summaryrefslogtreecommitdiff
path: root/lib/Target/PowerPC/PPCInstrInfo.cpp
blob: 4bac10de88365fc00be865c6745facb48ef8d31e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
//===- PPCInstrInfo.cpp - PowerPC32 Instruction Information -----*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the PowerPC implementation of the TargetInstrInfo class.
//
//===----------------------------------------------------------------------===//

#include "PPCInstrInfo.h"
#include "PPCPredicates.h"
#include "PPCGenInstrInfo.inc"
#include "PPCTargetMachine.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
using namespace llvm;

PPCInstrInfo::PPCInstrInfo(PPCTargetMachine &tm)
  : TargetInstrInfo(PPCInsts, array_lengthof(PPCInsts)), TM(tm),
    RI(*TM.getSubtargetImpl(), *this) {}

/// getPointerRegClass - Return the register class to use to hold pointers.
/// This is used for addressing modes.
const TargetRegisterClass *PPCInstrInfo::getPointerRegClass() const {
  if (TM.getSubtargetImpl()->isPPC64())
    return &PPC::G8RCRegClass;
  else
    return &PPC::GPRCRegClass;
}


bool PPCInstrInfo::isMoveInstr(const MachineInstr& MI,
                               unsigned& sourceReg,
                               unsigned& destReg) const {
  MachineOpCode oc = MI.getOpcode();
  if (oc == PPC::OR || oc == PPC::OR8 || oc == PPC::VOR ||
      oc == PPC::OR4To8 || oc == PPC::OR8To4) {                // or r1, r2, r2
    assert(MI.getNumOperands() >= 3 &&
           MI.getOperand(0).isRegister() &&
           MI.getOperand(1).isRegister() &&
           MI.getOperand(2).isRegister() &&
           "invalid PPC OR instruction!");
    if (MI.getOperand(1).getReg() == MI.getOperand(2).getReg()) {
      sourceReg = MI.getOperand(1).getReg();
      destReg = MI.getOperand(0).getReg();
      return true;
    }
  } else if (oc == PPC::ADDI) {             // addi r1, r2, 0
    assert(MI.getNumOperands() >= 3 &&
           MI.getOperand(0).isRegister() &&
           MI.getOperand(2).isImmediate() &&
           "invalid PPC ADDI instruction!");
    if (MI.getOperand(1).isRegister() && MI.getOperand(2).getImm() == 0) {
      sourceReg = MI.getOperand(1).getReg();
      destReg = MI.getOperand(0).getReg();
      return true;
    }
  } else if (oc == PPC::ORI) {             // ori r1, r2, 0
    assert(MI.getNumOperands() >= 3 &&
           MI.getOperand(0).isRegister() &&
           MI.getOperand(1).isRegister() &&
           MI.getOperand(2).isImmediate() &&
           "invalid PPC ORI instruction!");
    if (MI.getOperand(2).getImm() == 0) {
      sourceReg = MI.getOperand(1).getReg();
      destReg = MI.getOperand(0).getReg();
      return true;
    }
  } else if (oc == PPC::FMRS || oc == PPC::FMRD ||
             oc == PPC::FMRSD) {      // fmr r1, r2
    assert(MI.getNumOperands() >= 2 &&
           MI.getOperand(0).isRegister() &&
           MI.getOperand(1).isRegister() &&
           "invalid PPC FMR instruction");
    sourceReg = MI.getOperand(1).getReg();
    destReg = MI.getOperand(0).getReg();
    return true;
  } else if (oc == PPC::MCRF) {             // mcrf cr1, cr2
    assert(MI.getNumOperands() >= 2 &&
           MI.getOperand(0).isRegister() &&
           MI.getOperand(1).isRegister() &&
           "invalid PPC MCRF instruction");
    sourceReg = MI.getOperand(1).getReg();
    destReg = MI.getOperand(0).getReg();
    return true;
  }
  return false;
}

unsigned PPCInstrInfo::isLoadFromStackSlot(MachineInstr *MI, 
                                           int &FrameIndex) const {
  switch (MI->getOpcode()) {
  default: break;
  case PPC::LD:
  case PPC::LWZ:
  case PPC::LFS:
  case PPC::LFD:
    if (MI->getOperand(1).isImmediate() && !MI->getOperand(1).getImm() &&
        MI->getOperand(2).isFrameIndex()) {
      FrameIndex = MI->getOperand(2).getFrameIndex();
      return MI->getOperand(0).getReg();
    }
    break;
  }
  return 0;
}

unsigned PPCInstrInfo::isStoreToStackSlot(MachineInstr *MI, 
                                          int &FrameIndex) const {
  switch (MI->getOpcode()) {
  default: break;
  case PPC::STD:
  case PPC::STW:
  case PPC::STFS:
  case PPC::STFD:
    if (MI->getOperand(1).isImmediate() && !MI->getOperand(1).getImm() &&
        MI->getOperand(2).isFrameIndex()) {
      FrameIndex = MI->getOperand(2).getFrameIndex();
      return MI->getOperand(0).getReg();
    }
    break;
  }
  return 0;
}

// commuteInstruction - We can commute rlwimi instructions, but only if the
// rotate amt is zero.  We also have to munge the immediates a bit.
MachineInstr *PPCInstrInfo::commuteInstruction(MachineInstr *MI) const {
  // Normal instructions can be commuted the obvious way.
  if (MI->getOpcode() != PPC::RLWIMI)
    return TargetInstrInfo::commuteInstruction(MI);
  
  // Cannot commute if it has a non-zero rotate count.
  if (MI->getOperand(3).getImm() != 0)
    return 0;
  
  // If we have a zero rotate count, we have:
  //   M = mask(MB,ME)
  //   Op0 = (Op1 & ~M) | (Op2 & M)
  // Change this to:
  //   M = mask((ME+1)&31, (MB-1)&31)
  //   Op0 = (Op2 & ~M) | (Op1 & M)

  // Swap op1/op2
  unsigned Reg1 = MI->getOperand(1).getReg();
  unsigned Reg2 = MI->getOperand(2).getReg();
  bool Reg1IsKill = MI->getOperand(1).isKill();
  bool Reg2IsKill = MI->getOperand(2).isKill();
  MI->getOperand(2).setReg(Reg1);
  MI->getOperand(1).setReg(Reg2);
  MI->getOperand(2).setIsKill(Reg1IsKill);
  MI->getOperand(1).setIsKill(Reg2IsKill);
  
  // Swap the mask around.
  unsigned MB = MI->getOperand(4).getImm();
  unsigned ME = MI->getOperand(5).getImm();
  MI->getOperand(4).setImm((ME+1) & 31);
  MI->getOperand(5).setImm((MB-1) & 31);
  return MI;
}

void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB, 
                              MachineBasicBlock::iterator MI) const {
  BuildMI(MBB, MI, get(PPC::NOP));
}


// Branch analysis.
bool PPCInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,MachineBasicBlock *&TBB,
                                 MachineBasicBlock *&FBB,
                                 std::vector<MachineOperand> &Cond) const {
  // If the block has no terminators, it just falls into the block after it.
  MachineBasicBlock::iterator I = MBB.end();
  if (I == MBB.begin() || !isUnpredicatedTerminator(--I))
    return false;

  // Get the last instruction in the block.
  MachineInstr *LastInst = I;
  
  // If there is only one terminator instruction, process it.
  if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) {
    if (LastInst->getOpcode() == PPC::B) {
      TBB = LastInst->getOperand(0).getMachineBasicBlock();
      return false;
    } else if (LastInst->getOpcode() == PPC::BCC) {
      // Block ends with fall-through condbranch.
      TBB = LastInst->getOperand(2).getMachineBasicBlock();
      Cond.push_back(LastInst->getOperand(0));
      Cond.push_back(LastInst->getOperand(1));
      return false;
    }
    // Otherwise, don't know what this is.
    return true;
  }
  
  // Get the instruction before it if it's a terminator.
  MachineInstr *SecondLastInst = I;

  // If there are three terminators, we don't know what sort of block this is.
  if (SecondLastInst && I != MBB.begin() &&
      isUnpredicatedTerminator(--I))
    return true;
  
  // If the block ends with PPC::B and PPC:BCC, handle it.
  if (SecondLastInst->getOpcode() == PPC::BCC && 
      LastInst->getOpcode() == PPC::B) {
    TBB =  SecondLastInst->getOperand(2).getMachineBasicBlock();
    Cond.push_back(SecondLastInst->getOperand(0));
    Cond.push_back(SecondLastInst->getOperand(1));
    FBB = LastInst->getOperand(0).getMachineBasicBlock();
    return false;
  }
  
  // If the block ends with two PPC:Bs, handle it.  The second one is not
  // executed, so remove it.
  if (SecondLastInst->getOpcode() == PPC::B && 
      LastInst->getOpcode() == PPC::B) {
    TBB = SecondLastInst->getOperand(0).getMachineBasicBlock();
    I = LastInst;
    I->eraseFromParent();
    return false;
  }

  // Otherwise, can't handle this.
  return true;
}

unsigned PPCInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
  MachineBasicBlock::iterator I = MBB.end();
  if (I == MBB.begin()) return 0;
  --I;
  if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC)
    return 0;
  
  // Remove the branch.
  I->eraseFromParent();
  
  I = MBB.end();

  if (I == MBB.begin()) return 1;
  --I;
  if (I->getOpcode() != PPC::BCC)
    return 1;
  
  // Remove the branch.
  I->eraseFromParent();
  return 2;
}

unsigned
PPCInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
                           MachineBasicBlock *FBB,
                           const std::vector<MachineOperand> &Cond) const {
  // Shouldn't be a fall through.
  assert(TBB && "InsertBranch must not be told to insert a fallthrough");
  assert((Cond.size() == 2 || Cond.size() == 0) && 
         "PPC branch conditions have two components!");
  
  // One-way branch.
  if (FBB == 0) {
    if (Cond.empty())   // Unconditional branch
      BuildMI(&MBB, get(PPC::B)).addMBB(TBB);
    else                // Conditional branch
      BuildMI(&MBB, get(PPC::BCC))
        .addImm(Cond[0].getImm()).addReg(Cond[1].getReg()).addMBB(TBB);
    return 1;
  }
  
  // Two-way Conditional Branch.
  BuildMI(&MBB, get(PPC::BCC))
    .addImm(Cond[0].getImm()).addReg(Cond[1].getReg()).addMBB(TBB);
  BuildMI(&MBB, get(PPC::B)).addMBB(FBB);
  return 2;
}

bool PPCInstrInfo::BlockHasNoFallThrough(MachineBasicBlock &MBB) const {
  if (MBB.empty()) return false;
  
  switch (MBB.back().getOpcode()) {
  case PPC::BLR:   // Return.
  case PPC::B:     // Uncond branch.
  case PPC::BCTR:  // Indirect branch.
    return true;
  default: return false;
  }
}

bool PPCInstrInfo::
ReverseBranchCondition(std::vector<MachineOperand> &Cond) const {
  assert(Cond.size() == 2 && "Invalid PPC branch opcode!");
  // Leave the CR# the same, but invert the condition.
  Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm()));
  return false;
}