,
                                              SelectionDAG &DAG) {
      SDOperand Op0, Op1;
      switch (ConstraintCode) {
      default: return true;
      case 'm':   // memory
        if (!SelectAddrIdx(Op, Op, Op0, Op1))
          SelectAddrImm(Op, Op, Op0, Op1);
        break;
      case 'o':   // offsetable
        if (!SelectAddrImm(Op, Op, Op0, Op1)) {
          Op0 = Op;
          AddToISelQueue(Op0);     // r+0.
          Op1 = getSmallIPtrImm(0);
        }
        break;
      case 'v':   // not offsetable
        SelectAddrIdxOnly(Op, Op, Op0, Op1);
        break;
      }
      
      OutOps.push_back(Op0);
      OutOps.push_back(Op1);
      return false;
    }
    
    SDOperand BuildSDIVSequence(SDNode *N);
    SDOperand BuildUDIVSequence(SDNode *N);
    
    /// InstructionSelectBasicBlock - This callback is invoked by
    /// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
    virtual void InstructionSelectBasicBlock(SelectionDAG &DAG);
    
    void InsertVRSaveCode(Function &Fn);

    virtual const char *getPassName() const {
      return "PowerPC DAG->DAG Pattern Instruction Selection";
    } 
    
    /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
    /// this target when scheduling the DAG.
    virtual HazardRecognizer *CreateTargetHazardRecognizer() {
      // Should use subtarget info to pick the right hazard recognizer.  For
      // now, always return a PPC970 recognizer.
      const TargetInstrInfo *II = PPCLowering.getTargetMachine().getInstrInfo();
      assert(II && "No InstrInfo?");
      return new PPCHazardRecognizer970(*II); 
    }

// Include the pieces autogenerated from the target description.
#include "PPCGenDAGISel.inc"
    
private:
    SDNode *SelectSETCC(SDOperand Op);
  };
}

/// InstructionSelectBasicBlock - This callback is invoked by
/// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
void PPCDAGToDAGISel::InstructionSelectBasicBlock(SelectionDAG &DAG) {
  DEBUG(BB->dump());

  // Select target instructions for the DAG.
  DAG.setRoot(SelectRoot(DAG.getRoot()));
  DAG.RemoveDeadNodes();
  
  // Emit machine code to BB.
  ScheduleAndEmitDAG(DAG);
}

/// InsertVRSaveCode - Once the entire function has been instruction selected,
/// all virtual registers are created and all machine instructions are built,
/// check to see if we need to save/restore VRSAVE.  If so, do it.
void PPCDAGToDAGISel::InsertVRSaveCode(Function &F) {
  // Check to see if this function uses vector registers, which means we have to
  // save and restore the VRSAVE register and update it with the regs we use.  
  //
  // In this case, there will be virtual registers of vector type type created
  // by the scheduler.  Detect them now.
  MachineFunction &Fn = MachineFunction::get(&F);
  SSARegMap *RegMap = Fn.getSSARegMap();
  bool HasVectorVReg = false;
  for (unsigned i = MRegisterInfo::FirstVirtualRegister, 
       e = RegMap->getLastVirtReg()+1; i != e; ++i)
    if (RegMap->getRegClass(i) == &PPC::VRRCRegClass) {
      HasVectorVReg = true;
      break;
    }
  if (!HasVectorVReg) return;  // nothing to do.
      
  // If we have a vector register, we want to emit code into the entry and exit
  // blocks to save and restore the VRSAVE register.  We do this here (instead
  // of marking all vector instructions as clobbering VRSAVE) for two reasons:
  //
  // 1. This (trivially) reduces the load on the register allocator, by not
  //    having to represent the live range of the VRSAVE register.
  // 2. This (more significantly) allows us to create a temporary virtual
  //    register to hold the saved VRSAVE value, allowing this temporary to be
  //    register allocated, instead of forcing it to be spilled to the stack.

  // Create two vregs - one to hold the VRSAVE register that is live-in to the
  // function and one for the value after having bits or'd into it.
  unsigned InVRSAVE = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
  unsigned UpdatedVRSAVE = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
  
  const TargetInstrInfo &TII = *TM.getInstrInfo();
  MachineBasicBlock &EntryBB = *Fn.begin();
  // Emit the following code into the entry block:
  // InVRSAVE = MFVRSAVE
  // UpdatedVRSAVE = UPDATE_VRSAVE InVRSAVE
  // MTVRSAVE UpdatedVRSAVE
  MachineBasicBlock::iterator IP = EntryBB.begin();  // Insert Point
  BuildMI(EntryBB, IP, TII.get(PPC::MFVRSAVE), InVRSAVE);
  BuildMI(EntryBB, IP, TII.get(PPC::UPDATE_VRSAVE), UpdatedVRSAVE).addReg(InVRSAVE);
  BuildMI(EntryBB, IP, TII.get(PPC::MTVRSAVE)).addReg(UpdatedVRSAVE);
  
  // Find all return blocks, outputting a restore in each epilog.
  for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
    if (!BB->empty() && TII.isReturn(BB->back().getOpcode())) {
      IP = BB->end(); --IP;
      
      // Skip over all terminator instructions, which are part of the return
      // sequence.
      MachineBasicBlock::iterator I2 = IP;
      while (I2 != BB->begin() && TII.isTerminatorInstr((--I2)->getOpcode()))
        IP = I2;
      
      // Emit: MTVRSAVE InVRSave
      BuildMI(*BB, IP, TII.get(PPC::MTVRSAVE)).addReg(InVRSAVE);
    }        
  }
}


/// getGlobalBaseReg - Output the instructions required to put the
/// base address to use for accessing globals into a register.
///
SDNode *PPCDAGToDAGISel::getGlobalBaseReg() {
  if (!GlobalBaseReg) {
    const TargetInstrInfo &TII = *TM.getInstrInfo();
    // Insert the set of GlobalBaseReg into the first MBB of the function
    MachineBasicBlock &FirstMBB = BB->getParent()->front();
    MachineBasicBlock::iterator MBBI = FirstMBB.begin();
    SSARegMap *RegMap = BB->getParent()->getSSARegMap();

    if (PPCLowering.getPointerTy() == MVT::i32) {
      GlobalBaseReg = RegMap->createVirtualRegister(PPC::GPRCRegisterClass);
      BuildMI(FirstMBB, MBBI, TII.get(PPC::MovePCtoLR), PPC::LR);
      BuildMI(FirstMBB, MBBI, TII.get(PPC::MFLR), GlobalBaseReg);
    } else {
      GlobalBaseReg = RegMap->createVirtualRegister(PPC::G8RCRegisterClass);
      BuildMI(FirstMBB, MBBI, TII.get(PPC::MovePCtoLR8), PPC::LR8);
      BuildMI(FirstMBB, MBBI, TII.get(PPC::MFLR8), GlobalBaseReg);
    }
  }
  return CurDAG->getRegister(GlobalBaseReg, PPCLowering.getPointerTy()).Val;
}

/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
/// or 64-bit immediate, and if the value can be accurately represented as a
/// sign extension from a 16-bit value.  If so, this returns true and the
/// immediate.
static bool isIntS16Immediate(SDNode *N, short &Imm) {
  if (N->getOpcode() != ISD::Constant)
    return false;

  Imm = (short)cast<ConstantSDNode>(N)->getValue();
  if (N->getValueType(0) == MVT::i32)
    return Imm == (int32_t)cast<ConstantSDNode>(N)->getValue();
  else
    return Imm == (int64_t)cast<ConstantSDNode>(N)->getValue();
}

static bool isIntS16Immediate(SDOperand Op, short &Imm) {
  return isIntS16Immediate(Op.Val, Imm);
}


/// isInt32Immediate - This method tests to see if the node is a 32-bit constant
/// operand. If so Imm will receive the 32-bit value.
static bool isInt32Immediate(SDNode *N, unsigned &Imm) {
  if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) {
    Imm = cast<ConstantSDNode>(N)->getValue();
    return true;
  }
  return false;
}

/// isInt64Immediate - This method tests to see if the node is a 64-bit constant
/// operand.  If so Imm will receive the 64-bit value.
static bool isInt64Immediate(SDNode *N, uint64_t &Imm) {
  if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i64) {
    Imm = cast<ConstantSDNode>(N)->getValue();
    return true;
  }
  return false;
}

// isInt32Immediate - This method tests to see if a constant operand.
// If so Imm will receive the 32 bit value.
static bool isInt32Immediate(SDOperand N, unsigned &Imm) {
  return isInt32Immediate(N.Val, Imm);
}


// isOpcWithIntImmediate - This method tests to see if the node is a specific
// opcode and that it has a immediate integer right operand.
// If so Imm will receive the 32 bit value.
static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
  return N->getOpcode() == Opc && isInt32Immediate(N->getOperand(1).Val, Imm);
}

bool PPCDAGToDAGISel::isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME) {
  if (isShiftedMask_32(Val)) {
    // look for the first non-zero bit
    MB = CountLeadingZeros_32(Val);
    // look for the first zero bit after the run of ones
    ME = CountLeadingZeros_32((Val - 1) ^ Val);
    return true;
  } else {
    Val = ~Val; // invert mask
    if (isShiftedMask_32(Val)) {
      // effectively look for the first zero bit
      ME = CountLeadingZeros_32(Val) - 1;
      // effectively look for the first one bit after the run of zeros
      MB = CountLeadingZeros_32((Val - 1) ^ Val) + 1;
      return true;
    }
  }
  // no run present
  return false;
}

bool PPCDAGToDAGISel::isRotateAndMask(SDNode *N, unsigned Mask, 
                                      bool IsShiftMask, unsigned &SH, 
                                      unsigned &MB, unsigned &ME) {
  // Don't even go down this path for i64, since different logic will be
  // necessary for rldicl/rldicr/rldimi.
  if (N->getValueType(0) != MVT::i32)
    return false;

  unsigned Shift  = 32;
  unsigned Indeterminant = ~0;  // bit mask marking indeterminant results
  unsigned Opcode = N->getOpcode();
  if (N->getNumOperands() != 2 ||
      !isInt32Immediate(N->getOperand(1).Val, Shift) || (Shift > 31))
    return false;
  
  if (Opcode == ISD::SHL) {
    // apply shift left to mask if it comes first
    if (IsShiftMask) Mask = Mask << Shift;
    // determine which bits are made indeterminant by shift
    Indeterminant = ~(0xFFFFFFFFu << Shift);
  } else if (Opcode == ISD::SRL) { 
    // apply shift right to mask if it comes first
    if (IsShiftMask) Mask = Mask >> Shift;
    // determine which bits are made indeterminant by shift
    Indeterminant = ~(0xFFFFFFFFu >> Shift);
    // adjust for the left rotate
    Shift = 32 - Shift;
  } else if (Opcode == ISD::ROTL) {
    Indeterminant = 0;
  } else {
    return false;
  }
  
  // if the mask doesn't intersect any Indeterminant bits
  if (Mask && !(Mask & Indeterminant)) {
    SH = Shift & 31;
    // make sure the mask is still a mask (wrap arounds may not be)
    return isRunOfOnes(Mask, MB, ME);
  }
  return false;
}

/// SelectBitfieldInsert - turn an or of two masked values into
/// the rotate left word immediate then mask insert (rlwimi) instruction.
SDNode *PPCDAGToDAGISel::SelectBitfieldInsert(SDNode *N) {
  SDOperand Op0 = N->getOperand(0);
  SDOperand Op1 = N->getOperand(1);
  
  uint64_t LKZ, LKO, RKZ, RKO;
  CurDAG->ComputeMaskedBits(Op0, 0xFFFFFFFFULL, LKZ, LKO);
  CurDAG->ComputeMaskedBits(Op1, 0xFFFFFFFFULL, RKZ, RKO);
  
  unsigned TargetMask = LKZ;
  unsigned InsertMask = RKZ;
  
  if ((TargetMask | InsertMask) == 0xFFFFFFFF) {
    unsigned Op0Opc = Op0.getOpcode();
    unsigned Op1Opc = Op1.getOpcode();
    unsigned Value, SH = 0;
    TargetMask = ~TargetMask;
    InsertMask = ~InsertMask;

    // If the LHS has a foldable shift and the RHS does not, then swap it to the
    // RHS so that we can fold the shift into the insert.
    if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) {
      if (Op0.getOperand(0).getOpcode() == ISD::SHL ||
          Op0.getOperand(0).getOpcode() == ISD::SRL) {
        if (Op1.getOperand(0).getOpcode() != ISD::SHL &&
            Op1.getOperand(0).getOpcode() != ISD::SRL) {
          std::swap(Op0, Op1);
          std::swap(Op0Opc, Op1Opc);
          std::swap(TargetMask, InsertMask);
        }
      }
    } else if (Op0Opc == ISD::SHL || Op0Opc == ISD::SRL) {
      if (Op1Opc == ISD::AND && Op1.getOperand(0).getOpcode() != ISD::SHL &&
          Op1.getOperand(0).getOpcode() != ISD::SRL) {
        std::swap(Op0, Op1);
        std::swap(Op0Opc, Op1Opc);
        std::swap(TargetMask, InsertMask);
      }
    }
    
    unsigned MB, ME;
    if (InsertMask && isRunOfOnes(InsertMask, MB, ME)) {
      SDOperand Tmp1, Tmp2, Tmp3;
      bool DisjointMask = (TargetMask ^ InsertMask) == 0xFFFFFFFF;

      if ((Op1Opc == ISD::SHL || Op1Opc == ISD::SRL) &&
          isInt32Immediate(Op1.getOperand(1), Value)) {
        Op1 = Op1.getOperand(0);
        SH  = (Op1Opc == ISD::SHL) ? Value : 32 - Value;
      }
      if (Op1Opc == ISD::AND) {
        unsigned SHOpc = Op1.getOperand(0).getOpcode();
        if ((SHOpc == ISD::SHL || SHOpc == ISD::SRL) &&
            isInt32Immediate(Op1.getOperand(0).getOperand(1), Value)) {
          Op1 = Op1.getOperand(0).getOperand(0);
          SH  = (SHOpc == ISD::SHL) ? Value : 32 - Value;
        } else {
          Op1 = Op1.getOperand(0);
        }
      }
      
      Tmp3 = (Op0Opc == ISD::AND && DisjointMask) ? Op0.getOperand(0) : Op0;
      AddToISelQueue(Tmp3);
      AddToISelQueue(Op1);
      SH &= 31;
      SDOperand Ops[] = { Tmp3, Op1, getI32Imm(SH), getI32Imm(MB),
                          getI32Imm(ME) };
      return CurDAG->getTargetNode(PPC::RLWIMI, MVT::i32, Ops, 5);
    }
  }
  return 0;
}

/// SelectCC - Select a comparison of the specified values with the specified
/// condition code, returning the CR# of the expression.
SDOperand PPCDAGToDAGISel::SelectCC(SDOperand LHS, SDOperand RHS,
                                    ISD::CondCode CC) {
  // Always select the LHS.
  AddToISelQueue(LHS);
  unsigned Opc;
  
  if (LHS.getValueType() == MVT::i32) {
    unsigned Imm;
    if (CC == ISD::SETEQ || CC == ISD::SETNE) {
      if (isInt32Immediate(RHS, Imm)) {
        // SETEQ/SETNE comparison with 16-bit immediate, fold it.
        if (isUInt16(Imm))
          return SDOperand(CurDAG->getTargetNode(PPC::CMPLWI, MVT::i32, LHS,
                                                 getI32Imm(Imm & 0xFFFF)), 0);
        // If this is a 16-bit signed immediate, fold it.
        if (isInt16((int)Imm))
          return SDOperand(CurDAG->getTargetNode(PPC::CMPWI, MVT::i32, LHS,
                                                 getI32Imm(Imm & 0xFFFF)), 0);
        
        // For non-equality comparisons, the default code would materialize the
        // constant, then compare against it, like this:
        //   lis r2, 4660
        //   ori r2, r2, 22136 
        //   cmpw cr0, r3, r2
        // Since we are just comparing for equality, we can emit this instead:
        //   xoris r0,r3,0x1234
        //   cmplwi cr0,r0,0x5678
        //   beq cr0,L6
        SDOperand Xor(CurDAG->getTargetNode(PPC::XORIS, MVT::i32, LHS,
                                            getI32Imm(Imm >> 16)), 0);
        return SDOperand(CurDAG->getTargetNode(PPC::CMPLWI, MVT::i32, Xor,
                                               getI32Imm(Imm & 0xFFFF)), 0);
      }
      Opc = PPC::CMPLW;
    } else if (ISD::isUnsignedIntSetCC(CC)) {
      if (isInt32Immediate(RHS, Imm) && isUInt16(Imm))
        return SDOperand(CurDAG->getTargetNode(PPC::CMPLWI, MVT::i32, LHS,
                                               getI32Imm(Imm & 0xFFFF)), 0);
      Opc = PPC::CMPLW;
    } else {
      short SImm;
      if (isIntS16Immediate(RHS, SImm))
        return SDOperand(CurDAG->getTargetNode(PPC::CMPWI, MVT::i32, LHS,
                                               getI32Imm((int)SImm & 0xFFFF)),
                         0);
      Opc = PPC::CMPW;
    }
  } else if (LHS.getValueType() == MVT::i64) {
    uint64_t Imm;
    if (CC == ISD::SETEQ || CC == ISD::SETNE) {
      if (isInt64Immediate(RHS.Val, Imm)) {
        // SETEQ/SETNE comparison with 16-bit immediate, fold it.
        if (isUInt16(Imm))
          return SDOperand(CurDAG->getTargetNode(PPC::CMPLDI, MVT::i64, LHS,
                                                 getI32Imm(Imm & 0xFFFF)), 0);
        // If this is a 16-bit signed immediate, fold it.
        if (isInt16(Imm))
          return SDOperand(CurDAG->getTargetNode(PPC::CMPDI, MVT::i64, LHS,
                                                 getI32Imm(Imm & 0xFFFF)), 0);
        
        // For non-equality comparisons, the default code would materialize the
        // constant, then compare against it, like this:
        //   lis r2, 4660
        //   ori r2, r2, 22136 
        //   cmpd cr0, r3, r2
        // Since we are just comparing for equality, we can emit this instead:
        //   xoris r0,r3,0x1234
        //   cmpldi cr0,r0,0x5678
        //   beq cr0,L6
        if (isUInt32(Imm)) {
          SDOperand Xor(CurDAG->getTargetNode(PPC::XORIS8, MVT::i64, LHS,
                                              getI64Imm(Imm >> 16)), 0);
          return SDOperand(CurDAG->getTargetNode(PPC::CMPLDI, MVT::i64, Xor,
                                                 getI64Imm(Imm & 0xFFFF)), 0);
        }
      }
      Opc = PPC::CMPLD;
    } else if (ISD::isUnsignedIntSetCC(CC)) {
      if (isInt64Immediate(RHS.Val, Imm) && isUInt16(Imm))
        return SDOperand(CurDAG->getTargetNode(PPC::CMPLDI, MVT::i64, LHS,
                                               getI64Imm(Imm & 0xFFFF)), 0);
      Opc = PPC::CMPLD;
    } else {
      short SImm;
      if (isIntS16Immediate(RHS, SImm))
        return SDOperand(CurDAG->getTargetNode(PPC::CMPDI, MVT::i64, LHS,
                                               getI64Imm(SImm & 0xFFFF)),
                         0);
      Opc = PPC::CMPD;
    }
  } else if (LHS.getValueType() == MVT::f32) {
    Opc = PPC::FCMPUS;
  } else {
    assert(LHS.getValueType() == MVT::f64 && "Unknown vt!");
    Opc = PPC::FCMPUD;
  }
  AddToISelQueue(RHS);
  return SDOperand(CurDAG->getTargetNode(Opc, MVT::i32, LHS, RHS), 0);
}

static PPC::Predicate getPredicateForSetCC(ISD::CondCode CC) {
  switch (CC) {
  default: assert(0 && "Unknown condition!"); abort();
  case ISD::SETOEQ:    // FIXME: This is incorrect see PR642.
  case ISD::SETUEQ:
  case ISD::SETEQ:  return PPC::PRED_EQ;
  case ISD::SETONE:    // FIXME: This is incorrect see PR642.
  case ISD::SETUNE:
  case ISD::SETNE:  return PPC::PRED_NE;
  case ISD::SETOLT:    // FIXME: This is incorrect see PR642.
  case ISD::SETULT:
  case ISD::SETLT:  return PPC::PRED_LT;
  case ISD::SETOLE:    // FIXME: This is incorrect see PR642.
  case ISD::SETULE:
  case ISD::SETLE:  return PPC::PRED_LE;
  case ISD::SETOGT:    // FIXME: This is incorrect see PR642.
  case ISD::SETUGT:
  case ISD::SETGT:  return PPC::PRED_GT;
  case ISD::SETOGE:    // FIXME: This is incorrect see PR642.
  case ISD::SETUGE:
  case ISD::SETGE:  return PPC::PRED_GE;
    
  case ISD::SETO:   return PPC::PRED_NU;
  case ISD::SETUO:  return PPC::PRED_UN;
  }
}

/// getCRIdxForSetCC - Return the index of the condition register field
/// associated with the SetCC condition, and whether or not the field is
/// treated as inverted.  That is, lt = 0; ge = 0 inverted.
static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool& Inv) {
  switch (CC) {
  default: assert(0 && "Unknown condition!"); abort();
  case ISD::SETOLT:  // FIXME: This is incorrect see PR642.
  case ISD::SETULT:
  case ISD::SETLT:  Inv = false;  return 0;
  case ISD::SETOGE:  // FIXME: This is incorrect see PR642.
  case ISD::SETUGE:
  case ISD::SETGE:  Inv = true;   return 0;
  case ISD::SETOGT:  // FIXME: This is incorrect see PR642.
  case ISD::SETUGT:
  case ISD::SETGT:  Inv = false;  return 1;
  case ISD::SETOLE:  // FIXME: This is incorrect see PR642.
  case ISD::SETULE:
  case ISD::SETLE:  Inv = true;   return 1;
  case ISD::SETOEQ:  // FIXME: This is incorrect see PR642.
  case ISD::SETUEQ:
  case ISD::SETEQ:  Inv = false;  return 2;
  case ISD::SETONE:  // FIXME: This is incorrect see PR642.
  case ISD::SETUNE:
  case ISD::SETNE:  Inv = true;   return 2;
  case ISD::SETO:   Inv = true;   return 3;
  case ISD::SETUO:  Inv = false;  return 3;
  }
  return 0;
}

SDNode *PPCDAGToDAGISel::SelectSETCC(SDOperand Op) {
  SDNode *N = Op.Val;
  unsigned Imm;
  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
  if (isInt32Immediate(N->getOperand(1), Imm)) {
    // We can codegen setcc op, imm very efficiently compared to a brcond.
    // Check for those cases here.
    // setcc op, 0
    if (Imm == 0) {
      SDOperand Op = N->getOperand(0);
      AddToISelQueue(Op);
      switch (CC) {
      default: break;
      case ISD::SETEQ: {
        Op = SDOperand(CurDAG->getTargetNode(PPC::CNTLZW, MVT::i32, Op), 0);
        SDOperand Ops[] = { Op, getI32Imm(27), getI32Imm(5), getI32Imm(31) };
        return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
      }
      case ISD::SETNE: {
        SDOperand AD =
          SDOperand(CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag,
                                          Op, getI32Imm(~0U)), 0);
        return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op, 
                                    AD.getValue(1));
      }
      case ISD::SETLT: {
        SDOperand Ops[] = { Op, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
        return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
      }
      case ISD::SETGT: {
        SDOperand T =
          SDOperand(CurDAG->getTargetNode(PPC::NEG, MVT::i32, Op), 0);
        T = SDOperand(CurDAG->getTargetNode(PPC::ANDC, MVT::i32, T, Op), 0);
        SDOperand Ops[] = { T, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
        return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
      }
      }
    } else if (Imm == ~0U) {        // setcc op, -1
      SDOperand Op = N->getOperand(0);
      AddToISelQueue(Op);
      switch (CC) {
      default: break;
      case ISD::SETEQ:
        Op = SDOperand(CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag,
                                             Op, getI32Imm(1)), 0);
        return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, 
                              SDOperand(CurDAG->getTargetNode(PPC::LI, MVT::i32,
                                                              getI32Imm(0)), 0),
                                    Op.getValue(1));
      case ISD::SETNE: {
        Op = SDOperand(CurDAG->getTargetNode(PPC::NOR, MVT::i32, Op, Op), 0);
        SDNode *AD = CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag,
                                           Op, getI32Imm(~0U));
        return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDOperand(AD, 0),
                                    Op, SDOperand(AD, 1));
      }
      case ISD::SETLT: {
        SDOperand AD = SDOperand(CurDAG->getTargetNode(PPC::ADDI, MVT::i32, Op,
                                                       getI32Imm(1)), 0);
        SDOperand AN = SDOperand(CurDAG->getTargetNode(PPC::AND, MVT::i32, AD,
                                                       Op), 0);
        SDOperand Ops[] = { AN, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
        return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
      }
      case ISD::SETGT: {
        SDOperand Ops[] = { Op, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
        Op = SDOperand(CurDAG->getTargetNode(PPC::RLWINM, MVT::i32, Ops, 4), 0);
        return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op, 
                                    getI32Imm(1));
      }
      }
    }
  }
  
  bool Inv;
  unsigned Idx = getCRIdxForSetCC(CC, Inv);
  SDOperand CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC);
  SDOperand IntCR;
  
  // Force the ccreg into CR7.
  SDOperand CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32);
  
  SDOperand InFlag(0, 0);  // Null incoming flag value.
  CCReg = CurDAG->getCopyToReg(CurDAG->getEntryNode(), CR7Reg, CCReg, 
                               InFlag).getValue(1);
  
  if (PPCSubTarget.isGigaProcessor())
    IntCR = SDOperand(CurDAG->getTargetNode(PPC::MFOCRF, MVT::i32, CR7Reg,
                                            CCReg), 0);
  else
    IntCR = SDOperand(CurDAG->getTargetNode(PPC::MFCR, MVT::i32, CCReg), 0);
  
  SDOperand Ops[] = { IntCR, getI32Imm((32-(3-Idx)) & 31),
                      getI32Imm(31), getI32Imm(31) };
  if (!Inv) {
    return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
  } else {
    SDOperand Tmp =
      SDOperand(CurDAG->getTargetNode(PPC::RLWINM, MVT::i32, Ops, 4), 0);
    return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1));
  }
}


// Select - Convert the specified operand from a target-independent to a
// target-specific node if it hasn't already been changed.
SDNode *PPCDAGToDAGISel::Select(SDOperand Op) {
  SDNode *N = Op.Val;
  if (N->getOpcode() >= ISD::BUILTIN_OP_END &&
      N->getOpcode() < PPCISD::FIRST_NUMBER)
    return NULL;   // Already selected.

  switch (N->getOpcode()) {
  default: break;
  
  case ISD::Constant: {
    if (N->getValueType(0) == MVT::i64) {
      // Get 64 bit value.
      int64_t Imm = cast<ConstantSDNode>(N)->getValue();
      // Assume no remaining bits.
      unsigned Remainder = 0;
      // Assume no shift required.
      unsigned Shift = 0;
      
      // If it can't be represented as a 32 bit value.
      if (!isInt32(Imm)) {
        Shift = CountTrailingZeros_64(Imm);
        int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
        
        // If the shifted value fits 32 bits.
        if (isInt32(ImmSh)) {
          // Go with the shifted value.
          Imm = ImmSh;
        } else {
          // Still stuck with a 64 bit value.
          Remainder = Imm;
          Shift = 32;
          Imm >>= 32;
        }
      }
      
      // Intermediate operand.
      SDNode *Result;

      // Handle first 32 bits.
      unsigned Lo = Imm & 0xFFFF;
      unsigned Hi = (Imm >> 16) & 0xFFFF;
      
      // Simple value.
      if (isInt16(Imm)) {
       // Just the Lo bits.
        Result = CurDAG->getTargetNode(PPC::LI8, MVT::i64, getI32Imm(Lo));
      } else if (Lo) {
        // Handle the Hi bits.
        unsigned OpC = Hi ? PPC::LIS8 : PPC::LI8;
        Result = CurDAG->getTargetNode(OpC, MVT::i64, getI32Imm(Hi));
        // And Lo bits.
        Result = CurDAG->getTargetNode(PPC::ORI8, MVT::i64,
                                       SDOperand(Result, 0), getI32Imm(Lo));
      } else {
       // Just the Hi bits.
        Result = CurDAG->getTargetNode(PPC::LIS8, MVT::i64, getI32Imm(Hi));
      }
      
      // If no shift, we're done.
      if (!Shift) return Result;

      // Shift for next step if the upper 32-bits were not zero.
      if (Imm) {
        Result = CurDAG->getTargetNode(PPC::RLDICR, MVT::i64,
                                       SDOperand(Result, 0),
                                       getI32Imm(Shift), getI32Imm(63 - Shift));
      }

      // Add in the last bits as required.
      if ((Hi = (Remainder >> 16) & 0xFFFF)) {
        Result = CurDAG->getTargetNode(PPC::ORIS8, MVT::i64,
                                       SDOperand(Result, 0), getI32Imm(Hi));
      } 
      if ((Lo = Remainder & 0xFFFF)) {
        Result = CurDAG->getTargetNode(PPC::ORI8, MVT::i64,
                                       SDOperand(Result, 0), getI32Imm(Lo));
      }
      
      return Result;
    }
    break;
  }
  
  case ISD::SETCC:
    return SelectSETCC(Op);
  case PPCISD::GlobalBaseReg:
    return getGlobalBaseReg();
    
  case ISD::FrameIndex: {
    int FI = cast<FrameIndexSDNode>(N)->getIndex();
    SDOperand TFI = CurDAG->getTargetFrameIndex(FI, Op.getValueType());
    unsigned Opc = Op.getValueType() == MVT::i32 ? PPC::ADDI : PPC::ADDI8;
    if (N->hasOneUse())
      return CurDAG->SelectNodeTo(N, Opc, Op.getValueType(), TFI,
                                  getSmallIPtrImm(0));
    return CurDAG->getTargetNode(Opc, Op.getValueType(), TFI,
                                 getSmallIPtrImm(0));
  }

  case PPCISD::MFCR: {
    SDOperand InFlag = N->getOperand(1);
    AddToISelQueue(InFlag);
    // Use MFOCRF if supported.
    if (PPCSubTarget.isGigaProcessor())
      return CurDAG->getTargetNode(PPC::MFOCRF, MVT::i32,
                                   N->getOperand(0), InFlag);
    else
      return CurDAG->getTargetNode(PPC::MFCR, MVT::i32, InFlag);
  }
    
  case ISD::SDIV: {
    // FIXME: since this depends on the setting of the carry flag from the srawi
    //        we should really be making notes about that for the scheduler.
    // FIXME: It sure would be nice if we could cheaply recognize the 
    //        srl/add/sra pattern the dag combiner will generate for this as
    //        sra/addze rather than having to handle sdiv ourselves.  oh well.
    unsigned Imm;
    if (isInt32Immediate(N->getOperand(1), Imm)) {
      SDOperand N0 = N->getOperand(0);
      AddToISelQueue(N0);
      if ((signed)Imm > 0 && isPowerOf2_32(Imm)) {
        SDNode *Op =
          CurDAG->getTargetNode(PPC::SRAWI, MVT::i32, MVT::Flag,
                                N0, getI32Imm(Log2_32(Imm)));
        return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, 
                                    SDOperand(Op, 0), SDOperand(Op, 1));
      } else if ((signed)Imm < 0 && isPowerOf2_32(-Imm)) {
        SDNode *Op =
          CurDAG->getTargetNode(PPC::SRAWI, MVT::i32, MVT::Flag,
                                N0, getI32Imm(Log2_32(-Imm)));
        SDOperand PT =
          SDOperand(CurDAG->getTargetNode(PPC::ADDZE, MVT::i32,
                                          SDOperand(Op, 0), SDOperand(Op, 1)),
                    0);
        return CurDAG->SelectNodeTo(N, PPC::NEG, MVT::i32, PT);
      }
    }
    
    // Other cases are autogenerated.
    break;
  }
    
  case ISD::LOAD: {
    // Handle preincrement loads.
    LoadSDNode *LD = cast<LoadSDNode>(Op);
    MVT::ValueType LoadedVT = LD->getLoadedVT();
    
    // Normal loads are handled by code generated from the .td file.
    if (LD->getAddressingMode() != ISD::PRE_INC)
      break;
    
    SDOperand Offset = LD->getOffset();
    if (isa<ConstantSDNode>(Offset) ||
        Offset.getOpcode() == ISD::TargetGlobalAddress) {
      
      unsigned Opcode;
      bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
      if (LD->getValueType(0) != MVT::i64) {
        // Handle PPC32 integer and normal FP loads.
        assert(!isSExt || LoadedVT == MVT::i16 && "Invalid sext update load");
        switch (LoadedVT) {
          default: assert(0 && "Invalid PPC load type!");
          case MVT::f64: Opcode = PPC::LFDU; break;
          case MVT::f32: Opcode = PPC::LFSU; break;
          case MVT::i32: Opcode = PPC::LWZU; break;
          case MVT::i16: Opcode = isSExt ? PPC::LHAU : PPC::LHZU; break;
          case MVT::i1:
          case MVT::i8:  Opcode = PPC::LBZU; break;
        }
      } else {
        assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
        assert(!isSExt || LoadedVT == MVT::i16 && "Invalid sext update load");
        switch (LoadedVT) {
          default: assert(0 && "Invalid PPC load type!");
          case MVT::i64: Opcode = PPC::LDU; break;
          case MVT::i32: Opcode = PPC::LWZU8; break;
          case MVT::i16: Opcode = isSExt ? PPC::LHAU8 : PPC::LHZU8; break;
          case MVT::i1:
          case MVT::i8:  Opcode = PPC::LBZU8; break;
        }
      }
      
      SDOperand Chain = LD->getChain();
      SDOperand Base = LD->getBasePtr();
      AddToISelQueue(Chain);
      AddToISelQueue(Base);
      AddToISelQueue(Offset);
      SDOperand Ops[] = { Offset, Base, Chain };
      // FIXME: PPC64
      return CurDAG->getTargetNode(Opcode, MVT::i32, MVT::i32,
                                   MVT::Other, Ops, 3);
    } else {
      assert(0 && "R+R preindex loads not supported yet!");
    }
  }
    
  case ISD::AND: {
    unsigned Imm, Imm2, SH, MB, ME;

    // If this is an and of a value rotated between 0 and 31 bits and then and'd
    // with a mask, emit rlwinm
    if (isInt32Immediate(N->getOperand(1), Imm) &&
        isRotateAndMask(N->getOperand(0).Val, Imm, false, SH, MB, ME)) {
      SDOperand Val = N->getOperand(0).getOperand(0);
      AddToISelQueue(Val);
      SDOperand Ops[] = { Val, getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) };
      return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
    }
    // If this is just a masked value where the input is not handled above, and
    // is not a rotate-left (handled by a pattern in the .td file), emit rlwinm
    if (isInt32Immediate(N->getOperand(1), Imm) &&
        isRunOfOnes(Imm, MB, ME) && 
        N->getOperand(0).getOpcode() != ISD::ROTL) {
      SDOperand Val = N->getOperand(0);
      AddToISelQueue(Val);
      SDOperand Ops[] = { Val, getI32Imm(0), getI32Imm(MB), getI32Imm(ME) };
      return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
    }
    // AND X, 0 -> 0, not "rlwinm 32".
    if (isInt32Immediate(N->getOperand(1), Imm) && (Imm == 0)) {
      AddToISelQueue(N->getOperand(1));
      ReplaceUses(SDOperand(N, 0), N->getOperand(1));
      return NULL;
    }
    // ISD::OR doesn't get all the bitfield insertion fun.
    // (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) is a bitfield insert
    if (isInt32Immediate(N->getOperand(1), Imm) && 
        N->getOperand(0).getOpcode() == ISD::OR &&
        isInt32Immediate(N->getOperand(0).getOperand(1), Imm2)) {
      unsigned MB, ME;
      Imm = ~(Imm^Imm2);
      if (isRunOfOnes(Imm, MB, ME)) {
        AddToISelQueue(N->getOperand(0).getOperand(0));
        AddToISelQueue(N->getOperand(0).getOperand(1));
        SDOperand Ops[] = { N->getOperand(0).getOperand(0),
                            N->getOperand(0).getOperand(1),
                            getI32Imm(0), getI32Imm(MB),getI32Imm(ME) };
        return CurDAG->getTargetNode(PPC::RLWIMI, MVT::i32, Ops, 5);
      }
    }
    
    // Other cases are autogenerated.
    break;
  }
  case ISD::OR:
    if (N->getValueType(0) == MVT::i32)
      if (SDNode *I = SelectBitfieldInsert(N))
        return I;
      
    // Other cases are autogenerated.
    break;
  case ISD::SHL: {
    unsigned Imm, SH, MB, ME;
    if (isOpcWithIntImmediate(N->getOperand(0).Val, ISD::AND, Imm) &&
        isRotateAndMask(N, Imm, true, SH, MB, ME)) {
      AddToISelQueue(N->getOperand(0).getOperand(0));
      SDOperand Ops[] = { N->getOperand(0).getOperand(0),
                          getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) };
      return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
    }
    
    // Other cases are autogenerated.
    break;
  }
  case ISD::SRL: {
    unsigned Imm, SH, MB, ME;
    if (isOpcWithIntImmediate(N->getOperand(0).Val, ISD::AND, Imm) &&
        isRotateAndMask(N, Imm, true, SH, MB, ME)) { 
      AddToISelQueue(N->getOperand(0).getOperand(0));
      SDOperand Ops[] = { N->getOperand(0).getOperand(0),
                          getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) };
      return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
    }
    
    // Other cases are autogenerated.
    break;
  }
  case ISD::SELECT_CC: {
    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
    
    // Handle the setcc cases here.  select_cc lhs, 0, 1, 0, cc
    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)))
      if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
        if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
          if (N1C->isNullValue() && N3C->isNullValue() &&
              N2C->getValue() == 1ULL && CC == ISD::SETNE &&
              // FIXME: Implement this optzn for PPC64.
              N->getValueType(0) == MVT::i32) {
            AddToISelQueue(N->getOperand(0));
            SDNode *Tmp =
              CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag,
                                    N->getOperand(0), getI32Imm(~0U));
            return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32,
                                        SDOperand(Tmp, 0), N->getOperand(0),
                                        SDOperand(Tmp, 1));
          }

    SDOperand CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC);
    unsigned BROpc = getPredicateForSetCC(CC);

    unsigned SelectCCOp;
    if (N->getValueType(0) == MVT::i32)
      SelectCCOp = PPC::SELECT_CC_I4;
    else if (N->getValueType(0) == MVT::i64)
      SelectCCOp = PPC::SELECT_CC_I8;
    else if (N->getValueType(0) == MVT::f32)
      SelectCCOp = PPC::SELECT_CC_F4;
    else if (N->getValueType(0) == MVT::f64)
      SelectCCOp = PPC::SELECT_CC_F8;
    else
      SelectCCOp = PPC::SELECT_CC_VRRC;

    AddToISelQueue(N->getOperand(2));
    AddToISelQueue(N->getOperand(3));
    SDOperand Ops[] = { CCReg, N->getOperand(2), N->getOperand(3),
                        getI32Imm(BROpc) };
    return CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), Ops, 4);
  }
  case PPCISD::COND_BRANCH: {
    AddToISelQueue(N->getOperand(0));  // Op #0 is the Chain.
    // Op #1 is the PPC::PRED_* number.
    // Op #2 is the CR#
    // Op #3 is the Dest MBB
    AddToISelQueue(N->getOperand(4));  // Op #4 is the Flag.
    // Prevent PPC::PRED_* from being selected into LI.
    SDOperand Pred =
      getI32Imm(cast<ConstantSDNode>(N->getOperand(1))->getValue());
    SDOperand Ops[] = { Pred, N->getOperand(2), N->getOperand(3),
      N->getOperand(0), N->getOperand(4) };
    return CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops, 5);
  }
  case ISD::BR_CC: {
    AddToISelQueue(N->getOperand(0));
    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
    SDOperand CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC);
    SDOperand Ops[] = { getI32Imm(getPredicateForSetCC(CC)), CondCode, 
                        N->getOperand(4), N->getOperand(0) };
    return CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops, 4);
  }
  case ISD::BRIND: {
    // FIXME: Should custom lower this.
    SDOperand Chain = N->getOperand(0);
    SDOperand Target = N->getOperand(1);
    AddToISelQueue(Chain);
    AddToISelQueue(Target);
    unsigned Opc = Target.getValueType() == MVT::i32 ? PPC::MTCTR : PPC::MTCTR8;
    Chain = SDOperand(CurDAG->getTargetNode(Opc, MVT::Other, Target,
                                            Chain), 0);
    return CurDAG->SelectNodeTo(N, PPC::BCTR, MVT::Other, Chain);
  }
  }
  
  return SelectCode(Op);
}



/// createPPCISelDag - This pass converts a legalized DAG into a 
/// PowerPC-specific DAG, ready for instruction scheduling.
///
FunctionPass *llvm::createPPCISelDag(PPCTargetMachine &TM) {
  return new PPCDAGToDAGISel(TM);
}