summaryrefslogtreecommitdiff
path: root/lib/Target/SparcV9/SparcV9RegInfo.cpp
blob: 8dde4e96ca399412f4d095137698528a228f68e5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
//===-- SparcRegInfo.cpp - Sparc Target Register Information --------------===//
//
// This file contains implementation of Sparc specific helper methods
// used for register allocation.
//
//===----------------------------------------------------------------------===//

#include "SparcInternals.h"
#include "SparcRegClassInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionInfo.h"
#include "llvm/CodeGen/InstrSelection.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineCodeForInstruction.h"
#include "llvm/CodeGen/MachineInstrAnnot.h"
#include "../../CodeGen/RegAlloc/LiveRangeInfo.h"   // FIXME!!
#include "../../CodeGen/RegAlloc/LiveRange.h"       // FIXME!!
#include "llvm/iTerminators.h"
#include "llvm/iOther.h"
#include "llvm/Function.h"
#include "llvm/DerivedTypes.h"

enum {
  BadRegClass = ~0
};

UltraSparcRegInfo::UltraSparcRegInfo(const UltraSparc &tgt)
  : TargetRegInfo(tgt), NumOfIntArgRegs(6), NumOfFloatArgRegs(32)
{
  MachineRegClassArr.push_back(new SparcIntRegClass(IntRegClassID));
  MachineRegClassArr.push_back(new SparcFloatRegClass(FloatRegClassID));
  MachineRegClassArr.push_back(new SparcIntCCRegClass(IntCCRegClassID));
  MachineRegClassArr.push_back(new SparcFloatCCRegClass(FloatCCRegClassID));
  MachineRegClassArr.push_back(new SparcSpecialRegClass(SpecialRegClassID));
  
  assert(SparcFloatRegClass::StartOfNonVolatileRegs == 32 && 
         "32 Float regs are used for float arg passing");
}


// getZeroRegNum - returns the register that contains always zero.
// this is the unified register number
//
int UltraSparcRegInfo::getZeroRegNum() const {
  return getUnifiedRegNum(UltraSparcRegInfo::IntRegClassID,
                          SparcIntRegClass::g0);
}

// getCallAddressReg - returns the reg used for pushing the address when a
// method is called. This can be used for other purposes between calls
//
unsigned UltraSparcRegInfo::getCallAddressReg() const {
  return getUnifiedRegNum(UltraSparcRegInfo::IntRegClassID,
                          SparcIntRegClass::o7);
}

// Returns the register containing the return address.
// It should be made sure that this  register contains the return 
// value when a return instruction is reached.
//
unsigned UltraSparcRegInfo::getReturnAddressReg() const {
  return getUnifiedRegNum(UltraSparcRegInfo::IntRegClassID,
                          SparcIntRegClass::i7);
}

// Register get name implementations...

// Int register names in same order as enum in class SparcIntRegClass
static const char * const IntRegNames[] = {
  "o0", "o1", "o2", "o3", "o4", "o5",       "o7",
  "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
  "i0", "i1", "i2", "i3", "i4", "i5",  
  "i6", "i7",
  "g0", "g1", "g2", "g3", "g4", "g5",  "g6", "g7", 
  "o6"
}; 

const char * const SparcIntRegClass::getRegName(unsigned reg) const {
  assert(reg < NumOfAllRegs);
  return IntRegNames[reg];
}

static const char * const FloatRegNames[] = {    
  "f0",  "f1",  "f2",  "f3",  "f4",  "f5",  "f6",  "f7",  "f8",  "f9", 
  "f10", "f11", "f12", "f13", "f14", "f15", "f16", "f17", "f18", "f19",
  "f20", "f21", "f22", "f23", "f24", "f25", "f26", "f27", "f28", "f29",
  "f30", "f31", "f32", "f33", "f34", "f35", "f36", "f37", "f38", "f39",
  "f40", "f41", "f42", "f43", "f44", "f45", "f46", "f47", "f48", "f49",
  "f50", "f51", "f52", "f53", "f54", "f55", "f56", "f57", "f58", "f59",
  "f60", "f61", "f62", "f63"
};

const char * const SparcFloatRegClass::getRegName(unsigned reg) const {
  assert (reg < NumOfAllRegs);
  return FloatRegNames[reg];
}


static const char * const IntCCRegNames[] = {    
  "xcc",  "icc",  "ccr"
};

const char * const SparcIntCCRegClass::getRegName(unsigned reg) const {
  assert(reg < 3);
  return IntCCRegNames[reg];
}

static const char * const FloatCCRegNames[] = {    
  "fcc0", "fcc1",  "fcc2",  "fcc3"
};

const char * const SparcFloatCCRegClass::getRegName(unsigned reg) const {
  assert (reg < 5);
  return FloatCCRegNames[reg];
}

static const char * const SpecialRegNames[] = {    
  "fsr"
};

const char * const SparcSpecialRegClass::getRegName(unsigned reg) const {
  assert (reg < 1);
  return SpecialRegNames[reg];
}

// Get unified reg number for frame pointer
unsigned UltraSparcRegInfo::getFramePointer() const {
  return getUnifiedRegNum(UltraSparcRegInfo::IntRegClassID,
                          SparcIntRegClass::i6);
}

// Get unified reg number for stack pointer
unsigned UltraSparcRegInfo::getStackPointer() const {
  return getUnifiedRegNum(UltraSparcRegInfo::IntRegClassID,
                          SparcIntRegClass::o6);
}


//---------------------------------------------------------------------------
// Finds whether a call is an indirect call
//---------------------------------------------------------------------------

inline bool
isVarArgsFunction(const Type *funcType) {
  return cast<FunctionType>(cast<PointerType>(funcType)
                            ->getElementType())->isVarArg();
}

inline bool
isVarArgsCall(const MachineInstr *CallMI) {
  Value* callee = CallMI->getOperand(0).getVRegValue();
  // const Type* funcType = isa<Function>(callee)? callee->getType()
  //   : cast<PointerType>(callee->getType())->getElementType();
  const Type* funcType = callee->getType();
  return isVarArgsFunction(funcType);
}


// Get the register number for the specified argument #argNo,
// 
// Return value:
//      getInvalidRegNum(),  if there is no int register available for the arg. 
//      regNum,              otherwise (this is NOT the unified reg. num).
//                           regClassId is set to the register class ID.
// 
int
UltraSparcRegInfo::regNumForIntArg(bool inCallee, bool isVarArgsCall,
                                   unsigned argNo, unsigned& regClassId) const
{
  regClassId = IntRegClassID;
  if (argNo >= NumOfIntArgRegs)
    return getInvalidRegNum();
  else
    return argNo + (inCallee? SparcIntRegClass::i0 : SparcIntRegClass::o0);
}

// Get the register number for the specified FP argument #argNo,
// Use INT regs for FP args if this is a varargs call.
// 
// Return value:
//      getInvalidRegNum(),  if there is no int register available for the arg. 
//      regNum,              otherwise (this is NOT the unified reg. num).
//                           regClassId is set to the register class ID.
// 
int
UltraSparcRegInfo::regNumForFPArg(unsigned regType,
                                  bool inCallee, bool isVarArgsCall,
                                  unsigned argNo, unsigned& regClassId) const
{
  if (isVarArgsCall)
    return regNumForIntArg(inCallee, isVarArgsCall, argNo, regClassId);
  else
    {
      regClassId = FloatRegClassID;
      if (regType == FPSingleRegType)
        return (argNo*2+1 >= NumOfFloatArgRegs)?
          getInvalidRegNum() : SparcFloatRegClass::f0 + (argNo * 2 + 1);
      else if (regType == FPDoubleRegType)
        return (argNo*2 >= NumOfFloatArgRegs)?
          getInvalidRegNum() : SparcFloatRegClass::f0 + (argNo * 2);
      else
        assert(0 && "Illegal FP register type");
	return 0;
    }
}


//---------------------------------------------------------------------------
// Finds the return address of a call sparc specific call instruction
//---------------------------------------------------------------------------

// The following 4  methods are used to find the RegType (SparcInternals.h)
// of a LiveRange, a Value, and for a given register unified reg number.
//
int UltraSparcRegInfo::getRegTypeForClassAndType(unsigned regClassID,
                                                 const Type* type) const
{
  switch (regClassID) {
  case IntRegClassID:                   return IntRegType; 
  case FloatRegClassID:
    if (type == Type::FloatTy)          return FPSingleRegType;
    else if (type == Type::DoubleTy)    return FPDoubleRegType;
    assert(0 && "Unknown type in FloatRegClass"); return 0;
  case IntCCRegClassID:                 return IntCCRegType; 
  case FloatCCRegClassID:               return FloatCCRegType; 
  case SpecialRegClassID:               return SpecialRegType; 
  default: assert( 0 && "Unknown reg class ID"); return 0;
  }
}

int UltraSparcRegInfo::getRegTypeForDataType(const Type* type) const
{
  return getRegTypeForClassAndType(getRegClassIDOfType(type), type);
}

int UltraSparcRegInfo::getRegTypeForLR(const LiveRange *LR) const
{
  return getRegTypeForClassAndType(LR->getRegClassID(), LR->getType());
}

int UltraSparcRegInfo::getRegType(int unifiedRegNum) const
{
  if (unifiedRegNum < 32) 
    return IntRegType;
  else if (unifiedRegNum < (32 + 32))
    return FPSingleRegType;
  else if (unifiedRegNum < (64 + 32))
    return FPDoubleRegType;
  else if (unifiedRegNum < (64+32+4))
    return FloatCCRegType;
  else if (unifiedRegNum < (64+32+4+2))  
    return IntCCRegType;             
  else 
    assert(0 && "Invalid unified register number in getRegType");
  return 0;
}


// To find the register class used for a specified Type
//
unsigned UltraSparcRegInfo::getRegClassIDOfType(const Type *type,
                                                bool isCCReg) const {
  Type::PrimitiveID ty = type->getPrimitiveID();
  unsigned res;
    
  // FIXME: Comparing types like this isn't very safe...
  if ((ty && ty <= Type::LongTyID) || (ty == Type::LabelTyID) ||
      (ty == Type::FunctionTyID) ||  (ty == Type::PointerTyID) )
    res = IntRegClassID;             // sparc int reg (ty=0: void)
  else if (ty <= Type::DoubleTyID)
    res = FloatRegClassID;           // sparc float reg class
  else { 
    //std::cerr << "TypeID: " << ty << "\n";
    assert(0 && "Cannot resolve register class for type");
    return 0;
  }
  
  if (isCCReg)
    return res + 2;      // corresponding condition code register 
  else 
    return res;
}

unsigned UltraSparcRegInfo::getRegClassIDOfRegType(int regType) const {
  switch(regType) {
  case IntRegType:      return IntRegClassID;
  case FPSingleRegType:
  case FPDoubleRegType: return FloatRegClassID;
  case IntCCRegType:    return IntCCRegClassID;
  case FloatCCRegType:  return FloatCCRegClassID;
  default:
    assert(0 && "Invalid register type in getRegClassIDOfRegType");
    return 0;
  }
}

//---------------------------------------------------------------------------
// Suggests a register for the ret address in the RET machine instruction.
// We always suggest %i7 by convention.
//---------------------------------------------------------------------------
void UltraSparcRegInfo::suggestReg4RetAddr(MachineInstr *RetMI, 
					   LiveRangeInfo& LRI) const {

  assert(target.getInstrInfo().isReturn(RetMI->getOpCode()));
  
  // return address is always mapped to i7 so set it immediately
  RetMI->SetRegForOperand(0, getUnifiedRegNum(IntRegClassID,
                                              SparcIntRegClass::i7));
  
  // Possible Optimization: 
  // Instead of setting the color, we can suggest one. In that case,
  // we have to test later whether it received the suggested color.
  // In that case, a LR has to be created at the start of method.
  // It has to be done as follows (remove the setRegVal above):

  // MachineOperand & MO  = RetMI->getOperand(0);
  // const Value *RetAddrVal = MO.getVRegValue();
  // assert( RetAddrVal && "LR for ret address must be created at start");
  // LiveRange * RetAddrLR = LRI.getLiveRangeForValue( RetAddrVal);  
  // RetAddrLR->setSuggestedColor(getUnifiedRegNum( IntRegClassID, 
  //                              SparcIntRegOrdr::i7) );
}


//---------------------------------------------------------------------------
// Suggests a register for the ret address in the JMPL/CALL machine instr.
// Sparc ABI dictates that %o7 be used for this purpose.
//---------------------------------------------------------------------------
void
UltraSparcRegInfo::suggestReg4CallAddr(MachineInstr * CallMI,
                                       LiveRangeInfo& LRI) const
{
  CallArgsDescriptor* argDesc = CallArgsDescriptor::get(CallMI); 
  const Value *RetAddrVal = argDesc->getReturnAddrReg();
  assert(RetAddrVal && "INTERNAL ERROR: Return address value is required");

  // A LR must already exist for the return address.
  LiveRange *RetAddrLR = LRI.getLiveRangeForValue(RetAddrVal);
  assert(RetAddrLR && "INTERNAL ERROR: No LR for return address of call!");

  unsigned RegClassID = RetAddrLR->getRegClassID();
  RetAddrLR->setColor(getUnifiedRegNum(IntRegClassID, SparcIntRegClass::o7));
}



//---------------------------------------------------------------------------
//  This method will suggest colors to incoming args to a method. 
//  According to the Sparc ABI, the first 6 incoming args are in 
//  %i0 - %i5 (if they are integer) OR in %f0 - %f31 (if they are float).
//  If the arg is passed on stack due to the lack of regs, NOTHING will be
//  done - it will be colored (or spilled) as a normal live range.
//---------------------------------------------------------------------------
void UltraSparcRegInfo::suggestRegs4MethodArgs(const Function *Meth, 
					       LiveRangeInfo& LRI) const 
{
  // Check if this is a varArgs function. needed for choosing regs.
  bool isVarArgs = isVarArgsFunction(Meth->getType());
  
  // Count the arguments, *ignoring* whether they are int or FP args.
  // Use this common arg numbering to pick the right int or fp register.
  unsigned argNo=0;
  for(Function::const_aiterator I = Meth->abegin(), E = Meth->aend();
      I != E; ++I, ++argNo) {
    LiveRange *LR = LRI.getLiveRangeForValue(I);
    assert(LR && "No live range found for method arg");
    
    unsigned regType = getRegTypeForLR(LR);
    unsigned regClassIDOfArgReg = BadRegClass; // for chosen reg (unused)
    
    int regNum = (regType == IntRegType)
      ? regNumForIntArg(/*inCallee*/ true, isVarArgs, argNo, regClassIDOfArgReg)
      : regNumForFPArg(regType, /*inCallee*/ true, isVarArgs, argNo,
                       regClassIDOfArgReg); 
    
    if (regNum != getInvalidRegNum())
      LR->setSuggestedColor(regNum);
  }
}


//---------------------------------------------------------------------------
// This method is called after graph coloring to move incoming args to
// the correct hardware registers if they did not receive the correct
// (suggested) color through graph coloring.
//---------------------------------------------------------------------------
void UltraSparcRegInfo::colorMethodArgs(const Function *Meth, 
                            LiveRangeInfo &LRI,
                            std::vector<MachineInstr*>& InstrnsBefore,
                            std::vector<MachineInstr*>& InstrnsAfter) const {

  // check if this is a varArgs function. needed for choosing regs.
  bool isVarArgs = isVarArgsFunction(Meth->getType());
  MachineInstr *AdMI;

  // for each argument
  // for each argument.  count INT and FP arguments separately.
  unsigned argNo=0, intArgNo=0, fpArgNo=0;
  for(Function::const_aiterator I = Meth->abegin(), E = Meth->aend();
      I != E; ++I, ++argNo) {
    // get the LR of arg
    LiveRange *LR = LRI.getLiveRangeForValue(I);
    assert( LR && "No live range found for method arg");

    unsigned regType = getRegTypeForLR(LR);
    unsigned RegClassID = LR->getRegClassID();
    
    // Find whether this argument is coming in a register (if not, on stack)
    // Also find the correct register the argument must use (UniArgReg)
    //
    bool isArgInReg = false;
    unsigned UniArgReg = getInvalidRegNum(); // reg that LR MUST be colored with
    unsigned regClassIDOfArgReg = BadRegClass; // reg class of chosen reg
    
    int regNum = (regType == IntRegType)
      ? regNumForIntArg(/*inCallee*/ true, isVarArgs,
                        argNo, regClassIDOfArgReg)
      : regNumForFPArg(regType, /*inCallee*/ true, isVarArgs,
                       argNo, regClassIDOfArgReg);
    
    if(regNum != getInvalidRegNum()) {
      isArgInReg = true;
      UniArgReg = getUnifiedRegNum( regClassIDOfArgReg, regNum);
    }
    
    if( ! LR->isMarkedForSpill() ) {    // if this arg received a register

      unsigned UniLRReg = getUnifiedRegNum(  RegClassID, LR->getColor() );

      // if LR received the correct color, nothing to do
      //
      if( UniLRReg == UniArgReg )
	continue;

      // We are here because the LR did not receive the suggested 
      // but LR received another register.
      // Now we have to copy the %i reg (or stack pos of arg) 
      // to the register the LR was colored with.
      
      // if the arg is coming in UniArgReg register, it MUST go into
      // the UniLRReg register
      //
      if( isArgInReg ) {
	if( regClassIDOfArgReg != RegClassID ) {
          assert(0 && "This could should work but it is not tested yet");
          
	  // It is a variable argument call: the float reg must go in a %o reg.
	  // We have to move an int reg to a float reg via memory.
          // 
          assert(isVarArgs &&
                 RegClassID == FloatRegClassID && 
                 regClassIDOfArgReg == IntRegClassID &&
                 "This should only be an Int register for an FP argument");
          
 	  int TmpOff = MachineFunction::get(Meth).getInfo()->pushTempValue(
                                                getSpilledRegSize(regType));
	  cpReg2MemMI(InstrnsBefore,
                      UniArgReg, getFramePointer(), TmpOff, IntRegType);
          
	  cpMem2RegMI(InstrnsBefore,
                      getFramePointer(), TmpOff, UniLRReg, regType);
	}
	else {	
	  cpReg2RegMI(InstrnsBefore, UniArgReg, UniLRReg, regType);
	}
      }
      else {

	// Now the arg is coming on stack. Since the LR received a register,
	// we just have to load the arg on stack into that register
	//
        const TargetFrameInfo& frameInfo = target.getFrameInfo();
	int offsetFromFP =
          frameInfo.getIncomingArgOffset(MachineFunction::get(Meth),
                                         argNo);

        // float arguments on stack are right justified so adjust the offset!
        // int arguments are also right justified but they are always loaded as
        // a full double-word so the offset does not need to be adjusted.
        if (regType == FPSingleRegType) {
          unsigned argSize = target.getTargetData().getTypeSize(LR->getType());
          unsigned slotSize = frameInfo.getSizeOfEachArgOnStack();
          assert(argSize <= slotSize && "Insufficient slot size!");
          offsetFromFP += slotSize - argSize;
        }

	cpMem2RegMI(InstrnsBefore,
                    getFramePointer(), offsetFromFP, UniLRReg, regType);
      }
      
    } // if LR received a color

    else {                             

      // Now, the LR did not receive a color. But it has a stack offset for
      // spilling.
      // So, if the arg is coming in UniArgReg register,  we can just move
      // that on to the stack pos of LR

      if( isArgInReg ) {
        
	if( regClassIDOfArgReg != RegClassID ) {
          assert(0 &&
                 "FP arguments to a varargs function should be explicitly "
                 "copied to/from int registers by instruction selection!");
          
	  // It must be a float arg for a variable argument call, which
          // must come in a %o reg.  Move the int reg to the stack.
          // 
          assert(isVarArgs && regClassIDOfArgReg == IntRegClassID &&
                 "This should only be an Int register for an FP argument");
          
          cpReg2MemMI(InstrnsBefore, UniArgReg,
                      getFramePointer(), LR->getSpillOffFromFP(), IntRegType);
        }
        else {
           cpReg2MemMI(InstrnsBefore, UniArgReg,
                       getFramePointer(), LR->getSpillOffFromFP(), regType);
        }
      }

      else {

	// Now the arg is coming on stack. Since the LR did NOT 
	// received a register as well, it is allocated a stack position. We
	// can simply change the stack position of the LR. We can do this,
	// since this method is called before any other method that makes
	// uses of the stack pos of the LR (e.g., updateMachineInstr)
        // 
        const TargetFrameInfo& frameInfo = target.getFrameInfo();
	int offsetFromFP =
          frameInfo.getIncomingArgOffset(MachineFunction::get(Meth),
                                         argNo);

        // FP arguments on stack are right justified so adjust offset!
        // int arguments are also right justified but they are always loaded as
        // a full double-word so the offset does not need to be adjusted.
        if (regType == FPSingleRegType) {
          unsigned argSize = target.getTargetData().getTypeSize(LR->getType());
          unsigned slotSize = frameInfo.getSizeOfEachArgOnStack();
          assert(argSize <= slotSize && "Insufficient slot size!");
          offsetFromFP += slotSize - argSize;
        }
        
	LR->modifySpillOffFromFP( offsetFromFP );
      }

    }

  }  // for each incoming argument

}



//---------------------------------------------------------------------------
// This method is called before graph coloring to suggest colors to the
// outgoing call args and the return value of the call.
//---------------------------------------------------------------------------
void UltraSparcRegInfo::suggestRegs4CallArgs(MachineInstr *CallMI, 
					     LiveRangeInfo& LRI) const {
  assert ( (target.getInstrInfo()).isCall(CallMI->getOpCode()) );

  CallArgsDescriptor* argDesc = CallArgsDescriptor::get(CallMI); 
  
  suggestReg4CallAddr(CallMI, LRI);

  // First color the return value of the call instruction, if any.
  // The return value will be in %o0 if the value is an integer type,
  // or in %f0 if the value is a float type.
  // 
  if (const Value *RetVal = argDesc->getReturnValue()) {
    LiveRange *RetValLR = LRI.getLiveRangeForValue(RetVal);
    assert(RetValLR && "No LR for return Value of call!");

    unsigned RegClassID = RetValLR->getRegClassID();

    // now suggest a register depending on the register class of ret arg
    if( RegClassID == IntRegClassID ) 
      RetValLR->setSuggestedColor(SparcIntRegClass::o0);
    else if (RegClassID == FloatRegClassID ) 
      RetValLR->setSuggestedColor(SparcFloatRegClass::f0 );
    else assert( 0 && "Unknown reg class for return value of call\n");
  }

  // Now suggest colors for arguments (operands) of the call instruction.
  // Colors are suggested only if the arg number is smaller than the
  // the number of registers allocated for argument passing.
  // Now, go thru call args - implicit operands of the call MI

  unsigned NumOfCallArgs = argDesc->getNumArgs();
  
  for(unsigned argNo=0, i=0, intArgNo=0, fpArgNo=0;
       i < NumOfCallArgs; ++i, ++argNo) {    

    const Value *CallArg = argDesc->getArgInfo(i).getArgVal();
    
    // get the LR of call operand (parameter)
    LiveRange *const LR = LRI.getLiveRangeForValue(CallArg); 
    if (!LR)
      continue;                    // no live ranges for constants and labels

    unsigned regType = getRegTypeForLR(LR);
    unsigned regClassIDOfArgReg = BadRegClass; // chosen reg class (unused)

    // Choose a register for this arg depending on whether it is
    // an INT or FP value.  Here we ignore whether or not it is a
    // varargs calls, because FP arguments will be explicitly copied
    // to an integer Value and handled under (argCopy != NULL) below.
    int regNum = (regType == IntRegType)
      ? regNumForIntArg(/*inCallee*/ false, /*isVarArgs*/ false,
                        argNo, regClassIDOfArgReg)
      : regNumForFPArg(regType, /*inCallee*/ false, /*isVarArgs*/ false,
                       argNo, regClassIDOfArgReg); 
    
    // If a register could be allocated, use it.
    // If not, do NOTHING as this will be colored as a normal value.
    if(regNum != getInvalidRegNum())
      LR->setSuggestedColor(regNum);
  } // for all call arguments
}


//---------------------------------------------------------------------------
// this method is called for an LLVM return instruction to identify which
// values will be returned from this method and to suggest colors.
//---------------------------------------------------------------------------
void UltraSparcRegInfo::suggestReg4RetValue(MachineInstr *RetMI, 
                                            LiveRangeInfo& LRI) const {

  assert( (target.getInstrInfo()).isReturn( RetMI->getOpCode() ) );

  suggestReg4RetAddr(RetMI, LRI);

  // To find the return value (if any), we can get the LLVM return instr.
  // from the return address register, which is the first operand
  Value* tmpI = RetMI->getOperand(0).getVRegValue();
  ReturnInst* retI=cast<ReturnInst>(cast<TmpInstruction>(tmpI)->getOperand(0));
  if (const Value *RetVal = retI->getReturnValue())
    if (LiveRange *const LR = LRI.getLiveRangeForValue(RetVal))
      LR->setSuggestedColor(LR->getRegClassID() == IntRegClassID
                            ? (unsigned) SparcIntRegClass::i0
                            : (unsigned) SparcFloatRegClass::f0);
}

//---------------------------------------------------------------------------
// Check if a specified register type needs a scratch register to be
// copied to/from memory.  If it does, the reg. type that must be used
// for scratch registers is returned in scratchRegType.
//
// Only the int CC register needs such a scratch register.
// The FP CC registers can (and must) be copied directly to/from memory.
//---------------------------------------------------------------------------

bool
UltraSparcRegInfo::regTypeNeedsScratchReg(int RegType,
                                          int& scratchRegType) const
{
  if (RegType == IntCCRegType)
    {
      scratchRegType = IntRegType;
      return true;
    }
  return false;
}

//---------------------------------------------------------------------------
// Copy from a register to register. Register number must be the unified
// register number.
//---------------------------------------------------------------------------

void
UltraSparcRegInfo::cpReg2RegMI(std::vector<MachineInstr*>& mvec,
                               unsigned SrcReg,
                               unsigned DestReg,
                               int RegType) const {
  assert( ((int)SrcReg != getInvalidRegNum()) && 
          ((int)DestReg != getInvalidRegNum()) &&
	  "Invalid Register");
  
  MachineInstr * MI = NULL;
  
  switch( RegType ) {
    
  case IntCCRegType:
    if (getRegType(DestReg) == IntRegType) {
      // copy intCC reg to int reg
      MI = (BuildMI(V9::RDCCR, 2)
            .addMReg(getUnifiedRegNum(UltraSparcRegInfo::IntCCRegClassID,
                                      SparcIntCCRegClass::ccr))
            .addMReg(DestReg,MOTy::Def));
    } else {
      // copy int reg to intCC reg
      assert(getRegType(SrcReg) == IntRegType
             && "Can only copy CC reg to/from integer reg");
      MI = (BuildMI(V9::WRCCRr, 3)
            .addMReg(SrcReg)
            .addMReg(SparcIntRegClass::g0)
            .addMReg(getUnifiedRegNum(UltraSparcRegInfo::IntCCRegClassID,
                                      SparcIntCCRegClass::ccr), MOTy::Def));
    }
    break;
    
  case FloatCCRegType: 
    assert(0 && "Cannot copy FPCC register to any other register");
    break;
    
  case IntRegType:
    MI = BuildMI(V9::ADDr, 3).addMReg(SrcReg).addMReg(getZeroRegNum())
      .addMReg(DestReg, MOTy::Def);
    break;
    
  case FPSingleRegType:
    MI = BuildMI(V9::FMOVS, 2).addMReg(SrcReg).addMReg(DestReg, MOTy::Def);
    break;

  case FPDoubleRegType:
    MI = BuildMI(V9::FMOVD, 2).addMReg(SrcReg).addMReg(DestReg, MOTy::Def);
    break;

  default:
    assert(0 && "Unknown RegType");
    break;
  }
  
  if (MI)
    mvec.push_back(MI);
}

//---------------------------------------------------------------------------
// Copy from a register to memory (i.e., Store). Register number must 
// be the unified register number
//---------------------------------------------------------------------------


void
UltraSparcRegInfo::cpReg2MemMI(std::vector<MachineInstr*>& mvec,
                               unsigned SrcReg, 
                               unsigned PtrReg,
                               int Offset, int RegType,
                               int scratchReg) const {
  MachineInstr * MI = NULL;
  int OffReg = -1;

  // If the Offset will not fit in the signed-immediate field, find an
  // unused register to hold the offset value.  This takes advantage of
  // the fact that all the opcodes used below have the same size immed. field.
  // Use the register allocator, PRA, to find an unused reg. at this MI.
  // 
  if (RegType != IntCCRegType)          // does not use offset below
    if (! target.getInstrInfo().constantFitsInImmedField(V9::LDXi, Offset)) {
#ifdef CAN_FIND_FREE_REGISTER_TRANSPARENTLY
      RegClass* RC = PRA.getRegClassByID(this->getRegClassIDOfRegType(RegType));
      OffReg = PRA.getUnusedUniRegAtMI(RC, RegType, MInst, LVSetBef);
#else
      // Default to using register g2 for holding large offsets
      OffReg = getUnifiedRegNum(UltraSparcRegInfo::IntRegClassID,
                                SparcIntRegClass::g4);
#endif
      assert(OffReg >= 0 && "FIXME: cpReg2MemMI cannot find an unused reg.");
      mvec.push_back(BuildMI(V9::SETSW, 2).addZImm(Offset).addReg(OffReg));
    }

  switch (RegType) {
  case IntRegType:
    if (target.getInstrInfo().constantFitsInImmedField(V9::STXi, Offset))
      MI = BuildMI(V9::STXi,3).addMReg(SrcReg).addMReg(PtrReg).addSImm(Offset);
    else
      MI = BuildMI(V9::STXr,3).addMReg(SrcReg).addMReg(PtrReg).addMReg(OffReg);
    break;

  case FPSingleRegType:
    if (target.getInstrInfo().constantFitsInImmedField(V9::STFi, Offset))
      MI = BuildMI(V9::STFi, 3).addMReg(SrcReg).addMReg(PtrReg).addSImm(Offset);
    else
      MI = BuildMI(V9::STFr, 3).addMReg(SrcReg).addMReg(PtrReg).addMReg(OffReg);
    break;

  case FPDoubleRegType:
    if (target.getInstrInfo().constantFitsInImmedField(V9::STDFi, Offset))
      MI = BuildMI(V9::STDFi,3).addMReg(SrcReg).addMReg(PtrReg).addSImm(Offset);
    else
      MI = BuildMI(V9::STDFr,3).addMReg(SrcReg).addMReg(PtrReg).addSImm(OffReg);
    break;

  case IntCCRegType:
    assert(scratchReg >= 0 && "Need scratch reg to store %ccr to memory");
    assert(getRegType(scratchReg) ==IntRegType && "Invalid scratch reg");
    MI = (BuildMI(V9::RDCCR, 2)
          .addMReg(getUnifiedRegNum(UltraSparcRegInfo::IntCCRegClassID,
                                    SparcIntCCRegClass::ccr))
          .addMReg(scratchReg, MOTy::Def));
    mvec.push_back(MI);
    
    cpReg2MemMI(mvec, scratchReg, PtrReg, Offset, IntRegType);
    return;

  case FloatCCRegType: {
    unsigned fsrReg =  getUnifiedRegNum(UltraSparcRegInfo::SpecialRegClassID,
                                           SparcSpecialRegClass::fsr);
    if (target.getInstrInfo().constantFitsInImmedField(V9::STXFSRi, Offset))
      MI=BuildMI(V9::STXFSRi,3).addMReg(fsrReg).addMReg(PtrReg).addSImm(Offset);
    else
      MI=BuildMI(V9::STXFSRr,3).addMReg(fsrReg).addMReg(PtrReg).addMReg(OffReg);
    break;
  }
  default:
    assert(0 && "Unknown RegType in cpReg2MemMI");
  }
  mvec.push_back(MI);
}


//---------------------------------------------------------------------------
// Copy from memory to a reg (i.e., Load) Register number must be the unified
// register number
//---------------------------------------------------------------------------


void
UltraSparcRegInfo::cpMem2RegMI(std::vector<MachineInstr*>& mvec,
                               unsigned PtrReg,	
                               int Offset,
                               unsigned DestReg,
                               int RegType,
                               int scratchReg) const {
  MachineInstr * MI = NULL;
  int OffReg = -1;

  // If the Offset will not fit in the signed-immediate field, find an
  // unused register to hold the offset value.  This takes advantage of
  // the fact that all the opcodes used below have the same size immed. field.
  // Use the register allocator, PRA, to find an unused reg. at this MI.
  // 
  if (RegType != IntCCRegType)          // does not use offset below
    if (! target.getInstrInfo().constantFitsInImmedField(V9::LDXi, Offset)) {
#ifdef CAN_FIND_FREE_REGISTER_TRANSPARENTLY
      RegClass* RC = PRA.getRegClassByID(this->getRegClassIDOfRegType(RegType));
      OffReg = PRA.getUnusedUniRegAtMI(RC, RegType, MInst, LVSetBef);
#else
      // Default to using register g2 for holding large offsets
      OffReg = getUnifiedRegNum(UltraSparcRegInfo::IntRegClassID,
                                SparcIntRegClass::g4);
#endif
      assert(OffReg >= 0 && "FIXME: cpReg2MemMI cannot find an unused reg.");
      mvec.push_back(BuildMI(V9::SETSW, 2).addZImm(Offset).addReg(OffReg));
    }

  switch (RegType) {
  case IntRegType:
    if (target.getInstrInfo().constantFitsInImmedField(V9::LDXi, Offset))
      MI = BuildMI(V9::LDXi, 3).addMReg(PtrReg).addSImm(Offset).addMReg(DestReg,
                                                                    MOTy::Def);
    else
      MI = BuildMI(V9::LDXr, 3).addMReg(PtrReg).addMReg(OffReg).addMReg(DestReg,
                                                                    MOTy::Def);
    break;

  case FPSingleRegType:
    if (target.getInstrInfo().constantFitsInImmedField(V9::LDFi, Offset))
      MI = BuildMI(V9::LDFi, 3).addMReg(PtrReg).addSImm(Offset).addMReg(DestReg,
                                                                    MOTy::Def);
    else
      MI = BuildMI(V9::LDFr, 3).addMReg(PtrReg).addMReg(OffReg).addMReg(DestReg,
                                                                    MOTy::Def);
    break;

  case FPDoubleRegType:
    if (target.getInstrInfo().constantFitsInImmedField(V9::LDDFi, Offset))
      MI= BuildMI(V9::LDDFi, 3).addMReg(PtrReg).addSImm(Offset).addMReg(DestReg,
                                                                    MOTy::Def);
    else
      MI= BuildMI(V9::LDDFr, 3).addMReg(PtrReg).addMReg(OffReg).addMReg(DestReg,
                                                                    MOTy::Def);
    break;

  case IntCCRegType:
    assert(scratchReg >= 0 && "Need scratch reg to load %ccr from memory");
    assert(getRegType(scratchReg) ==IntRegType && "Invalid scratch reg");
    cpMem2RegMI(mvec, PtrReg, Offset, scratchReg, IntRegType);
    MI = (BuildMI(V9::WRCCRr, 3)
          .addMReg(scratchReg)
          .addMReg(SparcIntRegClass::g0)
          .addMReg(getUnifiedRegNum(UltraSparcRegInfo::IntCCRegClassID,
                                    SparcIntCCRegClass::ccr), MOTy::Def));
    break;
    
  case FloatCCRegType: {
    unsigned fsrRegNum =  getUnifiedRegNum(UltraSparcRegInfo::SpecialRegClassID,
                                           SparcSpecialRegClass::fsr);
    if (target.getInstrInfo().constantFitsInImmedField(V9::LDXFSRi, Offset))
      MI = BuildMI(V9::LDXFSRi, 3).addMReg(PtrReg).addSImm(Offset)
        .addMReg(fsrRegNum, MOTy::UseAndDef);
    else
      MI = BuildMI(V9::LDXFSRr, 3).addMReg(PtrReg).addMReg(OffReg)
        .addMReg(fsrRegNum, MOTy::UseAndDef);
    break;
  }
  default:
    assert(0 && "Unknown RegType in cpMem2RegMI");
  }
  mvec.push_back(MI);
}


//---------------------------------------------------------------------------
// Generate a copy instruction to copy a value to another. Temporarily
// used by PhiElimination code.
//---------------------------------------------------------------------------


void
UltraSparcRegInfo::cpValue2Value(Value *Src, Value *Dest,
                                 std::vector<MachineInstr*>& mvec) const {
  int RegType = getRegTypeForDataType(Src->getType());
  MachineInstr * MI = NULL;

  switch( RegType ) {
  case IntRegType:
    MI = BuildMI(V9::ADDr, 3).addReg(Src).addMReg(getZeroRegNum())
      .addRegDef(Dest);
    break;
  case FPSingleRegType:
    MI = BuildMI(V9::FMOVS, 2).addReg(Src).addRegDef(Dest);
    break;
  case FPDoubleRegType:
    MI = BuildMI(V9::FMOVD, 2).addReg(Src).addRegDef(Dest);
    break;
  default:
    assert(0 && "Unknow RegType in CpValu2Value");
  }

  mvec.push_back(MI);
}



//---------------------------------------------------------------------------
// Print the register assigned to a LR
//---------------------------------------------------------------------------

void UltraSparcRegInfo::printReg(const LiveRange *LR) const {
  unsigned RegClassID = LR->getRegClassID();
  std::cerr << " Node ";

  if (!LR->hasColor()) {
    std::cerr << " - could not find a color\n";
    return;
  }
  
  // if a color is found

  std::cerr << " colored with color "<< LR->getColor();

  unsigned uRegName = getUnifiedRegNum(RegClassID, LR->getColor());
  
  std::cerr << "[";
  std::cerr<< getUnifiedRegName(uRegName);
  if (RegClassID == FloatRegClassID && LR->getType() == Type::DoubleTy)
    std::cerr << "+" << getUnifiedRegName(uRegName+1);
  std::cerr << "]\n";
}