summaryrefslogtreecommitdiff
path: root/lib/Target/SparcV9/SparcV9CodeEmitter.cpp
blob: e870a15e86accddf8c9ce77abe5fb45bc634e9e2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
//===-- SparcV9CodeEmitter.cpp --------------------------------------------===//
// 
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
// 
//===----------------------------------------------------------------------===//
//
// SPARC-specific backend for emitting machine code to memory.
//
// This module also contains the code for lazily resolving the targets
// of call instructions, including the callback used to redirect calls
// to functions for which the code has not yet been generated into the
// JIT compiler.
//
// This file #includes SparcV9CodeEmitter.inc, which contains the code
// for getBinaryCodeForInstr(), a method that converts a MachineInstr
// into the corresponding binary machine code word.
//
//===----------------------------------------------------------------------===//

#include "llvm/Constants.h"
#include "llvm/Function.h"
#include "llvm/GlobalVariable.h"
#include "llvm/PassManager.h"
#include "llvm/CodeGen/MachineCodeEmitter.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetData.h"
#include "Support/Debug.h"
#include "Support/hash_set"
#include "Support/Statistic.h"
#include "SparcV9Internals.h"
#include "SparcV9TargetMachine.h"
#include "SparcV9RegInfo.h"
#include "SparcV9CodeEmitter.h"
#include "MachineFunctionInfo.h"
#include "Config/alloca.h"

namespace llvm {

namespace {
  Statistic<> OverwrittenCalls("call-ovwr", "Number of over-written calls");
  Statistic<> UnmodifiedCalls("call-skip", "Number of unmodified calls");
  Statistic<> CallbackCalls("callback", "Number CompilationCallback() calls");
}

bool SparcV9TargetMachine::addPassesToEmitMachineCode(FunctionPassManager &PM,
                                                      MachineCodeEmitter &MCE) {
  PM.add(new SparcV9CodeEmitter(*this, MCE));
  PM.add(createSparcV9MachineCodeDestructionPass());
  return false;
}

namespace {
  class JITResolver {
    SparcV9CodeEmitter &SparcV9;
    MachineCodeEmitter &MCE;

    /// LazyCodeGenMap - Keep track of call sites for functions that are to be
    /// lazily resolved.
    ///
    std::map<uint64_t, Function*> LazyCodeGenMap;

    /// LazyResolverMap - Keep track of the lazy resolver created for a
    /// particular function so that we can reuse them if necessary.
    ///
    std::map<Function*, uint64_t> LazyResolverMap;

  public:
    enum CallType { ShortCall, FarCall };

  private:
    /// We need to keep track of whether we used a simple call or a far call
    /// (many instructions) in sequence. This means we need to keep track of
    /// what type of stub we generate.
    static std::map<uint64_t, CallType> LazyCallFlavor;

  public:
    JITResolver(SparcV9CodeEmitter &V9,
                MachineCodeEmitter &mce) : SparcV9(V9), MCE(mce) {}
    uint64_t getLazyResolver(Function *F);
    uint64_t addFunctionReference(uint64_t Address, Function *F);
    void deleteFunctionReference(uint64_t Address);
    void addCallFlavor(uint64_t Address, CallType Flavor) {
      LazyCallFlavor[Address] = Flavor;
    }

    // Utility functions for accessing data from static callback
    uint64_t getCurrentPCValue() {
      return MCE.getCurrentPCValue();
    }
    unsigned getBinaryCodeForInstr(MachineInstr &MI) {
      return SparcV9.getBinaryCodeForInstr(MI);
    }

    inline void insertFarJumpAtAddr(int64_t Value, uint64_t Addr);
    void insertJumpAtAddr(int64_t Value, uint64_t &Addr);

  private:
    uint64_t emitStubForFunction(Function *F);
    static void SaveRegisters(uint64_t DoubleFP[], uint64_t CC[],
                              uint64_t Globals[]);
    static void RestoreRegisters(uint64_t DoubleFP[], uint64_t CC[],
                                 uint64_t Globals[]);
    static void CompilationCallback();
    uint64_t resolveFunctionReference(uint64_t RetAddr);

  };

  JITResolver *TheJITResolver;
  std::map<uint64_t, JITResolver::CallType> JITResolver::LazyCallFlavor;
}

/// addFunctionReference - This method is called when we need to emit the
/// address of a function that has not yet been emitted, so we don't know the
/// address.  Instead, we emit a call to the CompilationCallback method, and
/// keep track of where we are.
///
uint64_t JITResolver::addFunctionReference(uint64_t Address, Function *F) {
  LazyCodeGenMap[Address] = F;
  return (intptr_t)&JITResolver::CompilationCallback;
}

/// deleteFunctionReference - If we are emitting a far call, we already added a
/// reference to the function, but it is now incorrect, since the address to the
/// JIT resolver is too far away to be a simple call instruction. This is used
/// to remove the address from the map.
///
void JITResolver::deleteFunctionReference(uint64_t Address) {
  std::map<uint64_t, Function*>::iterator I = LazyCodeGenMap.find(Address);
  assert(I != LazyCodeGenMap.end() && "Not in map!");
  LazyCodeGenMap.erase(I);  
}

uint64_t JITResolver::resolveFunctionReference(uint64_t RetAddr) {
  std::map<uint64_t, Function*>::iterator I = LazyCodeGenMap.find(RetAddr);
  assert(I != LazyCodeGenMap.end() && "Not in map!");
  Function *F = I->second;
  LazyCodeGenMap.erase(I);
  return MCE.forceCompilationOf(F);
}

uint64_t JITResolver::getLazyResolver(Function *F) {
  std::map<Function*, uint64_t>::iterator I = LazyResolverMap.lower_bound(F);
  if (I != LazyResolverMap.end() && I->first == F) return I->second;
  
  uint64_t Stub = emitStubForFunction(F);
  LazyResolverMap.insert(I, std::make_pair(F, Stub));
  return Stub;
}

void JITResolver::insertJumpAtAddr(int64_t JumpTarget, uint64_t &Addr) {
  DEBUG(std::cerr << "Emitting a jump to 0x" << std::hex << JumpTarget << "\n");

  // If the target function is close enough to fit into the 19bit disp of
  // BA, we should use this version, as it's much cheaper to generate.
  int64_t BranchTarget = (JumpTarget-Addr) >> 2;
  if (BranchTarget >= (1 << 19) || BranchTarget <= -(1 << 19)) {
    TheJITResolver->insertFarJumpAtAddr(JumpTarget, Addr);
  } else {
    // ba <target>
    MachineInstr *I = BuildMI(V9::BA, 1).addSImm(BranchTarget);
    *((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*I);
    Addr += 4;
    delete I;

    // nop
    I = BuildMI(V9::NOP, 0);
    *((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*I);
    delete I;
  }
}

void JITResolver::insertFarJumpAtAddr(int64_t Target, uint64_t Addr) {
  static const unsigned 
    o6 = SparcV9IntRegClass::o6, g0 = SparcV9IntRegClass::g0,
    g1 = SparcV9IntRegClass::g1, g5 = SparcV9IntRegClass::g5;

  MachineInstr* BinaryCode[] = {
    //
    // Get address to branch into %g1, using %g5 as a temporary
    //
    // sethi %uhi(Target), %g5     ;; get upper 22 bits of Target into %g5
    BuildMI(V9::SETHI, 2).addSImm(Target >> 42).addReg(g5),
    // or %g5, %ulo(Target), %g5   ;; get 10 lower bits of upper word into %g5
    BuildMI(V9::ORi, 3).addReg(g5).addSImm((Target >> 32) & 0x03ff).addReg(g5),
    // sllx %g5, 32, %g5           ;; shift those 10 bits to the upper word
    BuildMI(V9::SLLXi6, 3).addReg(g5).addSImm(32).addReg(g5),
    // sethi %hi(Target), %g1      ;; extract bits 10-31 into the dest reg
    BuildMI(V9::SETHI, 2).addSImm((Target >> 10) & 0x03fffff).addReg(g1),
    // or %g5, %g1, %g1            ;; get upper word (in %g5) into %g1
    BuildMI(V9::ORr, 3).addReg(g5).addReg(g1).addReg(g1),
    // or %g1, %lo(Target), %g1    ;; get lowest 10 bits of Target into %g1
    BuildMI(V9::ORi, 3).addReg(g1).addSImm(Target & 0x03ff).addReg(g1),
    // jmpl %g1, %g0, %g0          ;; indirect branch on %g1
    BuildMI(V9::JMPLRETr, 3).addReg(g1).addReg(g0).addReg(g0),
    // nop                         ;; delay slot
    BuildMI(V9::NOP, 0)
  };

  for (unsigned i=0, e=sizeof(BinaryCode)/sizeof(BinaryCode[0]); i!=e; ++i) {
    *((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*BinaryCode[i]);
    delete BinaryCode[i];
    Addr += 4;
  }
}

void JITResolver::SaveRegisters(uint64_t DoubleFP[], uint64_t CC[], 
                                uint64_t Globals[]) {
#if defined(sparc) || defined(__sparc__) || defined(__sparcv9)

  __asm__ __volatile__ (// Save condition-code registers
                        "stx %%fsr, %0;\n\t" 
                        "rd %%fprs, %1;\n\t" 
                        "rd %%ccr,  %2;\n\t"
                        : "=m"(CC[0]), "=r"(CC[1]), "=r"(CC[2]));

  __asm__ __volatile__ (// Save globals g1 and g5
                        "stx %%g1, %0;\n\t"
                        "stx %%g5, %0;\n\t"
                        : "=m"(Globals[0]), "=m"(Globals[1]));

  // GCC says: `asm' only allows up to thirty parameters!
  __asm__ __volatile__ (// Save Single/Double FP registers, part 1
                        "std  %%f0,  %0;\n\t"  "std  %%f2,  %1;\n\t"
                        "std  %%f4,  %2;\n\t"  "std  %%f6,  %3;\n\t"
                        "std  %%f8,  %4;\n\t"  "std  %%f10, %5;\n\t"
                        "std  %%f12, %6;\n\t"  "std  %%f14, %7;\n\t"
                        "std  %%f16, %8;\n\t"  "std  %%f18, %9;\n\t"
                        "std  %%f20, %10;\n\t" "std  %%f22, %11;\n\t"
                        "std  %%f24, %12;\n\t" "std  %%f26, %13;\n\t"
                        "std  %%f28, %14;\n\t" "std  %%f30, %15;\n\t"
                        : "=m"(DoubleFP[ 0]), "=m"(DoubleFP[ 1]),
                          "=m"(DoubleFP[ 2]), "=m"(DoubleFP[ 3]),
                          "=m"(DoubleFP[ 4]), "=m"(DoubleFP[ 5]),
                          "=m"(DoubleFP[ 6]), "=m"(DoubleFP[ 7]),
                          "=m"(DoubleFP[ 8]), "=m"(DoubleFP[ 9]),
                          "=m"(DoubleFP[10]), "=m"(DoubleFP[11]),
                          "=m"(DoubleFP[12]), "=m"(DoubleFP[13]),
                          "=m"(DoubleFP[14]), "=m"(DoubleFP[15]));
                        
  __asm__ __volatile__ (// Save Double FP registers, part 2
                        "std %%f32, %0;\n\t"  "std %%f34, %1;\n\t"
                        "std %%f36, %2;\n\t"  "std %%f38, %3;\n\t"
                        "std %%f40, %4;\n\t"  "std %%f42, %5;\n\t"
                        "std %%f44, %6;\n\t"  "std %%f46, %7;\n\t"
                        "std %%f48, %8;\n\t"  "std %%f50, %9;\n\t"
                        "std %%f52, %10;\n\t" "std %%f54, %11;\n\t"
                        "std %%f56, %12;\n\t" "std %%f58, %13;\n\t"
                        "std %%f60, %14;\n\t" "std %%f62, %15;\n\t"
                        : "=m"(DoubleFP[16]), "=m"(DoubleFP[17]),
                          "=m"(DoubleFP[18]), "=m"(DoubleFP[19]),
                          "=m"(DoubleFP[20]), "=m"(DoubleFP[21]),
                          "=m"(DoubleFP[22]), "=m"(DoubleFP[23]),
                          "=m"(DoubleFP[24]), "=m"(DoubleFP[25]),
                          "=m"(DoubleFP[26]), "=m"(DoubleFP[27]),
                          "=m"(DoubleFP[28]), "=m"(DoubleFP[29]),
                          "=m"(DoubleFP[30]), "=m"(DoubleFP[31]));
#endif
}


void JITResolver::RestoreRegisters(uint64_t DoubleFP[], uint64_t CC[], 
                                   uint64_t Globals[])
{
#if defined(sparc) || defined(__sparc__) || defined(__sparcv9)

  __asm__ __volatile__ (// Restore condition-code registers
                        "ldx %0,    %%fsr;\n\t" 
                        "wr  %1, 0, %%fprs;\n\t"
                        "wr  %2, 0, %%ccr;\n\t" 
                        :: "m"(CC[0]), "r"(CC[1]), "r"(CC[2]));

  __asm__ __volatile__ (// Restore globals g1 and g5
                        "ldx %0, %%g1;\n\t"
                        "ldx %0, %%g5;\n\t"
                        :: "m"(Globals[0]), "m"(Globals[1]));

  // GCC says: `asm' only allows up to thirty parameters!
  __asm__ __volatile__ (// Restore Single/Double FP registers, part 1
                        "ldd %0,  %%f0;\n\t"   "ldd %1, %%f2;\n\t" 
                        "ldd %2,  %%f4;\n\t"   "ldd %3, %%f6;\n\t" 
                        "ldd %4,  %%f8;\n\t"   "ldd %5, %%f10;\n\t" 
                        "ldd %6,  %%f12;\n\t"  "ldd %7, %%f14;\n\t" 
                        "ldd %8,  %%f16;\n\t"  "ldd %9, %%f18;\n\t" 
                        "ldd %10, %%f20;\n\t" "ldd %11, %%f22;\n\t"
                        "ldd %12, %%f24;\n\t" "ldd %13, %%f26;\n\t"
                        "ldd %14, %%f28;\n\t" "ldd %15, %%f30;\n\t"
                        :: "m"(DoubleFP[0]), "m"(DoubleFP[1]),
                           "m"(DoubleFP[2]), "m"(DoubleFP[3]),
                           "m"(DoubleFP[4]), "m"(DoubleFP[5]),
                           "m"(DoubleFP[6]), "m"(DoubleFP[7]),
                           "m"(DoubleFP[8]), "m"(DoubleFP[9]),
                           "m"(DoubleFP[10]), "m"(DoubleFP[11]),
                           "m"(DoubleFP[12]), "m"(DoubleFP[13]),
                           "m"(DoubleFP[14]), "m"(DoubleFP[15]));

  __asm__ __volatile__ (// Restore Double FP registers, part 2
                        "ldd %0, %%f32;\n\t"  "ldd %1, %%f34;\n\t"
                        "ldd %2, %%f36;\n\t"  "ldd %3, %%f38;\n\t"
                        "ldd %4, %%f40;\n\t"  "ldd %5, %%f42;\n\t"
                        "ldd %6, %%f44;\n\t"  "ldd %7, %%f46;\n\t"
                        "ldd %8, %%f48;\n\t"  "ldd %9, %%f50;\n\t"
                        "ldd %10, %%f52;\n\t" "ldd %11, %%f54;\n\t"
                        "ldd %12, %%f56;\n\t" "ldd %13, %%f58;\n\t"
                        "ldd %14, %%f60;\n\t" "ldd %15, %%f62;\n\t"
                        :: "m"(DoubleFP[16]), "m"(DoubleFP[17]),
                           "m"(DoubleFP[18]), "m"(DoubleFP[19]),
                           "m"(DoubleFP[20]), "m"(DoubleFP[21]),
                           "m"(DoubleFP[22]), "m"(DoubleFP[23]),
                           "m"(DoubleFP[24]), "m"(DoubleFP[25]),
                           "m"(DoubleFP[26]), "m"(DoubleFP[27]),
                           "m"(DoubleFP[28]), "m"(DoubleFP[29]),
                           "m"(DoubleFP[30]), "m"(DoubleFP[31]));
#endif
}

void JITResolver::CompilationCallback() {
  // Local space to save the registers
  uint64_t DoubleFP[32];
  uint64_t CC[3];
  uint64_t Globals[2];

  SaveRegisters(DoubleFP, CC, Globals);
  ++CallbackCalls;

  uint64_t CameFrom = (uint64_t)(intptr_t)__builtin_return_address(0);
  uint64_t CameFrom1 = (uint64_t)(intptr_t)__builtin_return_address(1);
  int64_t Target = (int64_t)TheJITResolver->resolveFunctionReference(CameFrom);
  DEBUG(std::cerr << "In callback! Addr=0x" << std::hex << CameFrom << "\n");
  register int64_t returnAddr = 0;
#if defined(sparc) || defined(__sparc__) || defined(__sparcv9)
  __asm__ __volatile__ ("add %%i7, %%g0, %0" : "=r" (returnAddr) : );
  DEBUG(std::cerr << "Read i7 (return addr) = "
                  << std::hex << returnAddr << ", value: "
                  << std::hex << *(unsigned*)returnAddr << "\n");
#endif

  // If we can rewrite the ORIGINAL caller, we eliminate the whole need for a
  // trampoline function stub!!
  unsigned OrigCallInst = *((unsigned*)(intptr_t)CameFrom1);
  int64_t OrigTarget = (Target-CameFrom1) >> 2;
  if ((OrigCallInst & (1 << 30)) && 
      (OrigTarget <= (1 << 30) && OrigTarget >= -(1 << 30)))
  {
    // The original call instruction was CALL <immed>, which means we can
    // overwrite it directly, since the offset will fit into 30 bits
    MachineInstr *C = BuildMI(V9::CALL, 1).addSImm(OrigTarget);
    *((unsigned*)(intptr_t)CameFrom1)=TheJITResolver->getBinaryCodeForInstr(*C);
    delete C;
    ++OverwrittenCalls;
  } else {
    ++UnmodifiedCalls;
  }

  // Rewrite the call target so that we don't fault every time we execute it.
  //

  static const unsigned o6 = SparcV9IntRegClass::o6;

  // Subtract enough to overwrite up to the 'save' instruction
  // This depends on whether we made a short call (1 instruction) or the
  // farCall (7 instructions)
  uint64_t Offset = (LazyCallFlavor[CameFrom] == ShortCall) ? 4 : 28;
  uint64_t CodeBegin = CameFrom - Offset;

  // FIXME FIXME FIXME FIXME: __builtin_frame_address doesn't work if frame
  // pointer elimination has been performed.  Having a variable sized alloca
  // disables frame pointer elimination currently, even if it's dead.  This is
  // a gross hack.
  alloca(42+Offset);
  // FIXME FIXME FIXME FIXME
  
  // Make sure that what we're about to overwrite is indeed "save"
  MachineInstr *SV =BuildMI(V9::SAVEi, 3).addReg(o6).addSImm(-192).addReg(o6);
  unsigned SaveInst = TheJITResolver->getBinaryCodeForInstr(*SV);
  delete SV;
  unsigned CodeInMem = *(unsigned*)(intptr_t)CodeBegin;
  if (CodeInMem != SaveInst) {
    std::cerr << "About to overwrite smthg not a save instr!";
    abort();
  }
  // Overwrite it
  TheJITResolver->insertJumpAtAddr(Target, CodeBegin);

  // Flush the I-Cache: FLUSH clears out a doubleword at a given address
  // Self-modifying code MUST clear out the I-Cache to be portable
#if defined(sparc) || defined(__sparc__) || defined(__sparcv9)
  for (int i = -Offset, e = 32-((int64_t)Offset); i < e; i += 8)
    __asm__ __volatile__ ("flush %%i7 + %0" : : "r" (i));
#endif

  // Change the return address to re-execute the restore, then the jump.
  DEBUG(std::cerr << "Callback returning to: 0x"
                  << std::hex << (CameFrom-Offset-12) << "\n");
#if defined(sparc) || defined(__sparc__) || defined(__sparcv9)
  __asm__ __volatile__ ("sub %%i7, %0, %%i7" : : "r" (Offset+12));
#endif

  RestoreRegisters(DoubleFP, CC, Globals);
}

/// emitStubForFunction - This method is used by the JIT when it needs to emit
/// the address of a function for a function whose code has not yet been
/// generated.  In order to do this, it generates a stub which jumps to the lazy
/// function compiler, which will eventually get fixed to call the function
/// directly.
///
uint64_t JITResolver::emitStubForFunction(Function *F) {
  MCE.startFunctionStub(*F, 44);

  DEBUG(std::cerr << "Emitting stub at addr: 0x" 
                  << std::hex << MCE.getCurrentPCValue() << "\n");

  unsigned o6 = SparcV9IntRegClass::o6, g0 = SparcV9IntRegClass::g0;

  // restore %g0, 0, %g0
  MachineInstr *R = BuildMI(V9::RESTOREi, 3).addMReg(g0).addSImm(0)
                                            .addMReg(g0, MachineOperand::Def);
  SparcV9.emitWord(SparcV9.getBinaryCodeForInstr(*R));
  delete R;

  // save %sp, -192, %sp
  MachineInstr *SV = BuildMI(V9::SAVEi, 3).addReg(o6).addSImm(-192).addReg(o6);
  SparcV9.emitWord(SparcV9.getBinaryCodeForInstr(*SV));
  delete SV;

  int64_t CurrPC = MCE.getCurrentPCValue();
  int64_t Addr = (int64_t)addFunctionReference(CurrPC, F);
  int64_t CallTarget = (Addr-CurrPC) >> 2;
  if (CallTarget >= (1 << 29) || CallTarget <= -(1 << 29)) {
    // Since this is a far call, the actual address of the call is shifted
    // by the number of instructions it takes to calculate the exact address
    deleteFunctionReference(CurrPC);
    SparcV9.emitFarCall(Addr, F);
  } else {
    // call CallTarget              ;; invoke the callback
    MachineInstr *Call = BuildMI(V9::CALL, 1).addSImm(CallTarget);
    SparcV9.emitWord(SparcV9.getBinaryCodeForInstr(*Call));
    delete Call;
  
    // nop                          ;; call delay slot
    MachineInstr *Nop = BuildMI(V9::NOP, 0);
    SparcV9.emitWord(SparcV9.getBinaryCodeForInstr(*Nop));
    delete Nop;

    addCallFlavor(CurrPC, ShortCall);
  }

  SparcV9.emitWord(0xDEADBEEF); // marker so that we know it's really a stub
  return (intptr_t)MCE.finishFunctionStub(*F)+4; /* 1 instr past the restore */
}

SparcV9CodeEmitter::SparcV9CodeEmitter(TargetMachine &tm,
                                       MachineCodeEmitter &M): TM(tm), MCE(M)
{
  TheJITResolver = new JITResolver(*this, M);
}

SparcV9CodeEmitter::~SparcV9CodeEmitter() {
  delete TheJITResolver;
}

void SparcV9CodeEmitter::emitWord(unsigned Val) {
  MCE.emitWord(Val);
}

unsigned 
SparcV9CodeEmitter::getRealRegNum(unsigned fakeReg,
                                  MachineInstr &MI) {
  const SparcV9RegInfo &RI = *TM.getRegInfo();
  unsigned regClass, regType = RI.getRegType(fakeReg);
  // At least map fakeReg into its class
  fakeReg = RI.getClassRegNum(fakeReg, regClass);

  switch (regClass) {
  case SparcV9RegInfo::IntRegClassID: {
    // SparcV9 manual, p31
    static const unsigned IntRegMap[] = {
      // "o0", "o1", "o2", "o3", "o4", "o5",       "o7",
      8, 9, 10, 11, 12, 13, 15,
      // "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
      16, 17, 18, 19, 20, 21, 22, 23,
      // "i0", "i1", "i2", "i3", "i4", "i5", "i6", "i7",
      24, 25, 26, 27, 28, 29, 30, 31,
      // "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7", 
      0, 1, 2, 3, 4, 5, 6, 7,
      // "o6"
      14
    }; 
 
    return IntRegMap[fakeReg];
    break;
  }
  case SparcV9RegInfo::FloatRegClassID: {
    DEBUG(std::cerr << "FP reg: " << fakeReg << "\n");
    if (regType == SparcV9RegInfo::FPSingleRegType) {
      // only numbered 0-31, hence can already fit into 5 bits (and 6)
      DEBUG(std::cerr << "FP single reg, returning: " << fakeReg << "\n");
    } else if (regType == SparcV9RegInfo::FPDoubleRegType) {
      // FIXME: This assumes that we only have 5-bit register fields!
      // From SparcV9 Manual, page 40.
      // The bit layout becomes: b[4], b[3], b[2], b[1], b[5]
      fakeReg |= (fakeReg >> 5) & 1;
      fakeReg &= 0x1f;
      DEBUG(std::cerr << "FP double reg, returning: " << fakeReg << "\n");      
    }
    return fakeReg;
  }
  case SparcV9RegInfo::IntCCRegClassID: {
    /*                                   xcc, icc, ccr */
    static const unsigned IntCCReg[] = {  6,   4,   2 };
    
    assert(fakeReg < sizeof(IntCCReg)/sizeof(IntCCReg[0])
             && "CC register out of bounds for IntCCReg map");      
    DEBUG(std::cerr << "IntCC reg: " << IntCCReg[fakeReg] << "\n");
    return IntCCReg[fakeReg];
  }
  case SparcV9RegInfo::FloatCCRegClassID: {
    /* These are laid out %fcc0 - %fcc3 => 0 - 3, so are correct */
    DEBUG(std::cerr << "FP CC reg: " << fakeReg << "\n");
    return fakeReg;
  }
  case SparcV9RegInfo::SpecialRegClassID: {
    // Currently only "special" reg is %fsr, which is encoded as 1 in
    // instructions and 0 in SparcV9SpecialRegClass.
    static const unsigned SpecialReg[] = {  1 };
    assert(fakeReg < sizeof(SpecialReg)/sizeof(SpecialReg[0])
             && "Special register out of bounds for SpecialReg map");      
    DEBUG(std::cerr << "Special reg: " << SpecialReg[fakeReg] << "\n");
    return SpecialReg[fakeReg];
  }
  default:
    assert(0 && "Invalid unified register number in getRealRegNum");
    return fakeReg;
  }
}


// WARNING: if the call used the delay slot to do meaningful work, that's not
// being accounted for, and the behavior will be incorrect!!
inline void SparcV9CodeEmitter::emitFarCall(uint64_t Target, Function *F) {
  static const unsigned o6 = SparcV9IntRegClass::o6,
      o7 = SparcV9IntRegClass::o7, g0 = SparcV9IntRegClass::g0,
      g1 = SparcV9IntRegClass::g1, g5 = SparcV9IntRegClass::g5;

  MachineInstr* BinaryCode[] = {
    //
    // Get address to branch into %g1, using %g5 as a temporary
    //
    // sethi %uhi(Target), %g5   ;; get upper 22 bits of Target into %g5
    BuildMI(V9::SETHI, 2).addSImm(Target >> 42).addReg(g5),
    // or %g5, %ulo(Target), %g5 ;; get 10 lower bits of upper word into %1
    BuildMI(V9::ORi, 3).addReg(g5).addSImm((Target >> 32) & 0x03ff).addReg(g5),
    // sllx %g5, 32, %g5         ;; shift those 10 bits to the upper word
    BuildMI(V9::SLLXi6, 3).addReg(g5).addSImm(32).addReg(g5),
    // sethi %hi(Target), %g1    ;; extract bits 10-31 into the dest reg
    BuildMI(V9::SETHI, 2).addSImm((Target >> 10) & 0x03fffff).addReg(g1),
    // or %g5, %g1, %g1          ;; get upper word (in %g5) into %g1
    BuildMI(V9::ORr, 3).addReg(g5).addReg(g1).addReg(g1),
    // or %g1, %lo(Target), %g1  ;; get lowest 10 bits of Target into %g1
    BuildMI(V9::ORi, 3).addReg(g1).addSImm(Target & 0x03ff).addReg(g1),
    // jmpl %g1, %g0, %o7        ;; indirect call on %g1
    BuildMI(V9::JMPLRETr, 3).addReg(g1).addReg(g0).addReg(o7),
    // nop                       ;; delay slot
    BuildMI(V9::NOP, 0)
  };

  for (unsigned i=0, e=sizeof(BinaryCode)/sizeof(BinaryCode[0]); i!=e; ++i) {
    // This is where we save the return address in the LazyResolverMap!!
    if (i == 6 && F != 0) { // Do this right before the JMPL
      uint64_t CurrPC = MCE.getCurrentPCValue();
      TheJITResolver->addFunctionReference(CurrPC, F);
      // Remember that this is a far call, to subtract appropriate offset later
      TheJITResolver->addCallFlavor(CurrPC, JITResolver::FarCall);
    }

    emitWord(getBinaryCodeForInstr(*BinaryCode[i]));
    delete BinaryCode[i];
  }
}

void SparcV9JITInfo::replaceMachineCodeForFunction (void *Old, void *New) {
  assert (TheJITResolver &&
          "Can only call replaceMachineCodeForFunction from within JIT");
  uint64_t Target = (uint64_t)(intptr_t)New;
  uint64_t CodeBegin = (uint64_t)(intptr_t)Old;
  TheJITResolver->insertJumpAtAddr(Target, CodeBegin);
}

int64_t SparcV9CodeEmitter::getMachineOpValue(MachineInstr &MI,
                                              MachineOperand &MO) {
  int64_t rv = 0; // Return value; defaults to 0 for unhandled cases
                  // or things that get fixed up later by the JIT.
  if (MO.isPCRelativeDisp()) {
    DEBUG(std::cerr << "PCRelativeDisp: ");
    Value *V = MO.getVRegValue();
    if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
      DEBUG(std::cerr << "Saving reference to BB (VReg)\n");
      unsigned* CurrPC = (unsigned*)(intptr_t)MCE.getCurrentPCValue();
      BBRefs.push_back(std::make_pair(BB, std::make_pair(CurrPC, &MI)));
    } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
      // The real target of the branch is CI = PC + (rv * 4)
      // So undo that: give the instruction (CI - PC) / 4
      rv = (CI->getRawValue() - MCE.getCurrentPCValue()) / 4;
    } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
      // same as MO.isGlobalAddress()
      DEBUG(std::cerr << "GlobalValue: ");
      // external function calls, etc.?
      if (Function *F = dyn_cast<Function>(GV)) {
        DEBUG(std::cerr << "Function: ");
        // NOTE: This results in stubs being generated even for
        // external, native functions, which is not optimal. See PR103.
        rv = (int64_t)MCE.getGlobalValueAddress(F);
        if (rv == 0) {
          DEBUG(std::cerr << "not yet generated\n");
          // Function has not yet been code generated!
          TheJITResolver->addFunctionReference(MCE.getCurrentPCValue(), F);
          // Delayed resolution...
          rv = TheJITResolver->getLazyResolver(F);
        } else {
          DEBUG(std::cerr << "already generated: 0x" << std::hex << rv << "\n");
        }
      } else {
        rv = (int64_t)MCE.getGlobalValueAddress(GV);
        DEBUG(std::cerr << "Global addr: 0x" << std::hex << rv << "\n");
      }
      // The real target of the call is Addr = PC + (rv * 4)
      // So undo that: give the instruction (Addr - PC) / 4
      if (MI.getOpcode() == V9::CALL) {
        int64_t CurrPC = MCE.getCurrentPCValue();
        DEBUG(std::cerr << "rv addr: 0x" << std::hex << rv << "\n"
                        << "curr PC: 0x" << std::hex << CurrPC << "\n");
        int64_t CallInstTarget = (rv - CurrPC) >> 2;
        if (CallInstTarget >= (1<<29) || CallInstTarget <= -(1<<29)) {
          DEBUG(std::cerr << "Making far call!\n");
          // address is out of bounds for the 30-bit call,
          // make an indirect jump-and-link
          emitFarCall(rv);
          // this invalidates the instruction so that the call with an incorrect
          // address will not be emitted
          rv = 0; 
        } else {
          // The call fits into 30 bits, so just return the corrected address
          rv = CallInstTarget;
        }
        DEBUG(std::cerr << "returning addr: 0x" << rv << "\n");
      }
    } else {
      std::cerr << "ERROR: PC relative disp unhandled:" << MO << "\n";
      abort();
    }
  } else if (MO.isRegister() || MO.getType() == MachineOperand::MO_CCRegister)
  {
    // This is necessary because the SparcV9 backend doesn't actually lay out
    // registers in the real fashion -- it skips those that it chooses not to
    // allocate, i.e. those that are the FP, SP, etc.
    unsigned fakeReg = MO.getReg();
    unsigned realRegByClass = getRealRegNum(fakeReg, MI);
    DEBUG(std::cerr << MO << ": Reg[" << std::dec << fakeReg << "] => "
                    << realRegByClass << " (LLC: " 
                    << TM.getRegInfo()->getUnifiedRegName(fakeReg) << ")\n");
    rv = realRegByClass;
  } else if (MO.isImmediate()) {
    rv = MO.getImmedValue();
    DEBUG(std::cerr << "immed: " << rv << "\n");
  } else if (MO.isGlobalAddress()) {
    DEBUG(std::cerr << "GlobalAddress: not PC-relative\n");
    rv = (int64_t)
      (intptr_t)getGlobalAddress(cast<GlobalValue>(MO.getVRegValue()),
                                 MI, MO.isPCRelative());
  } else if (MO.isMachineBasicBlock()) {
    // Duplicate code of the above case for VirtualRegister, BasicBlock... 
    // It should really hit this case, but SparcV9 backend uses VRegs instead
    DEBUG(std::cerr << "Saving reference to MBB\n");
    const BasicBlock *BB = MO.getMachineBasicBlock()->getBasicBlock();
    unsigned* CurrPC = (unsigned*)(intptr_t)MCE.getCurrentPCValue();
    BBRefs.push_back(std::make_pair(BB, std::make_pair(CurrPC, &MI)));
  } else if (MO.isExternalSymbol()) {
    // SparcV9 backend doesn't generate this (yet...)
    std::cerr << "ERROR: External symbol unhandled: " << MO << "\n";
    abort();
  } else if (MO.isFrameIndex()) {
    // SparcV9 backend doesn't generate this (yet...)
    int FrameIndex = MO.getFrameIndex();
    std::cerr << "ERROR: Frame index unhandled.\n";
    abort();
  } else if (MO.isConstantPoolIndex()) {
    unsigned Index = MO.getConstantPoolIndex();
    rv = MCE.getConstantPoolEntryAddress(Index);
  } else {
    std::cerr << "ERROR: Unknown type of MachineOperand: " << MO << "\n";
    abort();
  }

  // Finally, deal with the various bitfield-extracting functions that
  // are used in SPARC assembly. (Some of these make no sense in combination
  // with some of the above; we'll trust that the instruction selector
  // will not produce nonsense, and not check for valid combinations here.)
  if (MO.isLoBits32()) {          // %lo(val) == %lo() in SparcV9 ABI doc
    return rv & 0x03ff;
  } else if (MO.isHiBits32()) {   // %lm(val) == %hi() in SparcV9 ABI doc
    return (rv >> 10) & 0x03fffff;
  } else if (MO.isLoBits64()) {   // %hm(val) == %ulo() in SparcV9 ABI doc
    return (rv >> 32) & 0x03ff;
  } else if (MO.isHiBits64()) {   // %hh(val) == %uhi() in SparcV9 ABI doc
    return rv >> 42;
  } else {                        // (unadorned) val
    return rv;
  }
}

unsigned SparcV9CodeEmitter::getValueBit(int64_t Val, unsigned bit) {
  Val >>= bit;
  return (Val & 1);
}

bool SparcV9CodeEmitter::runOnMachineFunction(MachineFunction &MF) {
  MCE.startFunction(MF);
  DEBUG(std::cerr << "Starting function " << MF.getFunction()->getName()
            << ", address: " << "0x" << std::hex 
            << (long)MCE.getCurrentPCValue() << "\n");

  MCE.emitConstantPool(MF.getConstantPool());
  for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
    emitBasicBlock(*I);
  MCE.finishFunction(MF);

  DEBUG(std::cerr << "Finishing fn " << MF.getFunction()->getName() << "\n");

  // Resolve branches to BasicBlocks for the entire function
  for (unsigned i = 0, e = BBRefs.size(); i != e; ++i) {
    long Location = BBLocations[BBRefs[i].first];
    unsigned *Ref = BBRefs[i].second.first;
    MachineInstr *MI = BBRefs[i].second.second;
    DEBUG(std::cerr << "Fixup @ " << std::hex << Ref << " to 0x" << Location
                    << " in instr: " << std::dec << *MI);
    for (unsigned ii = 0, ee = MI->getNumOperands(); ii != ee; ++ii) {
      MachineOperand &op = MI->getOperand(ii);
      if (op.isPCRelativeDisp()) {
        // the instruction's branch target is made such that it branches to
        // PC + (branchTarget * 4), so undo that arithmetic here:
        // Location is the target of the branch
        // Ref is the location of the instruction, and hence the PC
        int64_t branchTarget = (Location - (long)Ref) >> 2;
        // Save the flags.
        bool loBits32=false, hiBits32=false, loBits64=false, hiBits64=false;   
        if (op.isLoBits32()) { loBits32=true; }
        if (op.isHiBits32()) { hiBits32=true; }
        if (op.isLoBits64()) { loBits64=true; }
        if (op.isHiBits64()) { hiBits64=true; }
        MI->SetMachineOperandConst(ii, MachineOperand::MO_SignExtendedImmed,
                                   branchTarget);
        if (loBits32) { MI->getOperand(ii).markLo32(); }
        else if (hiBits32) { MI->getOperand(ii).markHi32(); }
        else if (loBits64) { MI->getOperand(ii).markLo64(); }
        else if (hiBits64) { MI->getOperand(ii).markHi64(); }
        DEBUG(std::cerr << "Rewrote BB ref: ");
        unsigned fixedInstr = SparcV9CodeEmitter::getBinaryCodeForInstr(*MI);
        MCE.emitWordAt (fixedInstr, Ref);
        break;
      }
    }
  }
  BBRefs.clear();
  BBLocations.clear();

  return false;
}

void SparcV9CodeEmitter::emitBasicBlock(MachineBasicBlock &MBB) {
  currBB = MBB.getBasicBlock();
  BBLocations[currBB] = MCE.getCurrentPCValue();
  for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E; ++I){
    unsigned binCode = getBinaryCodeForInstr(*I);
    if (binCode == (1 << 30)) {
      // this is an invalid call: the addr is out of bounds. that means a code
      // sequence has already been emitted, and this is a no-op
      DEBUG(std::cerr << "Call suppressed: already emitted far call.\n");
    } else {
      emitWord(binCode);
    }
  }
}

void* SparcV9CodeEmitter::getGlobalAddress(GlobalValue *V, MachineInstr &MI,
                                           bool isPCRelative)
{
  if (isPCRelative) { // must be a call, this is a major hack!
    // Try looking up the function to see if it is already compiled!
    if (void *Addr = (void*)(intptr_t)MCE.getGlobalValueAddress(V)) {
      intptr_t CurByte = MCE.getCurrentPCValue();
      // The real target of the call is Addr = PC + (target * 4)
      // CurByte is the PC, Addr we just received
      return (void*) (((long)Addr - (long)CurByte) >> 2);
    } else {
      if (Function *F = dyn_cast<Function>(V)) {
        // Function has not yet been code generated!
        TheJITResolver->addFunctionReference(MCE.getCurrentPCValue(),
                                             cast<Function>(V));
        // Delayed resolution...
        return 
          (void*)(intptr_t)TheJITResolver->getLazyResolver(cast<Function>(V));
      } else {
        std::cerr << "Unhandled global: " << *V << "\n";
        abort();
      }
    }
  } else {
    return (void*)(intptr_t)MCE.getGlobalValueAddress(V);
  }
}

#include "SparcV9CodeEmitter.inc"

} // End llvm namespace