summaryrefslogtreecommitdiff
path: root/lib/Target/SparcV9/SparcV9AsmPrinter.cpp
blob: 6080e99e73f5005975d414bc13e36a24cddfa2dd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
//===-- EmitAssembly.cpp - Emit Sparc Specific .s File ---------------------==//
//
// This file implements all of the stuff neccesary to output a .s file from
// LLVM.  The code in this file assumes that the specified module has already
// been compiled into the internal data structures of the Module.
//
// This code largely consists of two LLVM Pass's: a FunctionPass and a Pass.
// The FunctionPass is pipelined together with all of the rest of the code
// generation stages, and the Pass runs at the end to emit code for global
// variables and such.
//
//===----------------------------------------------------------------------===//

#include "SparcInternals.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionInfo.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Module.h"
#include "llvm/SlotCalculator.h"
#include "llvm/Pass.h"
#include "llvm/Assembly/Writer.h"
#include "Support/StringExtras.h"
using std::string;

namespace {

class GlobalIdTable: public Annotation {
  static AnnotationID AnnotId;
  friend class AsmPrinter;              // give access to AnnotId
  
  typedef hash_map<const Value*, int> ValIdMap;
  typedef ValIdMap::const_iterator ValIdMapConstIterator;
  typedef ValIdMap::      iterator ValIdMapIterator;
public:
  SlotCalculator Table;    // map anonymous values to unique integer IDs
  ValIdMap valToIdMap;     // used for values not handled by SlotCalculator 
  
  GlobalIdTable(Module* M) : Annotation(AnnotId), Table(M, true) {}
};

AnnotationID GlobalIdTable::AnnotId =
  AnnotationManager::getID("ASM PRINTER GLOBAL TABLE ANNOT");
  
//===---------------------------------------------------------------------===//
//   Code Shared By the two printer passes, as a mixin
//===---------------------------------------------------------------------===//

class AsmPrinter {
  GlobalIdTable* idTable;
public:
  std::ostream &toAsm;
  const TargetMachine &Target;
  
  enum Sections {
    Unknown,
    Text,
    ReadOnlyData,
    InitRWData,
    ZeroInitRWData,
  } CurSection;

  AsmPrinter(std::ostream &os, const TargetMachine &T)
    : idTable(0), toAsm(os), Target(T), CurSection(Unknown) {}
  
  // (start|end)(Module|Function) - Callback methods to be invoked by subclasses
  void startModule(Module &M) {
    // Create the global id table if it does not already exist
    idTable = (GlobalIdTable*)M.getAnnotation(GlobalIdTable::AnnotId);
    if (idTable == NULL) {
      idTable = new GlobalIdTable(&M);
      M.addAnnotation(idTable);
    }
  }
  void startFunction(Function &F) {
    // Make sure the slot table has information about this function...
    idTable->Table.incorporateFunction(&F);
  }
  void endFunction(Function &) {
    idTable->Table.purgeFunction();  // Forget all about F
  }
  void endModule() {
  }

  // Check if a value is external or accessible from external code.
  bool isExternal(const Value* V) {
    const GlobalValue *GV = dyn_cast<GlobalValue>(V);
    return GV && GV->hasExternalLinkage();
  }
  
  // enterSection - Use this method to enter a different section of the output
  // executable.  This is used to only output neccesary section transitions.
  //
  void enterSection(enum Sections S) {
    if (S == CurSection) return;        // Only switch section if neccesary
    CurSection = S;

    toAsm << "\n\t.section ";
    switch (S)
      {
      default: assert(0 && "Bad section name!");
      case Text:         toAsm << "\".text\""; break;
      case ReadOnlyData: toAsm << "\".rodata\",#alloc"; break;
      case InitRWData:   toAsm << "\".data\",#alloc,#write"; break;
      case ZeroInitRWData: toAsm << "\".bss\",#alloc,#write"; break;
      }
    toAsm << "\n";
  }

  static string getValidSymbolName(const string &S) {
    string Result;
    
    // Symbol names in Sparc assembly language have these rules:
    // (a) Must match { letter | _ | . | $ } { letter | _ | . | $ | digit }*
    // (b) A name beginning in "." is treated as a local name.
    // 
    if (isdigit(S[0]))
      Result = "ll";
    
    for (unsigned i = 0; i < S.size(); ++i)
      {
        char C = S[i];
        if (C == '_' || C == '.' || C == '$' || isalpha(C) || isdigit(C))
          Result += C;
        else
          {
            Result += '_';
            Result += char('0' + ((unsigned char)C >> 4));
            Result += char('0' + (C & 0xF));
          }
      }
    return Result;
  }

  // getID - Return a valid identifier for the specified value.  Base it on
  // the name of the identifier if possible (qualified by the type), and
  // use a numbered value based on prefix otherwise.
  // FPrefix is always prepended to the output identifier.
  //
  string getID(const Value *V, const char *Prefix, const char *FPrefix = 0) {
    string Result = FPrefix ? FPrefix : "";  // "Forced prefix"

    Result +=  V->hasName() ? V->getName() : string(Prefix);

    // Qualify all internal names with a unique id.
    if (!isExternal(V)) {
      int valId = idTable->Table.getValSlot(V);
      if (valId == -1) {
        GlobalIdTable::ValIdMapConstIterator I = idTable->valToIdMap.find(V);
        if (I == idTable->valToIdMap.end())
          valId = idTable->valToIdMap[V] = idTable->valToIdMap.size();
        else
          valId = I->second;
      }
      Result = Result + "_" + itostr(valId);

      // Replace or prefix problem characters in the name
      Result = getValidSymbolName(Result);
    }

    return Result;
  }
  
  // getID Wrappers - Ensure consistent usage...
  string getID(const Function *F) {
    return getID(F, "LLVMFunction_");
  }
  string getID(const BasicBlock *BB) {
    return getID(BB, "LL", (".L_"+getID(BB->getParent())+"_").c_str());
  }
  string getID(const GlobalVariable *GV) {
    return getID(GV, "LLVMGlobal_");
  }
  string getID(const Constant *CV) {
    return getID(CV, "LLVMConst_", ".C_");
  }
  string getID(const GlobalValue *GV) {
    if (const GlobalVariable *V = dyn_cast<GlobalVariable>(GV))
      return getID(V);
    else if (const Function *F = dyn_cast<Function>(GV))
      return getID(F);
    assert(0 && "Unexpected type of GlobalValue!");
    return "";
  }

  // ConstantExprToString() - Convert a ConstantExpr to an asm expression
  // and return this as a string.
  string ConstantExprToString(const ConstantExpr* CE,
                              const TargetMachine& target) {
    string S;
    switch(CE->getOpcode()) {
    case Instruction::GetElementPtr:
      { // generate a symbolic expression for the byte address
        const Value* ptrVal = CE->getOperand(0);
        std::vector<Value*> idxVec(CE->op_begin()+1, CE->op_end());
	const TargetData &TD = target.getTargetData();
        S += "(" + valToExprString(ptrVal, target) + ") + ("
          + utostr(TD.getIndexedOffset(ptrVal->getType(),idxVec)) + ")";
        break;
      }

    case Instruction::Cast:
      // Support only non-converting casts for now, i.e., a no-op.
      // This assertion is not a complete check.
      assert(target.getTargetData().getTypeSize(CE->getType()) ==
             target.getTargetData().getTypeSize(CE->getOperand(0)->getType()));
      S += "(" + valToExprString(CE->getOperand(0), target) + ")";
      break;

    case Instruction::Add:
      S += "(" + valToExprString(CE->getOperand(0), target) + ") + ("
               + valToExprString(CE->getOperand(1), target) + ")";
      break;

    default:
      assert(0 && "Unsupported operator in ConstantExprToString()");
      break;
    }

    return S;
  }

  // valToExprString - Helper function for ConstantExprToString().
  // Appends result to argument string S.
  // 
  string valToExprString(const Value* V, const TargetMachine& target) {
    string S;
    bool failed = false;
    if (const Constant* CV = dyn_cast<Constant>(V)) { // symbolic or known

      if (const ConstantBool *CB = dyn_cast<ConstantBool>(CV))
        S += string(CB == ConstantBool::True ? "1" : "0");
      else if (const ConstantSInt *CI = dyn_cast<ConstantSInt>(CV))
        S += itostr(CI->getValue());
      else if (const ConstantUInt *CI = dyn_cast<ConstantUInt>(CV))
        S += utostr(CI->getValue());
      else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
        S += ftostr(CFP->getValue());
      else if (isa<ConstantPointerNull>(CV))
        S += "0";
      else if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(CV))
        S += valToExprString(CPR->getValue(), target);
      else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV))
        S += ConstantExprToString(CE, target);
      else
        failed = true;

    } else if (const GlobalValue* GV = dyn_cast<GlobalValue>(V)) {
      S += getID(GV);
    }
    else
      failed = true;

    if (failed) {
      assert(0 && "Cannot convert value to string");
      S += "<illegal-value>";
    }
    return S;
  }

};



//===----------------------------------------------------------------------===//
//   SparcFunctionAsmPrinter Code
//===----------------------------------------------------------------------===//

struct SparcFunctionAsmPrinter : public FunctionPass, public AsmPrinter {
  inline SparcFunctionAsmPrinter(std::ostream &os, const TargetMachine &t)
    : AsmPrinter(os, t) {}

  const char *getPassName() const {
    return "Output Sparc Assembly for Functions";
  }

  virtual bool doInitialization(Module &M) {
    startModule(M);
    return false;
  }

  virtual bool runOnFunction(Function &F) {
    startFunction(F);
    emitFunction(F);
    endFunction(F);
    return false;
  }

  virtual bool doFinalization(Module &M) {
    endModule();
    return false;
  }

  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
    AU.setPreservesAll();
  }

  void emitFunction(const Function &F);
private :
  void emitBasicBlock(const MachineBasicBlock &MBB);
  void emitMachineInst(const MachineInstr *MI);
  
  unsigned int printOperands(const MachineInstr *MI, unsigned int opNum);
  void printOneOperand(const MachineOperand &Op, MachineOpCode opCode);

  bool OpIsBranchTargetLabel(const MachineInstr *MI, unsigned int opNum);
  bool OpIsMemoryAddressBase(const MachineInstr *MI, unsigned int opNum);
  
  unsigned getOperandMask(unsigned Opcode) {
    switch (Opcode) {
    case V9::SUBccr:
    case V9::SUBcci:   return 1 << 3;  // Remove CC argument
  //case BA:      return 1 << 0;  // Remove Arg #0, which is always null or xcc
    default:      return 0;       // By default, don't hack operands...
    }
  }
};

inline bool
SparcFunctionAsmPrinter::OpIsBranchTargetLabel(const MachineInstr *MI,
                                               unsigned int opNum) {
  switch (MI->getOpCode()) {
  case V9::JMPLCALLr:
  case V9::JMPLCALLi:
  case V9::JMPLRETr:
  case V9::JMPLRETi:
    return (opNum == 0);
  default:
    return false;
  }
}


inline bool
SparcFunctionAsmPrinter::OpIsMemoryAddressBase(const MachineInstr *MI,
                                               unsigned int opNum) {
  if (Target.getInstrInfo().isLoad(MI->getOpCode()))
    return (opNum == 0);
  else if (Target.getInstrInfo().isStore(MI->getOpCode()))
    return (opNum == 1);
  else
    return false;
}


#define PrintOp1PlusOp2(mop1, mop2, opCode) \
  printOneOperand(mop1, opCode); \
  toAsm << "+"; \
  printOneOperand(mop2, opCode);

unsigned int
SparcFunctionAsmPrinter::printOperands(const MachineInstr *MI,
                               unsigned int opNum)
{
  const MachineOperand& mop = MI->getOperand(opNum);
  
  if (OpIsBranchTargetLabel(MI, opNum))
    {
      PrintOp1PlusOp2(mop, MI->getOperand(opNum+1), MI->getOpCode());
      return 2;
    }
  else if (OpIsMemoryAddressBase(MI, opNum))
    {
      toAsm << "[";
      PrintOp1PlusOp2(mop, MI->getOperand(opNum+1), MI->getOpCode());
      toAsm << "]";
      return 2;
    }
  else
    {
      printOneOperand(mop, MI->getOpCode());
      return 1;
    }
}

void
SparcFunctionAsmPrinter::printOneOperand(const MachineOperand &mop,
                                         MachineOpCode opCode)
{
  bool needBitsFlag = true;
  
  if (mop.opHiBits32())
    toAsm << "%lm(";
  else if (mop.opLoBits32())
    toAsm << "%lo(";
  else if (mop.opHiBits64())
    toAsm << "%hh(";
  else if (mop.opLoBits64())
    toAsm << "%hm(";
  else
    needBitsFlag = false;
  
  switch (mop.getType())
    {
    case MachineOperand::MO_VirtualRegister:
    case MachineOperand::MO_CCRegister:
    case MachineOperand::MO_MachineRegister:
      {
        int regNum = (int)mop.getAllocatedRegNum();
        
        if (regNum == Target.getRegInfo().getInvalidRegNum()) {
          // better to print code with NULL registers than to die
          toAsm << "<NULL VALUE>";
        } else {
          toAsm << "%" << Target.getRegInfo().getUnifiedRegName(regNum);
        }
        break;
      }
    
    case MachineOperand::MO_PCRelativeDisp:
      {
        const Value *Val = mop.getVRegValue();
        assert(Val && "\tNULL Value in SparcFunctionAsmPrinter");
        
        if (const BasicBlock *BB = dyn_cast<const BasicBlock>(Val))
          toAsm << getID(BB);
        else if (const Function *M = dyn_cast<Function>(Val))
          toAsm << getID(M);
        else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Val))
          toAsm << getID(GV);
        else if (const Constant *CV = dyn_cast<Constant>(Val))
          toAsm << getID(CV);
        else
          assert(0 && "Unrecognized value in SparcFunctionAsmPrinter");
        break;
      }
    
    case MachineOperand::MO_SignExtendedImmed:
      toAsm << mop.getImmedValue();
      break;

    case MachineOperand::MO_UnextendedImmed:
      toAsm << (uint64_t) mop.getImmedValue();
      break;
    
    default:
      toAsm << mop;      // use dump field
      break;
    }
  
  if (needBitsFlag)
    toAsm << ")";
}


void
SparcFunctionAsmPrinter::emitMachineInst(const MachineInstr *MI)
{
  unsigned Opcode = MI->getOpCode();

  if (Target.getInstrInfo().isDummyPhiInstr(Opcode))
    return;  // IGNORE PHI NODES

  toAsm << "\t" << Target.getInstrInfo().getName(Opcode) << "\t";

  unsigned Mask = getOperandMask(Opcode);
  
  bool NeedComma = false;
  unsigned N = 1;
  for (unsigned OpNum = 0; OpNum < MI->getNumOperands(); OpNum += N)
    if (! ((1 << OpNum) & Mask)) {        // Ignore this operand?
      if (NeedComma) toAsm << ", ";         // Handle comma outputing
      NeedComma = true;
      N = printOperands(MI, OpNum);
    } else
      N = 1;
  
  toAsm << "\n";
}

void
SparcFunctionAsmPrinter::emitBasicBlock(const MachineBasicBlock &MBB)
{
  // Emit a label for the basic block
  toAsm << getID(MBB.getBasicBlock()) << ":\n";

  // Loop over all of the instructions in the basic block...
  for (MachineBasicBlock::const_iterator MII = MBB.begin(), MIE = MBB.end();
       MII != MIE; ++MII)
    emitMachineInst(*MII);
  toAsm << "\n";  // Separate BB's with newlines
}

void
SparcFunctionAsmPrinter::emitFunction(const Function &F)
{
  string methName = getID(&F);
  toAsm << "!****** Outputing Function: " << methName << " ******\n";
  enterSection(AsmPrinter::Text);
  toAsm << "\t.align\t4\n\t.global\t" << methName << "\n";
  //toAsm << "\t.type\t" << methName << ",#function\n";
  toAsm << "\t.type\t" << methName << ", 2\n";
  toAsm << methName << ":\n";

  // Output code for all of the basic blocks in the function...
  MachineFunction &MF = MachineFunction::get(&F);
  for (MachineFunction::const_iterator I = MF.begin(), E = MF.end(); I != E;++I)
    emitBasicBlock(*I);

  // Output a .size directive so the debugger knows the extents of the function
  toAsm << ".EndOf_" << methName << ":\n\t.size "
           << methName << ", .EndOf_"
           << methName << "-" << methName << "\n";

  // Put some spaces between the functions
  toAsm << "\n\n";
}

}  // End anonymous namespace

Pass *UltraSparc::getFunctionAsmPrinterPass(std::ostream &Out) {
  return new SparcFunctionAsmPrinter(Out, *this);
}





//===----------------------------------------------------------------------===//
//   SparcFunctionAsmPrinter Code
//===----------------------------------------------------------------------===//

namespace {

class SparcModuleAsmPrinter : public Pass, public AsmPrinter {
public:
  SparcModuleAsmPrinter(std::ostream &os, TargetMachine &t)
    : AsmPrinter(os, t) {}

  const char *getPassName() const { return "Output Sparc Assembly for Module"; }

  virtual bool run(Module &M) {
    startModule(M);
    emitGlobalsAndConstants(M);
    endModule();
    return false;
  }

  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
    AU.setPreservesAll();
  }

private:
  void emitGlobalsAndConstants  (const Module &M);

  void printGlobalVariable      (const GlobalVariable *GV);
  void PrintZeroBytesToPad      (int numBytes);
  void printSingleConstantValue (const Constant* CV);
  void printConstantValueOnly   (const Constant* CV, int numPadBytesAfter = 0);
  void printConstant            (const Constant* CV, string valID = "");

  static void FoldConstants     (const Module &M,
                                 hash_set<const Constant*> &moduleConstants);
};


// Can we treat the specified array as a string?  Only if it is an array of
// ubytes or non-negative sbytes.
//
static bool isStringCompatible(const ConstantArray *CVA) {
  const Type *ETy = cast<ArrayType>(CVA->getType())->getElementType();
  if (ETy == Type::UByteTy) return true;
  if (ETy != Type::SByteTy) return false;

  for (unsigned i = 0; i < CVA->getNumOperands(); ++i)
    if (cast<ConstantSInt>(CVA->getOperand(i))->getValue() < 0)
      return false;

  return true;
}

// toOctal - Convert the low order bits of X into an octal letter
static inline char toOctal(int X) {
  return (X&7)+'0';
}

// getAsCString - Return the specified array as a C compatible string, only if
// the predicate isStringCompatible is true.
//
static string getAsCString(const ConstantArray *CVA) {
  assert(isStringCompatible(CVA) && "Array is not string compatible!");

  string Result;
  const Type *ETy = cast<ArrayType>(CVA->getType())->getElementType();
  Result = "\"";
  for (unsigned i = 0; i < CVA->getNumOperands(); ++i) {
    unsigned char C = (ETy == Type::SByteTy) ?
      (unsigned char)cast<ConstantSInt>(CVA->getOperand(i))->getValue() :
      (unsigned char)cast<ConstantUInt>(CVA->getOperand(i))->getValue();

    if (C == '"') {
      Result += "\\\"";
    } else if (C == '\\') {
      Result += "\\\\";
    } else if (isprint(C)) {
      Result += C;
    } else {
      switch(C) {
      case '\a': Result += "\\a"; break;
      case '\b': Result += "\\b"; break;
      case '\f': Result += "\\f"; break;
      case '\n': Result += "\\n"; break;
      case '\r': Result += "\\r"; break;
      case '\t': Result += "\\t"; break;
      case '\v': Result += "\\v"; break;
      default:
        Result += '\\';
        Result += toOctal(C >> 6);
        Result += toOctal(C >> 3);
        Result += toOctal(C >> 0);
        break;
      }
    }
  }
  Result += "\"";

  return Result;
}

inline bool
ArrayTypeIsString(const ArrayType* arrayType)
{
  return (arrayType->getElementType() == Type::UByteTy ||
          arrayType->getElementType() == Type::SByteTy);
}


inline const string
TypeToDataDirective(const Type* type)
{
  switch(type->getPrimitiveID())
    {
    case Type::BoolTyID: case Type::UByteTyID: case Type::SByteTyID:
      return ".byte";
    case Type::UShortTyID: case Type::ShortTyID:
      return ".half";
    case Type::UIntTyID: case Type::IntTyID:
      return ".word";
    case Type::ULongTyID: case Type::LongTyID: case Type::PointerTyID:
      return ".xword";
    case Type::FloatTyID:
      return ".word";
    case Type::DoubleTyID:
      return ".xword";
    case Type::ArrayTyID:
      if (ArrayTypeIsString((ArrayType*) type))
        return ".ascii";
      else
        return "<InvaliDataTypeForPrinting>";
    default:
      return "<InvaliDataTypeForPrinting>";
    }
}

// Get the size of the type
// 
inline unsigned int
TypeToSize(const Type* type, const TargetMachine& target)
{
  return target.findOptimalStorageSize(type);
}

// Get the size of the constant for the given target.
// If this is an unsized array, return 0.
// 
inline unsigned int
ConstantToSize(const Constant* CV, const TargetMachine& target)
{
  if (const ConstantArray* CVA = dyn_cast<ConstantArray>(CV))
    {
      const ArrayType *aty = cast<ArrayType>(CVA->getType());
      if (ArrayTypeIsString(aty))
        return 1 + CVA->getNumOperands();
    }
  
  return TypeToSize(CV->getType(), target);
}

// Align data larger than one L1 cache line on L1 cache line boundaries.
// Align all smaller data on the next higher 2^x boundary (4, 8, ...).
// 
inline unsigned int
SizeToAlignment(unsigned int size, const TargetMachine& target)
{
  unsigned short cacheLineSize = target.getCacheInfo().getCacheLineSize(1); 
  if (size > (unsigned) cacheLineSize / 2)
    return cacheLineSize;
  else
    for (unsigned sz=1; /*no condition*/; sz *= 2)
      if (sz >= size)
        return sz;
}

// Get the size of the type and then use SizeToAlignment.
// 
inline unsigned int
TypeToAlignment(const Type* type, const TargetMachine& target)
{
  return SizeToAlignment(TypeToSize(type, target), target);
}

// Get the size of the constant and then use SizeToAlignment.
// Handles strings as a special case;
inline unsigned int
ConstantToAlignment(const Constant* CV, const TargetMachine& target)
{
  if (const ConstantArray* CVA = dyn_cast<ConstantArray>(CV))
    if (ArrayTypeIsString(cast<ArrayType>(CVA->getType())))
      return SizeToAlignment(1 + CVA->getNumOperands(), target);
  
  return TypeToAlignment(CV->getType(), target);
}


// Print a single constant value.
void
SparcModuleAsmPrinter::printSingleConstantValue(const Constant* CV)
{
  assert(CV->getType() != Type::VoidTy &&
         CV->getType() != Type::TypeTy &&
         CV->getType() != Type::LabelTy &&
         "Unexpected type for Constant");
  
  assert((!isa<ConstantArray>(CV) && ! isa<ConstantStruct>(CV))
         && "Aggregate types should be handled outside this function");
  
  toAsm << "\t" << TypeToDataDirective(CV->getType()) << "\t";
  
  if (CV->getType()->isPrimitiveType())
    {
      if (CV->getType()->isFloatingPoint()) {
        // FP Constants are printed as integer constants to avoid losing
        // precision...
        double Val = cast<ConstantFP>(CV)->getValue();
        if (CV->getType() == Type::FloatTy) {
          float FVal = (float)Val;
          char *ProxyPtr = (char*)&FVal;        // Abide by C TBAA rules
          toAsm << *(unsigned int*)ProxyPtr;            
        } else if (CV->getType() == Type::DoubleTy) {
          char *ProxyPtr = (char*)&Val;         // Abide by C TBAA rules
          toAsm << *(uint64_t*)ProxyPtr;            
        } else {
          assert(0 && "Unknown floating point type!");
        }
        
        toAsm << "\t! " << CV->getType()->getDescription()
              << " value: " << Val << "\n";
      } else {
        WriteAsOperand(toAsm, CV, false, false) << "\n";
      }
    }
  else if (const ConstantPointerRef* CPR = dyn_cast<ConstantPointerRef>(CV))
    { // This is a constant address for a global variable or method.
      // Use the name of the variable or method as the address value.
      toAsm << getID(CPR->getValue()) << "\n";
    }
  else if (isa<ConstantPointerNull>(CV))
    { // Null pointer value
      toAsm << "0\n";
    }
  else if (const ConstantExpr* CE = dyn_cast<ConstantExpr>(CV))
    { // Constant expression built from operators, constants, and symbolic addrs
      toAsm << ConstantExprToString(CE, Target) << "\n";
    }
  else
    {
      assert(0 && "Unknown elementary type for constant");
    }
}

void
SparcModuleAsmPrinter::PrintZeroBytesToPad(int numBytes)
{
  for ( ; numBytes >= 8; numBytes -= 8)
    printSingleConstantValue(Constant::getNullValue(Type::ULongTy));

  if (numBytes >= 4)
    {
      printSingleConstantValue(Constant::getNullValue(Type::UIntTy));
      numBytes -= 4;
    }

  while (numBytes--)
    printSingleConstantValue(Constant::getNullValue(Type::UByteTy));
}

// Print a constant value or values (it may be an aggregate).
// Uses printSingleConstantValue() to print each individual value.
void
SparcModuleAsmPrinter::printConstantValueOnly(const Constant* CV,
                                              int numPadBytesAfter /* = 0*/)
{
  const ConstantArray *CVA = dyn_cast<ConstantArray>(CV);

  if (CVA && isStringCompatible(CVA))
    { // print the string alone and return
      toAsm << "\t" << ".ascii" << "\t" << getAsCString(CVA) << "\n";
    }
  else if (CVA)
    { // Not a string.  Print the values in successive locations
      const std::vector<Use> &constValues = CVA->getValues();
      for (unsigned i=0; i < constValues.size(); i++)
        printConstantValueOnly(cast<Constant>(constValues[i].get()));
    }
  else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
    { // Print the fields in successive locations. Pad to align if needed!
      const StructLayout *cvsLayout =
        Target.getTargetData().getStructLayout(CVS->getType());
      const std::vector<Use>& constValues = CVS->getValues();
      unsigned sizeSoFar = 0;
      for (unsigned i=0, N = constValues.size(); i < N; i++)
        {
          const Constant* field = cast<Constant>(constValues[i].get());

          // Check if padding is needed and insert one or more 0s.
          unsigned fieldSize =
	    Target.getTargetData().getTypeSize(field->getType());
          int padSize = ((i == N-1? cvsLayout->StructSize
                                  : cvsLayout->MemberOffsets[i+1])
                         - cvsLayout->MemberOffsets[i]) - fieldSize;
          sizeSoFar += (fieldSize + padSize);

          // Now print the actual field value
          printConstantValueOnly(field, padSize);
        }
      assert(sizeSoFar == cvsLayout->StructSize &&
             "Layout of constant struct may be incorrect!");
    }
  else
    printSingleConstantValue(CV);

  if (numPadBytesAfter)
    PrintZeroBytesToPad(numPadBytesAfter);
}

// Print a constant (which may be an aggregate) prefixed by all the
// appropriate directives.  Uses printConstantValueOnly() to print the
// value or values.
void
SparcModuleAsmPrinter::printConstant(const Constant* CV, string valID)
{
  if (valID.length() == 0)
    valID = getID(CV);
  
  toAsm << "\t.align\t" << ConstantToAlignment(CV, Target) << "\n";
  
  // Print .size and .type only if it is not a string.
  const ConstantArray *CVA = dyn_cast<ConstantArray>(CV);
  if (CVA && isStringCompatible(CVA))
    { // print it as a string and return
      toAsm << valID << ":\n";
      toAsm << "\t" << ".ascii" << "\t" << getAsCString(CVA) << "\n";
      return;
    }
  
  toAsm << "\t.type" << "\t" << valID << ",#object\n";

  unsigned int constSize = ConstantToSize(CV, Target);
  if (constSize)
    toAsm << "\t.size" << "\t" << valID << "," << constSize << "\n";
  
  toAsm << valID << ":\n";
  
  printConstantValueOnly(CV);
}


void SparcModuleAsmPrinter::FoldConstants(const Module &M,
                                          hash_set<const Constant*> &MC) {
  for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I)
    if (!I->isExternal()) {
      const hash_set<const Constant*> &pool =
        MachineFunction::get(I).getInfo()->getConstantPoolValues();
      MC.insert(pool.begin(), pool.end());
    }
}

void SparcModuleAsmPrinter::printGlobalVariable(const GlobalVariable* GV)
{
  if (GV->hasExternalLinkage())
    toAsm << "\t.global\t" << getID(GV) << "\n";
  
  if (GV->hasInitializer() && ! GV->getInitializer()->isNullValue())
    printConstant(GV->getInitializer(), getID(GV));
  else {
    toAsm << "\t.align\t" << TypeToAlignment(GV->getType()->getElementType(),
                                                Target) << "\n";
    toAsm << "\t.type\t" << getID(GV) << ",#object\n";
    toAsm << "\t.reserve\t" << getID(GV) << ","
          << TypeToSize(GV->getType()->getElementType(), Target)
          << "\n";
  }
}


void SparcModuleAsmPrinter::emitGlobalsAndConstants(const Module &M) {
  // First, get the constants there were marked by the code generator for
  // inclusion in the assembly code data area and fold them all into a
  // single constant pool since there may be lots of duplicates.  Also,
  // lets force these constants into the slot table so that we can get
  // unique names for unnamed constants also.
  // 
  hash_set<const Constant*> moduleConstants;
  FoldConstants(M, moduleConstants);
    
  // Output constants spilled to memory
  enterSection(AsmPrinter::ReadOnlyData);
  for (hash_set<const Constant*>::const_iterator I = moduleConstants.begin(),
         E = moduleConstants.end();  I != E; ++I)
    printConstant(*I);

  // Output global variables...
  for (Module::const_giterator GI = M.gbegin(), GE = M.gend(); GI != GE; ++GI)
    if (! GI->isExternal()) {
      assert(GI->hasInitializer());
      if (GI->isConstant())
        enterSection(AsmPrinter::ReadOnlyData);   // read-only, initialized data
      else if (GI->getInitializer()->isNullValue())
        enterSection(AsmPrinter::ZeroInitRWData); // read-write zero data
      else
        enterSection(AsmPrinter::InitRWData);     // read-write non-zero data

      printGlobalVariable(GI);
    }

  toAsm << "\n";
}

}  // End anonymous namespace

Pass *UltraSparc::getModuleAsmPrinterPass(std::ostream &Out) {
  return new SparcModuleAsmPrinter(Out, *this);
}