summaryrefslogtreecommitdiff
path: root/lib/Target/PowerPC/PPCTargetMachine.cpp
blob: de3a3d0b70d4175d16bf582c72564cd9b13478fd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
//===-- PPCTargetMachine.cpp - Define TargetMachine for PowerPC -----------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Top-level implementation for the PowerPC target.
//
//===----------------------------------------------------------------------===//

#include "PPC.h"
#include "PPCMCAsmInfo.h"
#include "PPCTargetMachine.h"
#include "llvm/PassManager.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Target/TargetRegistry.h"
#include "llvm/Support/FormattedStream.h"
using namespace llvm;

static const MCAsmInfo *createMCAsmInfo(const Target &T,
                                                const StringRef &TT) {
  Triple TheTriple(TT);
  bool isPPC64 = TheTriple.getArch() == Triple::ppc64;
  if (TheTriple.getOS() == Triple::Darwin)
    return new PPCDarwinMCAsmInfo(isPPC64);
  return new PPCLinuxMCAsmInfo(isPPC64);
  
}

extern "C" void LLVMInitializePowerPCTarget() {
  // Register the targets
  RegisterTargetMachine<PPC32TargetMachine> A(ThePPC32Target);  
  RegisterTargetMachine<PPC64TargetMachine> B(ThePPC64Target);
  
  RegisterAsmInfoFn C(ThePPC32Target, createMCAsmInfo);
  RegisterAsmInfoFn D(ThePPC64Target, createMCAsmInfo);
}


PPCTargetMachine::PPCTargetMachine(const Target &T, const std::string &TT,
                                   const std::string &FS, bool is64Bit)
  : LLVMTargetMachine(T, TT),
    Subtarget(TT, FS, is64Bit),
    DataLayout(Subtarget.getTargetDataString()), InstrInfo(*this),
    FrameInfo(*this, is64Bit), JITInfo(*this, is64Bit), TLInfo(*this),
    InstrItins(Subtarget.getInstrItineraryData()), MachOWriterInfo(*this) {

  if (getRelocationModel() == Reloc::Default) {
    if (Subtarget.isDarwin())
      setRelocationModel(Reloc::DynamicNoPIC);
    else
      setRelocationModel(Reloc::Static);
  }
}

/// Override this for PowerPC.  Tail merging happily breaks up instruction issue
/// groups, which typically degrades performance.
bool PPCTargetMachine::getEnableTailMergeDefault() const { return false; }

PPC32TargetMachine::PPC32TargetMachine(const Target &T, const std::string &TT, 
                                       const std::string &FS) 
  : PPCTargetMachine(T, TT, FS, false) {
}


PPC64TargetMachine::PPC64TargetMachine(const Target &T, const std::string &TT, 
                                       const std::string &FS)
  : PPCTargetMachine(T, TT, FS, true) {
}


//===----------------------------------------------------------------------===//
// Pass Pipeline Configuration
//===----------------------------------------------------------------------===//

bool PPCTargetMachine::addInstSelector(PassManagerBase &PM,
                                       CodeGenOpt::Level OptLevel) {
  // Install an instruction selector.
  PM.add(createPPCISelDag(*this));
  return false;
}

bool PPCTargetMachine::addPreEmitPass(PassManagerBase &PM,
                                      CodeGenOpt::Level OptLevel) {
  // Must run branch selection immediately preceding the asm printer.
  PM.add(createPPCBranchSelectionPass());
  return false;
}

bool PPCTargetMachine::addCodeEmitter(PassManagerBase &PM,
                                      CodeGenOpt::Level OptLevel,
                                      MachineCodeEmitter &MCE) {
  // The JIT should use the static relocation model in ppc32 mode, PIC in ppc64.
  // FIXME: This should be moved to TargetJITInfo!!
  if (Subtarget.isPPC64()) {
    // We use PIC codegen in ppc64 mode, because otherwise we'd have to use many
    // instructions to materialize arbitrary global variable + function +
    // constant pool addresses.
    setRelocationModel(Reloc::PIC_);
    // Temporary workaround for the inability of PPC64 JIT to handle jump
    // tables.
    DisableJumpTables = true;      
  } else {
    setRelocationModel(Reloc::Static);
  }
  
  // Inform the subtarget that we are in JIT mode.  FIXME: does this break macho
  // writing?
  Subtarget.SetJITMode();
  
  // Machine code emitter pass for PowerPC.
  PM.add(createPPCCodeEmitterPass(*this, MCE));

  return false;
}

bool PPCTargetMachine::addCodeEmitter(PassManagerBase &PM,
                                      CodeGenOpt::Level OptLevel,
                                      JITCodeEmitter &JCE) {
  // The JIT should use the static relocation model in ppc32 mode, PIC in ppc64.
  // FIXME: This should be moved to TargetJITInfo!!
  if (Subtarget.isPPC64()) {
    // We use PIC codegen in ppc64 mode, because otherwise we'd have to use many
    // instructions to materialize arbitrary global variable + function +
    // constant pool addresses.
    setRelocationModel(Reloc::PIC_);
    // Temporary workaround for the inability of PPC64 JIT to handle jump
    // tables.
    DisableJumpTables = true;      
  } else {
    setRelocationModel(Reloc::Static);
  }
  
  // Inform the subtarget that we are in JIT mode.  FIXME: does this break macho
  // writing?
  Subtarget.SetJITMode();
  
  // Machine code emitter pass for PowerPC.
  PM.add(createPPCJITCodeEmitterPass(*this, JCE));

  return false;
}

bool PPCTargetMachine::addCodeEmitter(PassManagerBase &PM,
                                      CodeGenOpt::Level OptLevel,
                                      ObjectCodeEmitter &OCE) {
  // The JIT should use the static relocation model in ppc32 mode, PIC in ppc64.
  // FIXME: This should be moved to TargetJITInfo!!
  if (Subtarget.isPPC64()) {
    // We use PIC codegen in ppc64 mode, because otherwise we'd have to use many
    // instructions to materialize arbitrary global variable + function +
    // constant pool addresses.
    setRelocationModel(Reloc::PIC_);
    // Temporary workaround for the inability of PPC64 JIT to handle jump
    // tables.
    DisableJumpTables = true;      
  } else {
    setRelocationModel(Reloc::Static);
  }
  
  // Inform the subtarget that we are in JIT mode.  FIXME: does this break macho
  // writing?
  Subtarget.SetJITMode();
  
  // Machine code emitter pass for PowerPC.
  PM.add(createPPCObjectCodeEmitterPass(*this, OCE));

  return false;
}

bool PPCTargetMachine::addSimpleCodeEmitter(PassManagerBase &PM,
                                            CodeGenOpt::Level OptLevel,
                                            MachineCodeEmitter &MCE) {
  // Machine code emitter pass for PowerPC.
  PM.add(createPPCCodeEmitterPass(*this, MCE));
  return false;
}

bool PPCTargetMachine::addSimpleCodeEmitter(PassManagerBase &PM,
                                            CodeGenOpt::Level OptLevel,
                                            JITCodeEmitter &JCE) {
  // Machine code emitter pass for PowerPC.
  PM.add(createPPCJITCodeEmitterPass(*this, JCE));
  return false;
}

bool PPCTargetMachine::addSimpleCodeEmitter(PassManagerBase &PM,
                                            CodeGenOpt::Level OptLevel,
                                            ObjectCodeEmitter &OCE) {
  // Machine code emitter pass for PowerPC.
  PM.add(createPPCObjectCodeEmitterPass(*this, OCE));
  return false;
}