summaryrefslogtreecommitdiff
path: root/lib/Target/TargetTransformImpl.cpp
blob: 3bf4bf72e145229eb0ffa351beeadc8ba3d2d2e2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
// llvm/Target/TargetTransformImpl.cpp - Target Loop Trans Info ---*- C++ -*-=//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#include "llvm/Target/TargetTransformImpl.h"
#include "llvm/Target/TargetLowering.h"
#include <utility>

using namespace llvm;

//===----------------------------------------------------------------------===//
//
// Calls used by scalar transformations.
//
//===----------------------------------------------------------------------===//

bool ScalarTargetTransformImpl::isLegalAddImmediate(int64_t imm) const {
  return TLI->isLegalAddImmediate(imm);
}

bool ScalarTargetTransformImpl::isLegalICmpImmediate(int64_t imm) const {
  return TLI->isLegalICmpImmediate(imm);
}

bool ScalarTargetTransformImpl::isLegalAddressingMode(const AddrMode &AM,
                                                    Type *Ty) const {
  return TLI->isLegalAddressingMode(AM, Ty);
}

bool ScalarTargetTransformImpl::isTruncateFree(Type *Ty1, Type *Ty2) const {
  return TLI->isTruncateFree(Ty1, Ty2);
}

bool ScalarTargetTransformImpl::isTypeLegal(Type *Ty) const {
  EVT T = TLI->getValueType(Ty);
  return TLI->isTypeLegal(T);
}

unsigned ScalarTargetTransformImpl::getJumpBufAlignment() const {
  return TLI->getJumpBufAlignment();
}

unsigned ScalarTargetTransformImpl::getJumpBufSize() const {
  return TLI->getJumpBufSize();
}

//===----------------------------------------------------------------------===//
//
// Calls used by the vectorizers.
//
//===----------------------------------------------------------------------===//
int InstructionOpcodeToISD(unsigned Opcode) {
  static const int OpToISDTbl[] = {
    /*Instruction::Ret           */ 0, // Opcode numbering start at #1.
    /*Instruction::Br            */ 0,
    /*Instruction::Switch        */ 0,
    /*Instruction::IndirectBr    */ 0,
    /*Instruction::Invoke        */ 0,
    /*Instruction::Resume        */ 0,
    /*Instruction::Unreachable   */ 0,
    /*Instruction::Add           */ ISD::ADD,
    /*Instruction::FAdd          */ ISD::FADD,
    /*Instruction::Sub           */ ISD::SUB,
    /*Instruction::FSub          */ ISD::FSUB,
    /*Instruction::Mul           */ ISD::MUL,
    /*Instruction::FMul          */ ISD::FMUL,
    /*Instruction::UDiv          */ ISD::UDIV,
    /*Instruction::SDiv          */ ISD::UDIV,
    /*Instruction::FDiv          */ ISD::FDIV,
    /*Instruction::URem          */ ISD::UREM,
    /*Instruction::SRem          */ ISD::SREM,
    /*Instruction::FRem          */ ISD::FREM,
    /*Instruction::Shl           */ ISD::SHL,
    /*Instruction::LShr          */ ISD::SRL,
    /*Instruction::AShr          */ ISD::SRA,
    /*Instruction::And           */ ISD::AND,
    /*Instruction::Or            */ ISD::OR,
    /*Instruction::Xor           */ ISD::XOR,
    /*Instruction::Alloca        */ 0,
    /*Instruction::Load          */ ISD::LOAD,
    /*Instruction::Store         */ ISD::STORE,
    /*Instruction::GetElementPtr */ 0,
    /*Instruction::Fence         */ 0,
    /*Instruction::AtomicCmpXchg */ 0,
    /*Instruction::AtomicRMW     */ 0,
    /*Instruction::Trunc         */ ISD::TRUNCATE,
    /*Instruction::ZExt          */ ISD::ZERO_EXTEND,
    /*Instruction::SExt          */ ISD::SEXTLOAD,
    /*Instruction::FPToUI        */ ISD::FP_TO_UINT,
    /*Instruction::FPToSI        */ ISD::FP_TO_SINT,
    /*Instruction::UIToFP        */ ISD::UINT_TO_FP,
    /*Instruction::SIToFP        */ ISD::SINT_TO_FP,
    /*Instruction::FPTrunc       */ ISD::FP_ROUND,
    /*Instruction::FPExt         */ ISD::FP_EXTEND,
    /*Instruction::PtrToInt      */ ISD::BITCAST,
    /*Instruction::IntToPtr      */ ISD::BITCAST,
    /*Instruction::BitCast       */ ISD::BITCAST,
    /*Instruction::ICmp          */ ISD::SETCC,
    /*Instruction::FCmp          */ ISD::SETCC,
    /*Instruction::PHI           */ 0,
    /*Instruction::Call          */ 0,
    /*Instruction::Select        */ ISD::SELECT,
    /*Instruction::UserOp1       */ 0,
    /*Instruction::UserOp2       */ 0,
    /*Instruction::VAArg         */ 0,
    /*Instruction::ExtractElement*/ ISD::EXTRACT_VECTOR_ELT,
    /*Instruction::InsertElement */ ISD::INSERT_VECTOR_ELT,
    /*Instruction::ShuffleVector */ ISD::VECTOR_SHUFFLE,
    /*Instruction::ExtractValue  */ ISD::MERGE_VALUES,
    /*Instruction::InsertValue   */ ISD::MERGE_VALUES,
    /*Instruction::LandingPad    */ 0};

  assert((Instruction::Ret == 1) && (Instruction::LandingPad == 58) &&
         "Instruction order had changed");

  // Opcode numbering starts at #1 but the table starts at #0, so we subtract
  // one from the opcode number.
  return OpToISDTbl[Opcode - 1];
}

std::pair<unsigned, EVT>
VectorTargetTransformImpl::getTypeLegalizationCost(LLVMContext &C,
                                                         EVT Ty) const {
  unsigned Cost = 1;
  // We keep legalizing the type until we find a legal kind. We assume that
  // the only operation that costs anything is the split. After splitting
  // we need to handle two types.
  while (true) {
    TargetLowering::LegalizeKind LK = TLI->getTypeConversion(C, Ty);

    if (LK.first == TargetLowering::TypeLegal)
      return std::make_pair(Cost, LK.second);

    if (LK.first == TargetLowering::TypeSplitVector)
      Cost *= 2;

    // Keep legalizing the type.
    Ty = LK.second;
  }
}

unsigned
VectorTargetTransformImpl::getInstrCost(unsigned Opcode, Type *Ty1,
                                        Type *Ty2) const {
  // Check if any of the operands are vector operands.
  int ISD = InstructionOpcodeToISD(Opcode);

  // If we don't have any information about this instruction assume it costs 1.
  if (ISD == 0)
    return 1;

  // Selects on vectors are actually vector selects.
  if (ISD == ISD::SELECT) {
    assert(Ty2 && "Ty2 must hold the condition type");
    if (Ty2->isVectorTy())
    ISD = ISD::VSELECT;
  }

  assert(Ty1 && "We need to have at least one type");

  // From this stage we look at the legalized type.
  std::pair<unsigned, EVT>  LT =
  getTypeLegalizationCost(Ty1->getContext(), TLI->getValueType(Ty1));

  if (TLI->isOperationLegalOrCustom(ISD, LT.second)) {
    // The operation is legal. Assume it costs 1. Multiply
    // by the type-legalization overhead.
    return LT.first * 1;
  }

  unsigned NumElem =
    (LT.second.isVector() ? LT.second.getVectorNumElements() : 1);

  // We will probably scalarize this instruction. Assume that the cost is the
  // number of the vector elements.
  return LT.first * NumElem * 1;
}

unsigned
VectorTargetTransformImpl::getBroadcastCost(Type *Tp) const {
  return 1;
}

unsigned
VectorTargetTransformImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
                                           unsigned Alignment,
                                           unsigned AddressSpace) const {
  // From this stage we look at the legalized type.
  std::pair<unsigned, EVT>  LT =
  getTypeLegalizationCost(Src->getContext(), TLI->getValueType(Src));
  // Assume that all loads of legal types cost 1.
  return LT.first;
}

unsigned
VectorTargetTransformImpl::getNumberOfParts(Type *Tp) const {
  std::pair<unsigned, EVT>  LT =
  getTypeLegalizationCost(Tp->getContext(), TLI->getValueType(Tp));
  return LT.first;
}