summaryrefslogtreecommitdiff
path: root/lib/Target/SparcV9/RegAlloc/PhyRegAlloc.cpp
blob: ef4156147cb1ccc95cb393331a1f612282d56db7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
//***************************************************************************
// File:
//	PhyRegAlloc.cpp
// 
// Purpose:
//      Register allocation for LLVM.
//	
// History:
//	9/10/01	 -  Ruchira Sasanka - created.
//**************************************************************************/

#include "llvm/CodeGen/RegisterAllocation.h"
#include "llvm/CodeGen/PhyRegAlloc.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrAnnot.h"
#include "llvm/CodeGen/MachineCodeForBasicBlock.h"
#include "llvm/CodeGen/MachineCodeForMethod.h"
#include "llvm/Analysis/LiveVar/FunctionLiveVarInfo.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/MachineFrameInfo.h"
#include "llvm/BasicBlock.h"
#include "llvm/Function.h"
#include "llvm/Type.h"
#include "llvm/iOther.h"
#include "llvm/CodeGen/RegAllocCommon.h"
#include "Support/CommandLine.h"
#include "Support/STLExtras.h"
#include <iostream>
#include <math.h>
using std::cerr;
using std::vector;

RegAllocDebugLevel_t DEBUG_RA;
static cl::Enum<RegAllocDebugLevel_t> DEBUG_RA_c(DEBUG_RA, "dregalloc",
                                                 cl::Hidden,
  "enable register allocation debugging information",
  clEnumValN(RA_DEBUG_None   , "n", "disable debug output"),
  clEnumValN(RA_DEBUG_Normal , "y", "enable debug output"),
  clEnumValN(RA_DEBUG_Verbose, "v", "enable extra debug output"), 0);


//----------------------------------------------------------------------------
// RegisterAllocation pass front end...
//----------------------------------------------------------------------------
namespace {
  class RegisterAllocator : public FunctionPass {
    TargetMachine &Target;
  public:
    inline RegisterAllocator(TargetMachine &T) : Target(T) {}

    const char *getPassName() const { return "Register Allocation"; }
    
    bool runOnFunction(Function &F) {
      if (DEBUG_RA)
        cerr << "\n********* Function "<< F.getName() << " ***********\n";
      
      PhyRegAlloc PRA(&F, Target, &getAnalysis<FunctionLiveVarInfo>(),
                      &getAnalysis<LoopInfo>());
      PRA.allocateRegisters();
      
      if (DEBUG_RA) cerr << "\nRegister allocation complete!\n";
      return false;
    }

    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.addRequired(LoopInfo::ID);
      AU.addRequired(FunctionLiveVarInfo::ID);
    }
  };
}

Pass *getRegisterAllocator(TargetMachine &T) {
  return new RegisterAllocator(T);
}

//----------------------------------------------------------------------------
// Constructor: Init local composite objects and create register classes.
//----------------------------------------------------------------------------
PhyRegAlloc::PhyRegAlloc(Function *F, const TargetMachine& tm, 
			 FunctionLiveVarInfo *Lvi, LoopInfo *LDC) 
                       :  TM(tm), Meth(F),
                          mcInfo(MachineCodeForMethod::get(F)),
                          LVI(Lvi), LRI(F, tm, RegClassList), 
			  MRI(tm.getRegInfo()),
                          NumOfRegClasses(MRI.getNumOfRegClasses()),
			  LoopDepthCalc(LDC) {

  // create each RegisterClass and put in RegClassList
  //
  for (unsigned rc=0; rc < NumOfRegClasses; rc++)  
    RegClassList.push_back(new RegClass(F, MRI.getMachineRegClass(rc),
                                        &ResColList));
}


//----------------------------------------------------------------------------
// Destructor: Deletes register classes
//----------------------------------------------------------------------------
PhyRegAlloc::~PhyRegAlloc() { 
  for ( unsigned rc=0; rc < NumOfRegClasses; rc++)
    delete RegClassList[rc];

  AddedInstrMap.clear();
} 

//----------------------------------------------------------------------------
// This method initally creates interference graphs (one in each reg class)
// and IGNodeList (one in each IG). The actual nodes will be pushed later. 
//----------------------------------------------------------------------------
void PhyRegAlloc::createIGNodeListsAndIGs() {
  if (DEBUG_RA) cerr << "Creating LR lists ...\n";

  // hash map iterator
  LiveRangeMapType::const_iterator HMI = LRI.getLiveRangeMap()->begin();   

  // hash map end
  LiveRangeMapType::const_iterator HMIEnd = LRI.getLiveRangeMap()->end();   

  for (; HMI != HMIEnd ; ++HMI ) {
    if (HMI->first) { 
      LiveRange *L = HMI->second;   // get the LiveRange
      if (!L) { 
        if (DEBUG_RA) {
          cerr << "\n*?!?Warning: Null liver range found for: "
               << RAV(HMI->first) << "\n";
        }
        continue;
      }
                                        // if the Value * is not null, and LR  
                                        // is not yet written to the IGNodeList
      if (!(L->getUserIGNode())  ) {  
        RegClass *const RC =           // RegClass of first value in the LR
          RegClassList[ L->getRegClass()->getID() ];
        
        RC->addLRToIG(L);              // add this LR to an IG
      }
    }
  }
    
  // init RegClassList
  for ( unsigned rc=0; rc < NumOfRegClasses ; rc++)  
    RegClassList[rc]->createInterferenceGraph();

  if (DEBUG_RA)
    cerr << "LRLists Created!\n";
}




//----------------------------------------------------------------------------
// This method will add all interferences at for a given instruction.
// Interence occurs only if the LR of Def (Inst or Arg) is of the same reg 
// class as that of live var. The live var passed to this function is the 
// LVset AFTER the instruction
//----------------------------------------------------------------------------
void PhyRegAlloc::addInterference(const Value *Def, 
				  const ValueSet *LVSet,
				  bool isCallInst) {

  ValueSet::const_iterator LIt = LVSet->begin();

  // get the live range of instruction
  //
  const LiveRange *const LROfDef = LRI.getLiveRangeForValue( Def );   

  IGNode *const IGNodeOfDef = LROfDef->getUserIGNode();
  assert( IGNodeOfDef );

  RegClass *const RCOfDef = LROfDef->getRegClass(); 

  // for each live var in live variable set
  //
  for ( ; LIt != LVSet->end(); ++LIt) {

    if (DEBUG_RA >= RA_DEBUG_Verbose)
      cerr << "< Def=" << RAV(Def) << ", Lvar=" << RAV(*LIt) << "> ";

    //  get the live range corresponding to live var
    //
    LiveRange *LROfVar = LRI.getLiveRangeForValue(*LIt);

    // LROfVar can be null if it is a const since a const 
    // doesn't have a dominating def - see Assumptions above
    //
    if (LROfVar) {  
      if (LROfDef == LROfVar)            // do not set interf for same LR
	continue;

      // if 2 reg classes are the same set interference
      //
      if (RCOfDef == LROfVar->getRegClass()) {
	RCOfDef->setInterference( LROfDef, LROfVar);  
      } else if (DEBUG_RA >= RA_DEBUG_Verbose)  { 
        // we will not have LRs for values not explicitly allocated in the
        // instruction stream (e.g., constants)
        cerr << " warning: no live range for " << RAV(*LIt) << "\n";
      }
    }
  }
}



//----------------------------------------------------------------------------
// For a call instruction, this method sets the CallInterference flag in 
// the LR of each variable live int the Live Variable Set live after the
// call instruction (except the return value of the call instruction - since
// the return value does not interfere with that call itself).
//----------------------------------------------------------------------------

void PhyRegAlloc::setCallInterferences(const MachineInstr *MInst, 
				       const ValueSet *LVSetAft) {

  if (DEBUG_RA)
    cerr << "\n For call inst: " << *MInst;

  ValueSet::const_iterator LIt = LVSetAft->begin();

  // for each live var in live variable set after machine inst
  //
  for ( ; LIt != LVSetAft->end(); ++LIt) {

    //  get the live range corresponding to live var
    //
    LiveRange *const LR = LRI.getLiveRangeForValue(*LIt ); 

    if (LR && DEBUG_RA) {
      cerr << "\n\tLR Aft Call: ";
      printSet(*LR);
    }
   
    // LR can be null if it is a const since a const 
    // doesn't have a dominating def - see Assumptions above
    //
    if (LR )   {  
      LR->setCallInterference();
      if (DEBUG_RA) {
	cerr << "\n  ++Added call interf for LR: " ;
	printSet(*LR);
      }
    }

  }

  // Now find the LR of the return value of the call
  // We do this because, we look at the LV set *after* the instruction
  // to determine, which LRs must be saved across calls. The return value
  // of the call is live in this set - but it does not interfere with call
  // (i.e., we can allocate a volatile register to the return value)
  //
  CallArgsDescriptor* argDesc = CallArgsDescriptor::get(MInst);
  
  if (const Value *RetVal = argDesc->getReturnValue()) {
    LiveRange *RetValLR = LRI.getLiveRangeForValue( RetVal );
    assert( RetValLR && "No LR for RetValue of call");
    RetValLR->clearCallInterference();
  }

  // If the CALL is an indirect call, find the LR of the function pointer.
  // That has a call interference because it conflicts with outgoing args.
  if (const Value *AddrVal = argDesc->getIndirectFuncPtr()) {
    LiveRange *AddrValLR = LRI.getLiveRangeForValue( AddrVal );
    assert( AddrValLR && "No LR for indirect addr val of call");
    AddrValLR->setCallInterference();
  }

}




//----------------------------------------------------------------------------
// This method will walk thru code and create interferences in the IG of
// each RegClass. Also, this method calculates the spill cost of each
// Live Range (it is done in this method to save another pass over the code).
//----------------------------------------------------------------------------
void PhyRegAlloc::buildInterferenceGraphs()
{

  if (DEBUG_RA) cerr << "Creating interference graphs ...\n";

  unsigned BBLoopDepthCost;
  for (Function::const_iterator BBI = Meth->begin(), BBE = Meth->end();
       BBI != BBE; ++BBI) {

    // find the 10^(loop_depth) of this BB 
    //
    BBLoopDepthCost = (unsigned)pow(10.0, LoopDepthCalc->getLoopDepth(BBI));

    // get the iterator for machine instructions
    //
    const MachineCodeForBasicBlock& MIVec = MachineCodeForBasicBlock::get(BBI);
    MachineCodeForBasicBlock::const_iterator MII = MIVec.begin();

    // iterate over all the machine instructions in BB
    //
    for ( ; MII != MIVec.end(); ++MII) {  

      const MachineInstr *MInst = *MII; 

      // get the LV set after the instruction
      //
      const ValueSet &LVSetAI = LVI->getLiveVarSetAfterMInst(MInst, BBI);
    
      const bool isCallInst = TM.getInstrInfo().isCall(MInst->getOpCode());

      if (isCallInst ) {
	// set the isCallInterference flag of each live range wich extends
	// accross this call instruction. This information is used by graph
	// coloring algo to avoid allocating volatile colors to live ranges
	// that span across calls (since they have to be saved/restored)
	//
	setCallInterferences(MInst, &LVSetAI);
      }


      // iterate over all MI operands to find defs
      //
      for (MachineInstr::const_val_op_iterator OpI = MInst->begin(),
             OpE = MInst->end(); OpI != OpE; ++OpI) {
       	if (OpI.isDef())    // create a new LR iff this operand is a def
	  addInterference(*OpI, &LVSetAI, isCallInst);

	// Calculate the spill cost of each live range
	//
	LiveRange *LR = LRI.getLiveRangeForValue(*OpI);
	if (LR) LR->addSpillCost(BBLoopDepthCost);
      } 


      // if there are multiple defs in this instruction e.g. in SETX
      //   
      if (TM.getInstrInfo().isPseudoInstr(MInst->getOpCode()))
      	addInterf4PseudoInstr(MInst);


      // Also add interference for any implicit definitions in a machine
      // instr (currently, only calls have this).
      //
      unsigned NumOfImpRefs =  MInst->getNumImplicitRefs();
      if ( NumOfImpRefs > 0 ) {
	for (unsigned z=0; z < NumOfImpRefs; z++) 
	  if (MInst->implicitRefIsDefined(z) )
	    addInterference( MInst->getImplicitRef(z), &LVSetAI, isCallInst );
      }


    } // for all machine instructions in BB
  } // for all BBs in function


  // add interferences for function arguments. Since there are no explict 
  // defs in the function for args, we have to add them manually
  //  
  addInterferencesForArgs();          

  if (DEBUG_RA)
    cerr << "Interference graphs calculted!\n";

}



//--------------------------------------------------------------------------
// Pseudo instructions will be exapnded to multiple instructions by the
// assembler. Consequently, all the opernds must get distinct registers.
// Therefore, we mark all operands of a pseudo instruction as they interfere
// with one another.
//--------------------------------------------------------------------------
void PhyRegAlloc::addInterf4PseudoInstr(const MachineInstr *MInst) {

  bool setInterf = false;

  // iterate over  MI operands to find defs
  //
  for (MachineInstr::const_val_op_iterator It1 = MInst->begin(),
         ItE = MInst->end(); It1 != ItE; ++It1) {
    const LiveRange *LROfOp1 = LRI.getLiveRangeForValue(*It1); 
    assert((LROfOp1 || !It1.isDef()) && "No LR for Def in PSEUDO insruction");

    MachineInstr::const_val_op_iterator It2 = It1;
    for (++It2; It2 != ItE; ++It2) {
      const LiveRange *LROfOp2 = LRI.getLiveRangeForValue(*It2); 

      if (LROfOp2) {
	RegClass *RCOfOp1 = LROfOp1->getRegClass(); 
	RegClass *RCOfOp2 = LROfOp2->getRegClass(); 
 
	if (RCOfOp1 == RCOfOp2 ){ 
	  RCOfOp1->setInterference( LROfOp1, LROfOp2 );  
	  setInterf = true;
	}
      } // if Op2 has a LR
    } // for all other defs in machine instr
  } // for all operands in an instruction

  if (!setInterf && MInst->getNumOperands() > 2) {
    cerr << "\nInterf not set for any operand in pseudo instr:\n";
    cerr << *MInst;
    assert(0 && "Interf not set for pseudo instr with > 2 operands" );
  }
} 



//----------------------------------------------------------------------------
// This method will add interferences for incoming arguments to a function.
//----------------------------------------------------------------------------
void PhyRegAlloc::addInterferencesForArgs() {
  // get the InSet of root BB
  const ValueSet &InSet = LVI->getInSetOfBB(&Meth->front());  

  for (Function::const_aiterator AI = Meth->abegin(); AI != Meth->aend(); ++AI) {
    // add interferences between args and LVars at start 
    addInterference(AI, &InSet, false);
    
    if (DEBUG_RA >= RA_DEBUG_Verbose)
      cerr << " - %% adding interference for  argument " << RAV(AI) << "\n";
  }
}


//----------------------------------------------------------------------------
// This method is called after register allocation is complete to set the
// allocated reisters in the machine code. This code will add register numbers
// to MachineOperands that contain a Value. Also it calls target specific
// methods to produce caller saving instructions. At the end, it adds all
// additional instructions produced by the register allocator to the 
// instruction stream. 
//----------------------------------------------------------------------------

//-----------------------------
// Utility functions used below
//-----------------------------
inline void
PrependInstructions(vector<MachineInstr *> &IBef,
                    MachineCodeForBasicBlock& MIVec,
                    MachineCodeForBasicBlock::iterator& MII,
                    const std::string& msg)
{
  if (!IBef.empty())
    {
      MachineInstr* OrigMI = *MII;
      std::vector<MachineInstr *>::iterator AdIt; 
      for (AdIt = IBef.begin(); AdIt != IBef.end() ; ++AdIt)
        {
          if (DEBUG_RA) {
            if (OrigMI) cerr << "For MInst: " << *OrigMI;
            cerr << msg << " PREPENDed instr: " << **AdIt << "\n";
          }
          MII = MIVec.insert(MII, *AdIt);
          ++MII;
        }
    }
}

inline void
AppendInstructions(std::vector<MachineInstr *> &IAft,
                   MachineCodeForBasicBlock& MIVec,
                   MachineCodeForBasicBlock::iterator& MII,
                   const std::string& msg)
{
  if (!IAft.empty())
    {
      MachineInstr* OrigMI = *MII;
      std::vector<MachineInstr *>::iterator AdIt; 
      for ( AdIt = IAft.begin(); AdIt != IAft.end() ; ++AdIt )
        {
          if (DEBUG_RA) {
            if (OrigMI) cerr << "For MInst: " << *OrigMI;
            cerr << msg << " APPENDed instr: "  << **AdIt << "\n";
          }
          ++MII;    // insert before the next instruction
          MII = MIVec.insert(MII, *AdIt);
        }
    }
}


void PhyRegAlloc::updateMachineCode()
{
  MachineCodeForBasicBlock& MIVec = MachineCodeForBasicBlock::get(&Meth->getEntryNode());
    
  // Insert any instructions needed at method entry
  MachineCodeForBasicBlock::iterator MII = MIVec.begin();
  PrependInstructions(AddedInstrAtEntry.InstrnsBefore, MIVec, MII,
                      "At function entry: \n");
  assert(AddedInstrAtEntry.InstrnsAfter.empty() &&
         "InstrsAfter should be unnecessary since we are just inserting at "
         "the function entry point here.");
  
  for (Function::const_iterator BBI = Meth->begin(), BBE = Meth->end();
       BBI != BBE; ++BBI) {
    
    // iterate over all the machine instructions in BB
    MachineCodeForBasicBlock &MIVec = MachineCodeForBasicBlock::get(BBI);
    for (MachineCodeForBasicBlock::iterator MII = MIVec.begin();
        MII != MIVec.end(); ++MII) {  
      
      MachineInstr *MInst = *MII; 
      
      unsigned Opcode =  MInst->getOpCode();
    
      // do not process Phis
      if (TM.getInstrInfo().isDummyPhiInstr(Opcode))
	continue;

      // Reset tmp stack positions so they can be reused for each machine instr.
      mcInfo.popAllTempValues(TM);  
	
      // Now insert speical instructions (if necessary) for call/return
      // instructions. 
      //
      if (TM.getInstrInfo().isCall(Opcode) ||
	  TM.getInstrInfo().isReturn(Opcode)) {

	AddedInstrns &AI = AddedInstrMap[MInst];
	
	if (TM.getInstrInfo().isCall(Opcode))
	  MRI.colorCallArgs(MInst, LRI, &AI, *this, BBI);
	else if (TM.getInstrInfo().isReturn(Opcode))
	  MRI.colorRetValue(MInst, LRI, &AI);
      }
      
      // Set the registers for operands in the machine instruction
      // if a register was successfully allocated.  If not, insert
      // code to spill the register value.
      // 
      for (unsigned OpNum=0; OpNum < MInst->getNumOperands(); ++OpNum)
        {
          MachineOperand& Op = MInst->getOperand(OpNum);
          if (Op.getOperandType() ==  MachineOperand::MO_VirtualRegister || 
              Op.getOperandType() ==  MachineOperand::MO_CCRegister)
            {
              const Value *const Val =  Op.getVRegValue();
          
              LiveRange *const LR = LRI.getLiveRangeForValue(Val);
              if (!LR)              // consts or labels will have no live range
                {
                  // if register is not allocated, mark register as invalid
                  if (Op.getAllocatedRegNum() == -1)
                    MInst->SetRegForOperand(OpNum, MRI.getInvalidRegNum()); 
                  continue;
                }
          
              if (LR->hasColor() )
                MInst->SetRegForOperand(OpNum,
                                MRI.getUnifiedRegNum(LR->getRegClass()->getID(),
                                                     LR->getColor()));
              else
                // LR did NOT receive a color (register). Insert spill code.
                insertCode4SpilledLR(LR, MInst, BBI, OpNum );
            }
        } // for each operand
      
      
      // Now add instructions that the register allocator inserts before/after 
      // this machine instructions (done only for calls/rets/incoming args)
      // We do this here, to ensure that spill for an instruction is inserted
      // closest as possible to an instruction (see above insertCode4Spill...)
      // 
      // If there are instructions to be added, *before* this machine
      // instruction, add them now.
      //      
      if (AddedInstrMap.count(MInst)) {
        PrependInstructions(AddedInstrMap[MInst].InstrnsBefore, MIVec, MII,"");
      }
      
      // If there are instructions to be added *after* this machine
      // instruction, add them now
      //
      if (!AddedInstrMap[MInst].InstrnsAfter.empty()) {

	// if there are delay slots for this instruction, the instructions
	// added after it must really go after the delayed instruction(s)
	// So, we move the InstrAfter of the current instruction to the 
	// corresponding delayed instruction
	
	unsigned delay;
	if ((delay=TM.getInstrInfo().getNumDelaySlots(MInst->getOpCode())) >0){ 
	  move2DelayedInstr(MInst,  *(MII+delay) );
	}
	else {
	  // Here we can add the "instructions after" to the current
	  // instruction since there are no delay slots for this instruction
	  AppendInstructions(AddedInstrMap[MInst].InstrnsAfter, MIVec, MII,"");
	}  // if not delay
      }
      
    } // for each machine instruction
  }
}



//----------------------------------------------------------------------------
// This method inserts spill code for AN operand whose LR was spilled.
// This method may be called several times for a single machine instruction
// if it contains many spilled operands. Each time it is called, it finds
// a register which is not live at that instruction and also which is not
// used by other spilled operands of the same instruction. Then it uses
// this register temporarily to accomodate the spilled value.
//----------------------------------------------------------------------------
void PhyRegAlloc::insertCode4SpilledLR(const LiveRange *LR, 
				       MachineInstr *MInst,
				       const BasicBlock *BB,
				       const unsigned OpNum) {

  assert(! TM.getInstrInfo().isCall(MInst->getOpCode()) &&
	 (! TM.getInstrInfo().isReturn(MInst->getOpCode())) &&
	 "Arg of a call/ret must be handled elsewhere");

  MachineOperand& Op = MInst->getOperand(OpNum);
  bool isDef =  MInst->operandIsDefined(OpNum);
  bool isDefAndUse =  MInst->operandIsDefinedAndUsed(OpNum);
  unsigned RegType = MRI.getRegType( LR );
  int SpillOff = LR->getSpillOffFromFP();
  RegClass *RC = LR->getRegClass();
  const ValueSet &LVSetBef = LVI->getLiveVarSetBeforeMInst(MInst, BB);

  mcInfo.pushTempValue(TM, MRI.getSpilledRegSize(RegType) );
  
  vector<MachineInstr*> MIBef, MIAft;
  vector<MachineInstr*> AdIMid;
  
  // Choose a register to hold the spilled value.  This may insert code
  // before and after MInst to free up the value.  If so, this code should
  // be first and last in the spill sequence before/after MInst.
  int TmpRegU = getUsableUniRegAtMI(RegType, &LVSetBef, MInst, MIBef, MIAft);
  
  // Set the operand first so that it this register does not get used
  // as a scratch register for later calls to getUsableUniRegAtMI below
  MInst->SetRegForOperand(OpNum, TmpRegU);
  
  // get the added instructions for this instruction
  AddedInstrns &AI = AddedInstrMap[MInst];

  // We may need a scratch register to copy the spilled value to/from memory.
  // This may itself have to insert code to free up a scratch register.  
  // Any such code should go before (after) the spill code for a load (store).
  int scratchRegType = -1;
  int scratchReg = -1;
  if (MRI.regTypeNeedsScratchReg(RegType, scratchRegType))
    {
      scratchReg = this->getUsableUniRegAtMI(scratchRegType, &LVSetBef,
                                             MInst, MIBef, MIAft);
      assert(scratchReg != MRI.getInvalidRegNum());
      MInst->getRegsUsed().insert(scratchReg); 
    }
  
  if (!isDef || isDefAndUse) {
    // for a USE, we have to load the value of LR from stack to a TmpReg
    // and use the TmpReg as one operand of instruction
    
    // actual loading instruction(s)
    MRI.cpMem2RegMI(AdIMid, MRI.getFramePointer(), SpillOff, TmpRegU, RegType,
                    scratchReg);
    
    // the actual load should be after the instructions to free up TmpRegU
    MIBef.insert(MIBef.end(), AdIMid.begin(), AdIMid.end());
    AdIMid.clear();
  }
  
  if (isDef) {   // if this is a Def
    // for a DEF, we have to store the value produced by this instruction
    // on the stack position allocated for this LR
    
    // actual storing instruction(s)
    MRI.cpReg2MemMI(AdIMid, TmpRegU, MRI.getFramePointer(), SpillOff, RegType,
                    scratchReg);
    
    MIAft.insert(MIAft.begin(), AdIMid.begin(), AdIMid.end());
  }  // if !DEF
  
  // Finally, insert the entire spill code sequences before/after MInst
  AI.InstrnsBefore.insert(AI.InstrnsBefore.end(), MIBef.begin(), MIBef.end());
  AI.InstrnsAfter.insert(AI.InstrnsAfter.begin(), MIAft.begin(), MIAft.end());
  
  if (DEBUG_RA) {
    cerr << "\nFor Inst " << *MInst;
    cerr << " - SPILLED LR: "; printSet(*LR);
    cerr << "\n - Added Instructions:";
    for_each(MIBef.begin(), MIBef.end(), std::mem_fun(&MachineInstr::dump));
    for_each(MIAft.begin(), MIAft.end(), std::mem_fun(&MachineInstr::dump));
  }
}


//----------------------------------------------------------------------------
// We can use the following method to get a temporary register to be used
// BEFORE any given machine instruction. If there is a register available,
// this method will simply return that register and set MIBef = MIAft = NULL.
// Otherwise, it will return a register and MIAft and MIBef will contain
// two instructions used to free up this returned register.
// Returned register number is the UNIFIED register number
//----------------------------------------------------------------------------

int PhyRegAlloc::getUsableUniRegAtMI(const int RegType,
                                     const ValueSet *LVSetBef,
                                     MachineInstr *MInst, 
                                     std::vector<MachineInstr*>& MIBef,
                                     std::vector<MachineInstr*>& MIAft) {
  
  RegClass* RC = this->getRegClassByID(MRI.getRegClassIDOfRegType(RegType));
  
  int RegU =  getUnusedUniRegAtMI(RC, MInst, LVSetBef);
  
  if (RegU == -1) {
    // we couldn't find an unused register. Generate code to free up a reg by
    // saving it on stack and restoring after the instruction
    
    int TmpOff = mcInfo.pushTempValue(TM,  MRI.getSpilledRegSize(RegType) );
    
    RegU = getUniRegNotUsedByThisInst(RC, MInst);
    
    // Check if we need a scratch register to copy this register to memory.
    int scratchRegType = -1;
    if (MRI.regTypeNeedsScratchReg(RegType, scratchRegType))
      {
        int scratchReg = this->getUsableUniRegAtMI(scratchRegType, LVSetBef,
                                                   MInst, MIBef, MIAft);
        assert(scratchReg != MRI.getInvalidRegNum());
        
        // We may as well hold the value in the scratch register instead
        // of copying it to memory and back.  But we have to mark the
        // register as used by this instruction, so it does not get used
        // as a scratch reg. by another operand or anyone else.
        MInst->getRegsUsed().insert(scratchReg); 
        MRI.cpReg2RegMI(MIBef, RegU, scratchReg, RegType);
        MRI.cpReg2RegMI(MIAft, scratchReg, RegU, RegType);
      }
    else
      { // the register can be copied directly to/from memory so do it.
        MRI.cpReg2MemMI(MIBef, RegU, MRI.getFramePointer(), TmpOff, RegType);
        MRI.cpMem2RegMI(MIAft, MRI.getFramePointer(), TmpOff, RegU, RegType);
      }
  }
  
  return RegU;
}

//----------------------------------------------------------------------------
// This method is called to get a new unused register that can be used to
// accomodate a spilled value. 
// This method may be called several times for a single machine instruction
// if it contains many spilled operands. Each time it is called, it finds
// a register which is not live at that instruction and also which is not
// used by other spilled operands of the same instruction.
// Return register number is relative to the register class. NOT
// unified number
//----------------------------------------------------------------------------
int PhyRegAlloc::getUnusedUniRegAtMI(RegClass *RC, 
				  const MachineInstr *MInst, 
				  const ValueSet *LVSetBef) {

  unsigned NumAvailRegs =  RC->getNumOfAvailRegs();
  
  std::vector<bool> &IsColorUsedArr = RC->getIsColorUsedArr();
  
  for (unsigned i=0; i <  NumAvailRegs; i++)     // Reset array
      IsColorUsedArr[i] = false;
      
  ValueSet::const_iterator LIt = LVSetBef->begin();

  // for each live var in live variable set after machine inst
  for ( ; LIt != LVSetBef->end(); ++LIt) {

   //  get the live range corresponding to live var
    LiveRange *const LRofLV = LRI.getLiveRangeForValue(*LIt );    

    // LR can be null if it is a const since a const 
    // doesn't have a dominating def - see Assumptions above
    if (LRofLV && LRofLV->getRegClass() == RC && LRofLV->hasColor() ) 
      IsColorUsedArr[ LRofLV->getColor() ] = true;
  }

  // It is possible that one operand of this MInst was already spilled
  // and it received some register temporarily. If that's the case,
  // it is recorded in machine operand. We must skip such registers.

  setRelRegsUsedByThisInst(RC, MInst);

  for (unsigned c=0; c < NumAvailRegs; c++)   // find first unused color
     if (!IsColorUsedArr[c])
       return MRI.getUnifiedRegNum(RC->getID(), c);
  
  return -1;
}


//----------------------------------------------------------------------------
// Get any other register in a register class, other than what is used
// by operands of a machine instruction. Returns the unified reg number.
//----------------------------------------------------------------------------
int PhyRegAlloc::getUniRegNotUsedByThisInst(RegClass *RC, 
                                            const MachineInstr *MInst) {

  vector<bool> &IsColorUsedArr = RC->getIsColorUsedArr();
  unsigned NumAvailRegs =  RC->getNumOfAvailRegs();

  for (unsigned i=0; i < NumAvailRegs ; i++)   // Reset array
    IsColorUsedArr[i] = false;

  setRelRegsUsedByThisInst(RC, MInst);

  for (unsigned c=0; c < RC->getNumOfAvailRegs(); c++)// find first unused color
    if (!IsColorUsedArr[c])
      return  MRI.getUnifiedRegNum(RC->getID(), c);

  assert(0 && "FATAL: No free register could be found in reg class!!");
  return 0;
}


//----------------------------------------------------------------------------
// This method modifies the IsColorUsedArr of the register class passed to it.
// It sets the bits corresponding to the registers used by this machine
// instructions. Both explicit and implicit operands are set.
//----------------------------------------------------------------------------
void PhyRegAlloc::setRelRegsUsedByThisInst(RegClass *RC, 
                                           const MachineInstr *MInst ) {

  vector<bool> &IsColorUsedArr = RC->getIsColorUsedArr();
  
  // Add the registers already marked as used by the instruction. 
  // This should include any scratch registers that are used to save
  // values across the instruction (e.g., for saving state register values).
  const hash_set<int>& regsUsed = MInst->getRegsUsed();
  for (hash_set<int>::const_iterator SI=regsUsed.begin(), SE=regsUsed.end();
       SI != SE; ++SI)
    {
      unsigned classId = 0;
      int classRegNum = MRI.getClassRegNum(*SI, classId);
      if (RC->getID() == classId)
        {
          assert(classRegNum < (int) IsColorUsedArr.size() &&
                 "Illegal register number for this reg class?");
          IsColorUsedArr[classRegNum] = true;
        }
    }
  
  // Now add registers allocated to the live ranges of values used in
  // the instruction.  These are not yet recorded in the instruction.
  for (unsigned OpNum=0; OpNum < MInst->getNumOperands(); ++OpNum)
    {
      const MachineOperand& Op = MInst->getOperand(OpNum);
      
      if (Op.getOperandType() == MachineOperand::MO_VirtualRegister || 
          Op.getOperandType() == MachineOperand::MO_CCRegister)
        if (const Value* Val = Op.getVRegValue())
          if (MRI.getRegClassIDOfValue(Val) == RC->getID())
            if (Op.getAllocatedRegNum() == -1)
              if (LiveRange *LROfVal = LRI.getLiveRangeForValue(Val))
                if (LROfVal->hasColor() )
                  // this operand is in a LR that received a color
                  IsColorUsedArr[LROfVal->getColor()] = true;
    }
  
  // If there are implicit references, mark their allocated regs as well
  // 
  for (unsigned z=0; z < MInst->getNumImplicitRefs(); z++)
    if (const LiveRange*
        LRofImpRef = LRI.getLiveRangeForValue(MInst->getImplicitRef(z)))    
      if (LRofImpRef->hasColor())
        // this implicit reference is in a LR that received a color
        IsColorUsedArr[LRofImpRef->getColor()] = true;
}


//----------------------------------------------------------------------------
// If there are delay slots for an instruction, the instructions
// added after it must really go after the delayed instruction(s).
// So, we move the InstrAfter of that instruction to the 
// corresponding delayed instruction using the following method.

//----------------------------------------------------------------------------
void PhyRegAlloc::move2DelayedInstr(const MachineInstr *OrigMI,
                                    const MachineInstr *DelayedMI) {

  // "added after" instructions of the original instr
  std::vector<MachineInstr *> &OrigAft = AddedInstrMap[OrigMI].InstrnsAfter;

  // "added instructions" of the delayed instr
  AddedInstrns &DelayAdI = AddedInstrMap[DelayedMI];

  // "added after" instructions of the delayed instr
  std::vector<MachineInstr *> &DelayedAft = DelayAdI.InstrnsAfter;

  // go thru all the "added after instructions" of the original instruction
  // and append them to the "addded after instructions" of the delayed
  // instructions
  DelayedAft.insert(DelayedAft.end(), OrigAft.begin(), OrigAft.end());

  // empty the "added after instructions" of the original instruction
  OrigAft.clear();
}

//----------------------------------------------------------------------------
// This method prints the code with registers after register allocation is
// complete.
//----------------------------------------------------------------------------
void PhyRegAlloc::printMachineCode()
{

  cerr << "\n;************** Function " << Meth->getName()
       << " *****************\n";

  for (Function::const_iterator BBI = Meth->begin(), BBE = Meth->end();
       BBI != BBE; ++BBI) {
    cerr << "\n"; printLabel(BBI); cerr << ": ";

    // get the iterator for machine instructions
    MachineCodeForBasicBlock& MIVec = MachineCodeForBasicBlock::get(BBI);
    MachineCodeForBasicBlock::iterator MII = MIVec.begin();

    // iterate over all the machine instructions in BB
    for ( ; MII != MIVec.end(); ++MII) {  
      MachineInstr *const MInst = *MII; 

      cerr << "\n\t";
      cerr << TargetInstrDescriptors[MInst->getOpCode()].opCodeString;

      for (unsigned OpNum=0; OpNum < MInst->getNumOperands(); ++OpNum) {
	MachineOperand& Op = MInst->getOperand(OpNum);

	if (Op.getOperandType() ==  MachineOperand::MO_VirtualRegister || 
	    Op.getOperandType() ==  MachineOperand::MO_CCRegister /*|| 
	    Op.getOperandType() ==  MachineOperand::MO_PCRelativeDisp*/ ) {

	  const Value *const Val = Op.getVRegValue () ;
	  // ****this code is temporary till NULL Values are fixed
	  if (! Val ) {
	    cerr << "\t<*NULL*>";
	    continue;
	  }

	  // if a label or a constant
	  if (isa<BasicBlock>(Val)) {
	    cerr << "\t"; printLabel(	Op.getVRegValue	() );
	  } else {
	    // else it must be a register value
	    const int RegNum = Op.getAllocatedRegNum();

	    cerr << "\t" << "%" << MRI.getUnifiedRegName( RegNum );
	    if (Val->hasName() )
	      cerr << "(" << Val->getName() << ")";
	    else 
	      cerr << "(" << Val << ")";

	    if (Op.opIsDef() )
	      cerr << "*";

	    const LiveRange *LROfVal = LRI.getLiveRangeForValue(Val);
	    if (LROfVal )
	      if (LROfVal->hasSpillOffset() )
		cerr << "$";
	  }

	} 
	else if (Op.getOperandType() ==  MachineOperand::MO_MachineRegister) {
	  cerr << "\t" << "%" << MRI.getUnifiedRegName(Op.getMachineRegNum());
	}

	else 
	  cerr << "\t" << Op;      // use dump field
      }

    

      unsigned NumOfImpRefs =  MInst->getNumImplicitRefs();
      if (NumOfImpRefs > 0) {
	cerr << "\tImplicit:";

	for (unsigned z=0; z < NumOfImpRefs; z++)
	  cerr << RAV(MInst->getImplicitRef(z)) << "\t";
      }

    } // for all machine instructions

    cerr << "\n";

  } // for all BBs

  cerr << "\n";
}


//----------------------------------------------------------------------------

//----------------------------------------------------------------------------
void PhyRegAlloc::colorIncomingArgs()
{
  const BasicBlock &FirstBB = Meth->front();
  const MachineInstr *FirstMI = MachineCodeForBasicBlock::get(&FirstBB).front();
  assert(FirstMI && "No machine instruction in entry BB");

  MRI.colorMethodArgs(Meth, LRI, &AddedInstrAtEntry);
}


//----------------------------------------------------------------------------
// Used to generate a label for a basic block
//----------------------------------------------------------------------------
void PhyRegAlloc::printLabel(const Value *const Val) {
  if (Val->hasName())
    cerr  << Val->getName();
  else
    cerr << "Label" <<  Val;
}


//----------------------------------------------------------------------------
// This method calls setSugColorUsable method of each live range. This
// will determine whether the suggested color of LR is  really usable.
// A suggested color is not usable when the suggested color is volatile
// AND when there are call interferences
//----------------------------------------------------------------------------

void PhyRegAlloc::markUnusableSugColors()
{
  if (DEBUG_RA ) cerr << "\nmarking unusable suggested colors ...\n";

  // hash map iterator
  LiveRangeMapType::const_iterator HMI = (LRI.getLiveRangeMap())->begin();   
  LiveRangeMapType::const_iterator HMIEnd = (LRI.getLiveRangeMap())->end();   

    for (; HMI != HMIEnd ; ++HMI ) {
      if (HMI->first) { 
	LiveRange *L = HMI->second;      // get the LiveRange
	if (L) { 
	  if (L->hasSuggestedColor()) {
	    int RCID = L->getRegClass()->getID();
	    if (MRI.isRegVolatile( RCID,  L->getSuggestedColor()) &&
		L->isCallInterference() )
	      L->setSuggestedColorUsable( false );
	    else
	      L->setSuggestedColorUsable( true );
	  }
	} // if L->hasSuggestedColor()
      }
    } // for all LR's in hash map
}



//----------------------------------------------------------------------------
// The following method will set the stack offsets of the live ranges that
// are decided to be spillled. This must be called just after coloring the
// LRs using the graph coloring algo. For each live range that is spilled,
// this method allocate a new spill position on the stack.
//----------------------------------------------------------------------------

void PhyRegAlloc::allocateStackSpace4SpilledLRs() {
  if (DEBUG_RA) cerr << "\nsetting LR stack offsets ...\n";

  LiveRangeMapType::const_iterator HMI    = LRI.getLiveRangeMap()->begin();   
  LiveRangeMapType::const_iterator HMIEnd = LRI.getLiveRangeMap()->end();   

  for ( ; HMI != HMIEnd ; ++HMI) {
    if (HMI->first && HMI->second) {
      LiveRange *L = HMI->second;      // get the LiveRange
      if (!L->hasColor())   //  NOTE: ** allocating the size of long Type **
        L->setSpillOffFromFP(mcInfo.allocateSpilledValue(TM, Type::LongTy));
    }
  } // for all LR's in hash map
}



//----------------------------------------------------------------------------
// The entry pont to Register Allocation
//----------------------------------------------------------------------------

void PhyRegAlloc::allocateRegisters()
{

  // make sure that we put all register classes into the RegClassList 
  // before we call constructLiveRanges (now done in the constructor of 
  // PhyRegAlloc class).
  //
  LRI.constructLiveRanges();            // create LR info

  if (DEBUG_RA)
    LRI.printLiveRanges();
  
  createIGNodeListsAndIGs();            // create IGNode list and IGs

  buildInterferenceGraphs();            // build IGs in all reg classes
  
  
  if (DEBUG_RA) {
    // print all LRs in all reg classes
    for ( unsigned rc=0; rc < NumOfRegClasses  ; rc++)  
      RegClassList[rc]->printIGNodeList(); 
    
    // print IGs in all register classes
    for ( unsigned rc=0; rc < NumOfRegClasses ; rc++)  
      RegClassList[rc]->printIG();       
  }
  

  LRI.coalesceLRs();                    // coalesce all live ranges
  

  if (DEBUG_RA) {
    // print all LRs in all reg classes
    for ( unsigned rc=0; rc < NumOfRegClasses  ; rc++)  
      RegClassList[ rc ]->printIGNodeList(); 
    
    // print IGs in all register classes
    for ( unsigned rc=0; rc < NumOfRegClasses ; rc++)  
      RegClassList[ rc ]->printIG();       
  }


  // mark un-usable suggested color before graph coloring algorithm.
  // When this is done, the graph coloring algo will not reserve
  // suggested color unnecessarily - they can be used by another LR
  //
  markUnusableSugColors(); 

  // color all register classes using the graph coloring algo
  for (unsigned rc=0; rc < NumOfRegClasses ; rc++)  
    RegClassList[ rc ]->colorAllRegs();    

  // Atter grpah coloring, if some LRs did not receive a color (i.e, spilled)
  // a poistion for such spilled LRs
  //
  allocateStackSpace4SpilledLRs();

  mcInfo.popAllTempValues(TM);  // TODO **Check

  // color incoming args - if the correct color was not received
  // insert code to copy to the correct register
  //
  colorIncomingArgs();

  // Now update the machine code with register names and add any 
  // additional code inserted by the register allocator to the instruction
  // stream
  //
  updateMachineCode(); 

  if (DEBUG_RA) {
    MachineCodeForMethod::get(Meth).dump();
    printMachineCode();                   // only for DEBUGGING
  }
}