summaryrefslogtreecommitdiff
path: root/lib/Target/TargetData.cpp
blob: 22dde60d8f61f7b085dadab85f7e5fc2204492d2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
//===-- TargetData.cpp - Data size & alignment routines --------------------==//
// 
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
// 
//===----------------------------------------------------------------------===//
//
// This file defines target properties related to datatype size/offset/alignment
// information.
//
// This structure should be created once, filled in if the defaults are not
// correct and then passed around by const&.  None of the members functions
// require modification to the object.
//
//===----------------------------------------------------------------------===//

#include "llvm/Target/TargetData.h"
#include "llvm/Module.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Constants.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "Support/MathExtras.h"
using namespace llvm;

// Handle the Pass registration stuff necessary to use TargetData's.
namespace {
  // Register the default SparcV9 implementation...
  RegisterPass<TargetData> X("targetdata", "Target Data Layout");
}

static inline void getTypeInfo(const Type *Ty, const TargetData *TD,
                               uint64_t &Size, unsigned char &Alignment);

//===----------------------------------------------------------------------===//
// Support for StructLayout
//===----------------------------------------------------------------------===//

StructLayout::StructLayout(const StructType *ST, const TargetData &TD) {
  StructAlignment = 0;
  StructSize = 0;

  // Loop over each of the elements, placing them in memory...
  for (StructType::element_iterator TI = ST->element_begin(), 
         TE = ST->element_end(); TI != TE; ++TI) {
    const Type *Ty = *TI;
    unsigned char A;
    unsigned TyAlign;
    uint64_t TySize;
    getTypeInfo(Ty, &TD, TySize, A);
    TyAlign = A;

    // Add padding if necessary to make the data element aligned properly...
    if (StructSize % TyAlign != 0)
      StructSize = (StructSize/TyAlign + 1) * TyAlign;   // Add padding...

    // Keep track of maximum alignment constraint
    StructAlignment = std::max(TyAlign, StructAlignment);

    MemberOffsets.push_back(StructSize);
    StructSize += TySize;                 // Consume space for this data item
  }

  // Empty structures have alignment of 1 byte.
  if (StructAlignment == 0) StructAlignment = 1;

  // Add padding to the end of the struct so that it could be put in an array
  // and all array elements would be aligned correctly.
  if (StructSize % StructAlignment != 0)
    StructSize = (StructSize/StructAlignment + 1) * StructAlignment;
}

//===----------------------------------------------------------------------===//
//                       TargetData Class Implementation
//===----------------------------------------------------------------------===//

TargetData::TargetData(const std::string &TargetName,
                       bool isLittleEndian, unsigned char PtrSize,
                       unsigned char PtrAl, unsigned char DoubleAl,
                       unsigned char FloatAl, unsigned char LongAl, 
                       unsigned char IntAl, unsigned char ShortAl,
                       unsigned char ByteAl, unsigned char BoolAl) {

  // If this assert triggers, a pass "required" TargetData information, but the
  // top level tool did not provide one for it.  We do not want to default
  // construct, or else we might end up using a bad endianness or pointer size!
  //
  assert(!TargetName.empty() &&
         "ERROR: Tool did not specify a target data to use!");

  LittleEndian     = isLittleEndian;
  PointerSize      = PtrSize;
  PointerAlignment = PtrAl;
  DoubleAlignment  = DoubleAl;
  FloatAlignment   = FloatAl;
  LongAlignment    = LongAl;
  IntAlignment     = IntAl;
  ShortAlignment   = ShortAl;
  ByteAlignment    = ByteAl;
  BoolAlignment    = BoolAl;
}

TargetData::TargetData(const std::string &ToolName, const Module *M) {
  LittleEndian     = M->getEndianness() != Module::BigEndian;
  PointerSize      = M->getPointerSize() != Module::Pointer64 ? 4 : 8;
  PointerAlignment = PointerSize;
  DoubleAlignment  = PointerSize;
  FloatAlignment   = 4;
  LongAlignment    = 8;
  IntAlignment     = 4;
  ShortAlignment   = 2;
  ByteAlignment    = 1;
  BoolAlignment    = 1;
}

static std::map<std::pair<const TargetData*,const StructType*>,
                StructLayout> *Layouts = 0;


TargetData::~TargetData() {
  if (Layouts) {
    // Remove any layouts for this TD.
    std::map<std::pair<const TargetData*,
      const StructType*>, StructLayout>::iterator
      I = Layouts->lower_bound(std::make_pair(this, (const StructType*)0));
    while (I != Layouts->end() && I->first.first == this)
      Layouts->erase(I++);
    if (Layouts->empty()) {
      delete Layouts;
      Layouts = 0;
    }
  }
}

const StructLayout *TargetData::getStructLayout(const StructType *Ty) const {
  if (Layouts == 0)
    Layouts = new std::map<std::pair<const TargetData*,const StructType*>,
                           StructLayout>();
  std::map<std::pair<const TargetData*,const StructType*>,
                     StructLayout>::iterator
    I = Layouts->lower_bound(std::make_pair(this, Ty));
  if (I != Layouts->end() && I->first.first == this && I->first.second == Ty)
    return &I->second;
  else {
    return &Layouts->insert(I, std::make_pair(std::make_pair(this, Ty),
                                              StructLayout(Ty, *this)))->second;
  }
}

static inline void getTypeInfo(const Type *Ty, const TargetData *TD,
                               uint64_t &Size, unsigned char &Alignment) {
  assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!");
  switch (Ty->getTypeID()) {
  case Type::BoolTyID:   Size = 1; Alignment = TD->getBoolAlignment(); return;
  case Type::VoidTyID:
  case Type::UByteTyID:
  case Type::SByteTyID:  Size = 1; Alignment = TD->getByteAlignment(); return;
  case Type::UShortTyID:
  case Type::ShortTyID:  Size = 2; Alignment = TD->getShortAlignment(); return;
  case Type::UIntTyID:
  case Type::IntTyID:    Size = 4; Alignment = TD->getIntAlignment(); return;
  case Type::ULongTyID:
  case Type::LongTyID:   Size = 8; Alignment = TD->getLongAlignment(); return;
  case Type::FloatTyID:  Size = 4; Alignment = TD->getFloatAlignment(); return;
  case Type::DoubleTyID: Size = 8; Alignment = TD->getDoubleAlignment(); return;
  case Type::LabelTyID:
  case Type::PointerTyID:
    Size = TD->getPointerSize(); Alignment = TD->getPointerAlignment();
    return;
  case Type::ArrayTyID: {
    const ArrayType *ATy = cast<ArrayType>(Ty);
    getTypeInfo(ATy->getElementType(), TD, Size, Alignment);
    unsigned AlignedSize = (Size + Alignment - 1)/Alignment*Alignment;
    Size = AlignedSize*ATy->getNumElements();
    return;
  }
  case Type::StructTyID: {
    // Get the layout annotation... which is lazily created on demand.
    const StructLayout *Layout = TD->getStructLayout(cast<StructType>(Ty));
    Size = Layout->StructSize; Alignment = Layout->StructAlignment;
    return;
  }
    
  default:
    assert(0 && "Bad type for getTypeInfo!!!");
    return;
  }
}

uint64_t TargetData::getTypeSize(const Type *Ty) const {
  uint64_t Size;
  unsigned char Align;
  getTypeInfo(Ty, this, Size, Align);
  return Size;
}

unsigned char TargetData::getTypeAlignment(const Type *Ty) const {
  uint64_t Size;
  unsigned char Align;
  getTypeInfo(Ty, this, Size, Align);
  return Align;
}

unsigned char TargetData::getTypeAlignmentShift(const Type *Ty) const {
  unsigned Align = getTypeAlignment(Ty);
  assert(!(Align & (Align-1)) && "Alignment is not a power of two!");
  return log2(Align);
}

/// getIntPtrType - Return an unsigned integer type that is the same size or
/// greater to the host pointer size.
const Type *TargetData::getIntPtrType() const {
  switch (getPointerSize()) {
  default: assert(0 && "Unknown pointer size!");
  case 2: return Type::UShortTy;
  case 4: return Type::UIntTy;
  case 8: return Type::ULongTy;
  }
}


uint64_t TargetData::getIndexedOffset(const Type *ptrTy,
                                      const std::vector<Value*> &Idx) const {
  const Type *Ty = ptrTy;
  assert(isa<PointerType>(Ty) && "Illegal argument for getIndexedOffset()");
  uint64_t Result = 0;

  generic_gep_type_iterator<std::vector<Value*>::const_iterator>
    TI = gep_type_begin(ptrTy, Idx.begin(), Idx.end());
  for (unsigned CurIDX = 0; CurIDX != Idx.size(); ++CurIDX, ++TI) {
    if (const StructType *STy = dyn_cast<StructType>(*TI)) {
      assert(Idx[CurIDX]->getType() == Type::UIntTy && "Illegal struct idx");
      unsigned FieldNo = cast<ConstantUInt>(Idx[CurIDX])->getValue();

      // Get structure layout information...
      const StructLayout *Layout = getStructLayout(STy);

      // Add in the offset, as calculated by the structure layout info...
      assert(FieldNo < Layout->MemberOffsets.size() &&"FieldNo out of range!");
      Result += Layout->MemberOffsets[FieldNo];

      // Update Ty to refer to current element
      Ty = STy->getElementType(FieldNo);
    } else {
      // Update Ty to refer to current element
      Ty = cast<SequentialType>(Ty)->getElementType();

      // Get the array index and the size of each array element.
      int64_t arrayIdx = cast<ConstantInt>(Idx[CurIDX])->getRawValue();
      Result += arrayIdx * (int64_t)getTypeSize(Ty);
    }
  }

  return Result;
}