summaryrefslogtreecommitdiff
path: root/lib/Target/X86/README.txt
blob: 52d3c01076de2f69d27112c8e1e8c6caf5897bcc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
//===---------------------------------------------------------------------===//
// Random ideas for the X86 backend.
//===---------------------------------------------------------------------===//

This should be one DIV/IDIV instruction, not a libcall:

unsigned test(unsigned long long X, unsigned Y) {
        return X/Y;
}

This can be done trivially with a custom legalizer.  What about overflow 
though?  http://gcc.gnu.org/bugzilla/show_bug.cgi?id=14224

//===---------------------------------------------------------------------===//

Improvements to the multiply -> shift/add algorithm:
http://gcc.gnu.org/ml/gcc-patches/2004-08/msg01590.html

//===---------------------------------------------------------------------===//

Improve code like this (occurs fairly frequently, e.g. in LLVM):
long long foo(int x) { return 1LL << x; }

http://gcc.gnu.org/ml/gcc-patches/2004-09/msg01109.html
http://gcc.gnu.org/ml/gcc-patches/2004-09/msg01128.html
http://gcc.gnu.org/ml/gcc-patches/2004-09/msg01136.html

Another useful one would be  ~0ULL >> X and ~0ULL << X.

One better solution for 1LL << x is:
        xorl    %eax, %eax
        xorl    %edx, %edx
        testb   $32, %cl
        sete    %al
        setne   %dl
        sall    %cl, %eax
        sall    %cl, %edx

But that requires good 8-bit subreg support.

Also, this might be better.  It's an extra shift, but it's one instruction
shorter, and doesn't stress 8-bit subreg support.
(From http://gcc.gnu.org/ml/gcc-patches/2004-09/msg01148.html,
but without the unnecessary and.)
        movl %ecx, %eax
        shrl $5, %eax
        movl %eax, %edx
        xorl $1, %edx
        sall %cl, %eax
        sall %cl. %edx

64-bit shifts (in general) expand to really bad code.  Instead of using
cmovs, we should expand to a conditional branch like GCC produces.

//===---------------------------------------------------------------------===//

Some isel ideas:

1. Dynamic programming based approach when compile time is not an
   issue.
2. Code duplication (addressing mode) during isel.
3. Other ideas from "Register-Sensitive Selection, Duplication, and
   Sequencing of Instructions".
4. Scheduling for reduced register pressure.  E.g. "Minimum Register 
   Instruction Sequence Problem: Revisiting Optimal Code Generation for DAGs" 
   and other related papers.
   http://citeseer.ist.psu.edu/govindarajan01minimum.html

//===---------------------------------------------------------------------===//

Should we promote i16 to i32 to avoid partial register update stalls?

//===---------------------------------------------------------------------===//

Leave any_extend as pseudo instruction and hint to register
allocator. Delay codegen until post register allocation.
Note. any_extend is now turned into an INSERT_SUBREG. We still need to teach
the coalescer how to deal with it though.

//===---------------------------------------------------------------------===//

It appears icc use push for parameter passing. Need to investigate.

//===---------------------------------------------------------------------===//

This:

void foo(void);
void bar(int x, int *P) { 
  x >>= 2;
  if (x) 
    foo();
  *P = x;
}

compiles into:

	movq	%rsi, %rbx
	movl	%edi, %r14d
	sarl	$2, %r14d
	testl	%r14d, %r14d
	je	LBB0_2

Instead of doing an explicit test, we can use the flags off the sar.  This
occurs in a bigger testcase like this, which is pretty common:

#include <vector>
int test1(std::vector<int> &X) {
  int Sum = 0;
  for (long i = 0, e = X.size(); i != e; ++i)
    X[i] = 0;
  return Sum;
}

//===---------------------------------------------------------------------===//

Only use inc/neg/not instructions on processors where they are faster than
add/sub/xor.  They are slower on the P4 due to only updating some processor
flags.

//===---------------------------------------------------------------------===//

The instruction selector sometimes misses folding a load into a compare.  The
pattern is written as (cmp reg, (load p)).  Because the compare isn't 
commutative, it is not matched with the load on both sides.  The dag combiner
should be made smart enough to canonicalize the load into the RHS of a compare
when it can invert the result of the compare for free.

//===---------------------------------------------------------------------===//

In many cases, LLVM generates code like this:

_test:
        movl 8(%esp), %eax
        cmpl %eax, 4(%esp)
        setl %al
        movzbl %al, %eax
        ret

on some processors (which ones?), it is more efficient to do this:

_test:
        movl 8(%esp), %ebx
        xor  %eax, %eax
        cmpl %ebx, 4(%esp)
        setl %al
        ret

Doing this correctly is tricky though, as the xor clobbers the flags.

//===---------------------------------------------------------------------===//

We should generate bts/btr/etc instructions on targets where they are cheap or
when codesize is important.  e.g., for:

void setbit(int *target, int bit) {
    *target |= (1 << bit);
}
void clearbit(int *target, int bit) {
    *target &= ~(1 << bit);
}

//===---------------------------------------------------------------------===//

Instead of the following for memset char*, 1, 10:

	movl $16843009, 4(%edx)
	movl $16843009, (%edx)
	movw $257, 8(%edx)

It might be better to generate

	movl $16843009, %eax
	movl %eax, 4(%edx)
	movl %eax, (%edx)
	movw al, 8(%edx)
	
when we can spare a register. It reduces code size.

//===---------------------------------------------------------------------===//

Evaluate what the best way to codegen sdiv X, (2^C) is.  For X/8, we currently
get this:

define i32 @test1(i32 %X) {
    %Y = sdiv i32 %X, 8
    ret i32 %Y
}

_test1:
        movl 4(%esp), %eax
        movl %eax, %ecx
        sarl $31, %ecx
        shrl $29, %ecx
        addl %ecx, %eax
        sarl $3, %eax
        ret

GCC knows several different ways to codegen it, one of which is this:

_test1:
        movl    4(%esp), %eax
        cmpl    $-1, %eax
        leal    7(%eax), %ecx
        cmovle  %ecx, %eax
        sarl    $3, %eax
        ret

which is probably slower, but it's interesting at least :)

//===---------------------------------------------------------------------===//

We are currently lowering large (1MB+) memmove/memcpy to rep/stosl and rep/movsl
We should leave these as libcalls for everything over a much lower threshold,
since libc is hand tuned for medium and large mem ops (avoiding RFO for large
stores, TLB preheating, etc)

//===---------------------------------------------------------------------===//

Optimize this into something reasonable:
 x * copysign(1.0, y) * copysign(1.0, z)

//===---------------------------------------------------------------------===//

Optimize copysign(x, *y) to use an integer load from y.

//===---------------------------------------------------------------------===//

The following tests perform worse with LSR:

lambda, siod, optimizer-eval, ackermann, hash2, nestedloop, strcat, and Treesor.

//===---------------------------------------------------------------------===//

Adding to the list of cmp / test poor codegen issues:

int test(__m128 *A, __m128 *B) {
  if (_mm_comige_ss(*A, *B))
    return 3;
  else
    return 4;
}

_test:
	movl 8(%esp), %eax
	movaps (%eax), %xmm0
	movl 4(%esp), %eax
	movaps (%eax), %xmm1
	comiss %xmm0, %xmm1
	setae %al
	movzbl %al, %ecx
	movl $3, %eax
	movl $4, %edx
	cmpl $0, %ecx
	cmove %edx, %eax
	ret

Note the setae, movzbl, cmpl, cmove can be replaced with a single cmovae. There
are a number of issues. 1) We are introducing a setcc between the result of the
intrisic call and select. 2) The intrinsic is expected to produce a i32 value
so a any extend (which becomes a zero extend) is added.

We probably need some kind of target DAG combine hook to fix this.

//===---------------------------------------------------------------------===//

We generate significantly worse code for this than GCC:
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=21150
http://gcc.gnu.org/bugzilla/attachment.cgi?id=8701

There is also one case we do worse on PPC.

//===---------------------------------------------------------------------===//

For this:

int test(int a)
{
  return a * 3;
}

We currently emits
	imull $3, 4(%esp), %eax

Perhaps this is what we really should generate is? Is imull three or four
cycles? Note: ICC generates this:
	movl	4(%esp), %eax
	leal	(%eax,%eax,2), %eax

The current instruction priority is based on pattern complexity. The former is
more "complex" because it folds a load so the latter will not be emitted.

Perhaps we should use AddedComplexity to give LEA32r a higher priority? We
should always try to match LEA first since the LEA matching code does some
estimate to determine whether the match is profitable.

However, if we care more about code size, then imull is better. It's two bytes
shorter than movl + leal.

On a Pentium M, both variants have the same characteristics with regard
to throughput; however, the multiplication has a latency of four cycles, as
opposed to two cycles for the movl+lea variant.

//===---------------------------------------------------------------------===//

__builtin_ffs codegen is messy.

int ffs_(unsigned X) { return __builtin_ffs(X); }

llvm produces:
ffs_:
        movl    4(%esp), %ecx
        bsfl    %ecx, %eax
        movl    $32, %edx
        cmove   %edx, %eax
        incl    %eax
        xorl    %edx, %edx
        testl   %ecx, %ecx
        cmove   %edx, %eax
        ret

vs gcc:

_ffs_:
        movl    $-1, %edx
        bsfl    4(%esp), %eax
        cmove   %edx, %eax
        addl    $1, %eax
        ret

Another example of __builtin_ffs (use predsimplify to eliminate a select):

int foo (unsigned long j) {
  if (j)
    return __builtin_ffs (j) - 1;
  else
    return 0;
}

//===---------------------------------------------------------------------===//

It appears gcc place string data with linkonce linkage in
.section __TEXT,__const_coal,coalesced instead of
.section __DATA,__const_coal,coalesced.
Take a look at darwin.h, there are other Darwin assembler directives that we
do not make use of.

//===---------------------------------------------------------------------===//

define i32 @foo(i32* %a, i32 %t) {
entry:
	br label %cond_true

cond_true:		; preds = %cond_true, %entry
	%x.0.0 = phi i32 [ 0, %entry ], [ %tmp9, %cond_true ]		; <i32> [#uses=3]
	%t_addr.0.0 = phi i32 [ %t, %entry ], [ %tmp7, %cond_true ]		; <i32> [#uses=1]
	%tmp2 = getelementptr i32* %a, i32 %x.0.0		; <i32*> [#uses=1]
	%tmp3 = load i32* %tmp2		; <i32> [#uses=1]
	%tmp5 = add i32 %t_addr.0.0, %x.0.0		; <i32> [#uses=1]
	%tmp7 = add i32 %tmp5, %tmp3		; <i32> [#uses=2]
	%tmp9 = add i32 %x.0.0, 1		; <i32> [#uses=2]
	%tmp = icmp sgt i32 %tmp9, 39		; <i1> [#uses=1]
	br i1 %tmp, label %bb12, label %cond_true

bb12:		; preds = %cond_true
	ret i32 %tmp7
}
is pessimized by -loop-reduce and -indvars

//===---------------------------------------------------------------------===//

u32 to float conversion improvement:

float uint32_2_float( unsigned u ) {
  float fl = (int) (u & 0xffff);
  float fh = (int) (u >> 16);
  fh *= 0x1.0p16f;
  return fh + fl;
}

00000000        subl    $0x04,%esp
00000003        movl    0x08(%esp,1),%eax
00000007        movl    %eax,%ecx
00000009        shrl    $0x10,%ecx
0000000c        cvtsi2ss        %ecx,%xmm0
00000010        andl    $0x0000ffff,%eax
00000015        cvtsi2ss        %eax,%xmm1
00000019        mulss   0x00000078,%xmm0
00000021        addss   %xmm1,%xmm0
00000025        movss   %xmm0,(%esp,1)
0000002a        flds    (%esp,1)
0000002d        addl    $0x04,%esp
00000030        ret

//===---------------------------------------------------------------------===//

When using fastcc abi, align stack slot of argument of type double on 8 byte
boundary to improve performance.

//===---------------------------------------------------------------------===//

GCC's ix86_expand_int_movcc function (in i386.c) has a ton of interesting
simplifications for integer "x cmp y ? a : b".

//===---------------------------------------------------------------------===//

Consider the expansion of:

define i32 @test3(i32 %X) {
        %tmp1 = urem i32 %X, 255
        ret i32 %tmp1
}

Currently it compiles to:

...
        movl $2155905153, %ecx
        movl 8(%esp), %esi
        movl %esi, %eax
        mull %ecx
...

This could be "reassociated" into:

        movl $2155905153, %eax
        movl 8(%esp), %ecx
        mull %ecx

to avoid the copy.  In fact, the existing two-address stuff would do this
except that mul isn't a commutative 2-addr instruction.  I guess this has
to be done at isel time based on the #uses to mul?

//===---------------------------------------------------------------------===//

Make sure the instruction which starts a loop does not cross a cacheline
boundary. This requires knowning the exact length of each machine instruction.
That is somewhat complicated, but doable. Example 256.bzip2:

In the new trace, the hot loop has an instruction which crosses a cacheline
boundary.  In addition to potential cache misses, this can't help decoding as I
imagine there has to be some kind of complicated decoder reset and realignment
to grab the bytes from the next cacheline.

532  532 0x3cfc movb     (1809(%esp, %esi), %bl   <<<--- spans 2 64 byte lines
942  942 0x3d03 movl     %dh, (1809(%esp, %esi)
937  937 0x3d0a incl     %esi
3    3   0x3d0b cmpb     %bl, %dl
27   27  0x3d0d jnz      0x000062db <main+11707>

//===---------------------------------------------------------------------===//

In c99 mode, the preprocessor doesn't like assembly comments like #TRUNCATE.

//===---------------------------------------------------------------------===//

This could be a single 16-bit load.

int f(char *p) {
    if ((p[0] == 1) & (p[1] == 2)) return 1;
    return 0;
}

//===---------------------------------------------------------------------===//

We should inline lrintf and probably other libc functions.

//===---------------------------------------------------------------------===//

Use the FLAGS values from arithmetic instructions more.  For example, compile:

int add_zf(int *x, int y, int a, int b) {
     if ((*x += y) == 0)
          return a;
     else
          return b;
}

to:
       addl    %esi, (%rdi)
       movl    %edx, %eax
       cmovne  %ecx, %eax
       ret
instead of:

_add_zf:
        addl (%rdi), %esi
        movl %esi, (%rdi)
        testl %esi, %esi
        cmove %edx, %ecx
        movl %ecx, %eax
        ret

As another example, compile function f2 in test/CodeGen/X86/cmp-test.ll
without a test instruction.

//===---------------------------------------------------------------------===//

These two functions have identical effects:

unsigned int f(unsigned int i, unsigned int n) {++i; if (i == n) ++i; return i;}
unsigned int f2(unsigned int i, unsigned int n) {++i; i += i == n; return i;}

We currently compile them to:

_f:
        movl 4(%esp), %eax
        movl %eax, %ecx
        incl %ecx
        movl 8(%esp), %edx
        cmpl %edx, %ecx
        jne LBB1_2      #UnifiedReturnBlock
LBB1_1: #cond_true
        addl $2, %eax
        ret
LBB1_2: #UnifiedReturnBlock
        movl %ecx, %eax
        ret
_f2:
        movl 4(%esp), %eax
        movl %eax, %ecx
        incl %ecx
        cmpl 8(%esp), %ecx
        sete %cl
        movzbl %cl, %ecx
        leal 1(%ecx,%eax), %eax
        ret

both of which are inferior to GCC's:

_f:
        movl    4(%esp), %edx
        leal    1(%edx), %eax
        addl    $2, %edx
        cmpl    8(%esp), %eax
        cmove   %edx, %eax
        ret
_f2:
        movl    4(%esp), %eax
        addl    $1, %eax
        xorl    %edx, %edx
        cmpl    8(%esp), %eax
        sete    %dl
        addl    %edx, %eax
        ret

//===---------------------------------------------------------------------===//

This code:

void test(int X) {
  if (X) abort();
}

is currently compiled to:

_test:
        subl $12, %esp
        cmpl $0, 16(%esp)
        jne LBB1_1
        addl $12, %esp
        ret
LBB1_1:
        call L_abort$stub

It would be better to produce:

_test:
        subl $12, %esp
        cmpl $0, 16(%esp)
        jne L_abort$stub
        addl $12, %esp
        ret

This can be applied to any no-return function call that takes no arguments etc.
Alternatively, the stack save/restore logic could be shrink-wrapped, producing
something like this:

_test:
        cmpl $0, 4(%esp)
        jne LBB1_1
        ret
LBB1_1:
        subl $12, %esp
        call L_abort$stub

Both are useful in different situations.  Finally, it could be shrink-wrapped
and tail called, like this:

_test:
        cmpl $0, 4(%esp)
        jne LBB1_1
        ret
LBB1_1:
        pop %eax   # realign stack.
        call L_abort$stub

Though this probably isn't worth it.

//===---------------------------------------------------------------------===//

Sometimes it is better to codegen subtractions from a constant (e.g. 7-x) with
a neg instead of a sub instruction.  Consider:

int test(char X) { return 7-X; }

we currently produce:
_test:
        movl $7, %eax
        movsbl 4(%esp), %ecx
        subl %ecx, %eax
        ret

We would use one fewer register if codegen'd as:

        movsbl 4(%esp), %eax
	neg %eax
        add $7, %eax
        ret

Note that this isn't beneficial if the load can be folded into the sub.  In
this case, we want a sub:

int test(int X) { return 7-X; }
_test:
        movl $7, %eax
        subl 4(%esp), %eax
        ret

//===---------------------------------------------------------------------===//

Leaf functions that require one 4-byte spill slot have a prolog like this:

_foo:
        pushl   %esi
        subl    $4, %esp
...
and an epilog like this:
        addl    $4, %esp
        popl    %esi
        ret

It would be smaller, and potentially faster, to push eax on entry and to
pop into a dummy register instead of using addl/subl of esp.  Just don't pop 
into any return registers :)

//===---------------------------------------------------------------------===//

The X86 backend should fold (branch (or (setcc, setcc))) into multiple 
branches.  We generate really poor code for:

double testf(double a) {
       return a == 0.0 ? 0.0 : (a > 0.0 ? 1.0 : -1.0);
}

For example, the entry BB is:

_testf:
        subl    $20, %esp
        pxor    %xmm0, %xmm0
        movsd   24(%esp), %xmm1
        ucomisd %xmm0, %xmm1
        setnp   %al
        sete    %cl
        testb   %cl, %al
        jne     LBB1_5  # UnifiedReturnBlock
LBB1_1: # cond_true


it would be better to replace the last four instructions with:

	jp LBB1_1
	je LBB1_5
LBB1_1:

We also codegen the inner ?: into a diamond:

       cvtss2sd        LCPI1_0(%rip), %xmm2
        cvtss2sd        LCPI1_1(%rip), %xmm3
        ucomisd %xmm1, %xmm0
        ja      LBB1_3  # cond_true
LBB1_2: # cond_true
        movapd  %xmm3, %xmm2
LBB1_3: # cond_true
        movapd  %xmm2, %xmm0
        ret

We should sink the load into xmm3 into the LBB1_2 block.  This should
be pretty easy, and will nuke all the copies.

//===---------------------------------------------------------------------===//

This:
        #include <algorithm>
        inline std::pair<unsigned, bool> full_add(unsigned a, unsigned b)
        { return std::make_pair(a + b, a + b < a); }
        bool no_overflow(unsigned a, unsigned b)
        { return !full_add(a, b).second; }

Should compile to:
	addl	%esi, %edi
	setae	%al
	movzbl	%al, %eax
	ret

on x86-64, instead of the rather stupid-looking:
	addl	%esi, %edi
	setb	%al
	xorb	$1, %al
	movzbl	%al, %eax
	ret


//===---------------------------------------------------------------------===//

The following code:

bb114.preheader:		; preds = %cond_next94
	%tmp231232 = sext i16 %tmp62 to i32		; <i32> [#uses=1]
	%tmp233 = sub i32 32, %tmp231232		; <i32> [#uses=1]
	%tmp245246 = sext i16 %tmp65 to i32		; <i32> [#uses=1]
	%tmp252253 = sext i16 %tmp68 to i32		; <i32> [#uses=1]
	%tmp254 = sub i32 32, %tmp252253		; <i32> [#uses=1]
	%tmp553554 = bitcast i16* %tmp37 to i8*		; <i8*> [#uses=2]
	%tmp583584 = sext i16 %tmp98 to i32		; <i32> [#uses=1]
	%tmp585 = sub i32 32, %tmp583584		; <i32> [#uses=1]
	%tmp614615 = sext i16 %tmp101 to i32		; <i32> [#uses=1]
	%tmp621622 = sext i16 %tmp104 to i32		; <i32> [#uses=1]
	%tmp623 = sub i32 32, %tmp621622		; <i32> [#uses=1]
	br label %bb114

produces:

LBB3_5:	# bb114.preheader
	movswl	-68(%ebp), %eax
	movl	$32, %ecx
	movl	%ecx, -80(%ebp)
	subl	%eax, -80(%ebp)
	movswl	-52(%ebp), %eax
	movl	%ecx, -84(%ebp)
	subl	%eax, -84(%ebp)
	movswl	-70(%ebp), %eax
	movl	%ecx, -88(%ebp)
	subl	%eax, -88(%ebp)
	movswl	-50(%ebp), %eax
	subl	%eax, %ecx
	movl	%ecx, -76(%ebp)
	movswl	-42(%ebp), %eax
	movl	%eax, -92(%ebp)
	movswl	-66(%ebp), %eax
	movl	%eax, -96(%ebp)
	movw	$0, -98(%ebp)

This appears to be bad because the RA is not folding the store to the stack 
slot into the movl.  The above instructions could be:
	movl    $32, -80(%ebp)
...
	movl    $32, -84(%ebp)
...
This seems like a cross between remat and spill folding.

This has redundant subtractions of %eax from a stack slot. However, %ecx doesn't
change, so we could simply subtract %eax from %ecx first and then use %ecx (or
vice-versa).

//===---------------------------------------------------------------------===//

This code:

	%tmp659 = icmp slt i16 %tmp654, 0		; <i1> [#uses=1]
	br i1 %tmp659, label %cond_true662, label %cond_next715

produces this:

	testw	%cx, %cx
	movswl	%cx, %esi
	jns	LBB4_109	# cond_next715

Shark tells us that using %cx in the testw instruction is sub-optimal. It
suggests using the 32-bit register (which is what ICC uses).

//===---------------------------------------------------------------------===//

We compile this:

void compare (long long foo) {
  if (foo < 4294967297LL)
    abort();
}

to:

compare:
        subl    $4, %esp
        cmpl    $0, 8(%esp)
        setne   %al
        movzbw  %al, %ax
        cmpl    $1, 12(%esp)
        setg    %cl
        movzbw  %cl, %cx
        cmove   %ax, %cx
        testb   $1, %cl
        jne     .LBB1_2 # UnifiedReturnBlock
.LBB1_1:        # ifthen
        call    abort
.LBB1_2:        # UnifiedReturnBlock
        addl    $4, %esp
        ret

(also really horrible code on ppc).  This is due to the expand code for 64-bit
compares.  GCC produces multiple branches, which is much nicer:

compare:
        subl    $12, %esp
        movl    20(%esp), %edx
        movl    16(%esp), %eax
        decl    %edx
        jle     .L7
.L5:
        addl    $12, %esp
        ret
        .p2align 4,,7
.L7:
        jl      .L4
        cmpl    $0, %eax
        .p2align 4,,8
        ja      .L5
.L4:
        .p2align 4,,9
        call    abort

//===---------------------------------------------------------------------===//

Tail call optimization improvements: Tail call optimization currently
pushes all arguments on the top of the stack (their normal place for
non-tail call optimized calls) that source from the callers arguments
or  that source from a virtual register (also possibly sourcing from
callers arguments).
This is done to prevent overwriting of parameters (see example
below) that might be used later.

example:  

int callee(int32, int64); 
int caller(int32 arg1, int32 arg2) { 
  int64 local = arg2 * 2; 
  return callee(arg2, (int64)local); 
}

[arg1]          [!arg2 no longer valid since we moved local onto it]
[arg2]      ->  [(int64)
[RETADDR]        local  ]

Moving arg1 onto the stack slot of callee function would overwrite
arg2 of the caller.

Possible optimizations:


 - Analyse the actual parameters of the callee to see which would
   overwrite a caller parameter which is used by the callee and only
   push them onto the top of the stack.

   int callee (int32 arg1, int32 arg2);
   int caller (int32 arg1, int32 arg2) {
       return callee(arg1,arg2);
   }

   Here we don't need to write any variables to the top of the stack
   since they don't overwrite each other.

   int callee (int32 arg1, int32 arg2);
   int caller (int32 arg1, int32 arg2) {
       return callee(arg2,arg1);
   }

   Here we need to push the arguments because they overwrite each
   other.

//===---------------------------------------------------------------------===//

main ()
{
  int i = 0;
  unsigned long int z = 0;

  do {
    z -= 0x00004000;
    i++;
    if (i > 0x00040000)
      abort ();
  } while (z > 0);
  exit (0);
}

gcc compiles this to:

_main:
	subl	$28, %esp
	xorl	%eax, %eax
	jmp	L2
L3:
	cmpl	$262144, %eax
	je	L10
L2:
	addl	$1, %eax
	cmpl	$262145, %eax
	jne	L3
	call	L_abort$stub
L10:
	movl	$0, (%esp)
	call	L_exit$stub

llvm:

_main:
	subl	$12, %esp
	movl	$1, %eax
	movl	$16384, %ecx
LBB1_1:	# bb
	cmpl	$262145, %eax
	jge	LBB1_4	# cond_true
LBB1_2:	# cond_next
	incl	%eax
	addl	$4294950912, %ecx
	cmpl	$16384, %ecx
	jne	LBB1_1	# bb
LBB1_3:	# bb11
	xorl	%eax, %eax
	addl	$12, %esp
	ret
LBB1_4:	# cond_true
	call	L_abort$stub

1. LSR should rewrite the first cmp with induction variable %ecx.
2. DAG combiner should fold
        leal    1(%eax), %edx
        cmpl    $262145, %edx
   =>
        cmpl    $262144, %eax

//===---------------------------------------------------------------------===//

define i64 @test(double %X) {
	%Y = fptosi double %X to i64
	ret i64 %Y
}

compiles to:

_test:
	subl	$20, %esp
	movsd	24(%esp), %xmm0
	movsd	%xmm0, 8(%esp)
	fldl	8(%esp)
	fisttpll	(%esp)
	movl	4(%esp), %edx
	movl	(%esp), %eax
	addl	$20, %esp
	#FP_REG_KILL
	ret

This should just fldl directly from the input stack slot.

//===---------------------------------------------------------------------===//

This code:
int foo (int x) { return (x & 65535) | 255; }

Should compile into:

_foo:
        movzwl  4(%esp), %eax
        orl     $255, %eax
        ret

instead of:
_foo:
	movl	$65280, %eax
	andl	4(%esp), %eax
	orl	$255, %eax
	ret

//===---------------------------------------------------------------------===//

We're codegen'ing multiply of long longs inefficiently:

unsigned long long LLM(unsigned long long arg1, unsigned long long arg2) {
  return arg1 *  arg2;
}

We compile to (fomit-frame-pointer):

_LLM:
	pushl	%esi
	movl	8(%esp), %ecx
	movl	16(%esp), %esi
	movl	%esi, %eax
	mull	%ecx
	imull	12(%esp), %esi
	addl	%edx, %esi
	imull	20(%esp), %ecx
	movl	%esi, %edx
	addl	%ecx, %edx
	popl	%esi
	ret

This looks like a scheduling deficiency and lack of remat of the load from
the argument area.  ICC apparently produces:

        movl      8(%esp), %ecx
        imull     12(%esp), %ecx
        movl      16(%esp), %eax
        imull     4(%esp), %eax 
        addl      %eax, %ecx  
        movl      4(%esp), %eax
        mull      12(%esp) 
        addl      %ecx, %edx
        ret

Note that it remat'd loads from 4(esp) and 12(esp).  See this GCC PR:
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=17236

//===---------------------------------------------------------------------===//

We can fold a store into "zeroing a reg".  Instead of:

xorl    %eax, %eax
movl    %eax, 124(%esp)

we should get:

movl    $0, 124(%esp)

if the flags of the xor are dead.

Likewise, we isel "x<<1" into "add reg,reg".  If reg is spilled, this should
be folded into: shl [mem], 1

//===---------------------------------------------------------------------===//

In SSE mode, we turn abs and neg into a load from the constant pool plus a xor
or and instruction, for example:

	xorpd	LCPI1_0, %xmm2

However, if xmm2 gets spilled, we end up with really ugly code like this:

	movsd	(%esp), %xmm0
	xorpd	LCPI1_0, %xmm0
	movsd	%xmm0, (%esp)

Since we 'know' that this is a 'neg', we can actually "fold" the spill into
the neg/abs instruction, turning it into an *integer* operation, like this:

	xorl 2147483648, [mem+4]     ## 2147483648 = (1 << 31)

you could also use xorb, but xorl is less likely to lead to a partial register
stall.  Here is a contrived testcase:

double a, b, c;
void test(double *P) {
  double X = *P;
  a = X;
  bar();
  X = -X;
  b = X;
  bar();
  c = X;
}

//===---------------------------------------------------------------------===//

The generated code on x86 for checking for signed overflow on a multiply the
obvious way is much longer than it needs to be.

int x(int a, int b) {
  long long prod = (long long)a*b;
  return  prod > 0x7FFFFFFF || prod < (-0x7FFFFFFF-1);
}

See PR2053 for more details.

//===---------------------------------------------------------------------===//

We should investigate using cdq/ctld (effect: edx = sar eax, 31)
more aggressively; it should cost the same as a move+shift on any modern
processor, but it's a lot shorter. Downside is that it puts more
pressure on register allocation because it has fixed operands.

Example:
int abs(int x) {return x < 0 ? -x : x;}

gcc compiles this to the following when using march/mtune=pentium2/3/4/m/etc.:
abs:
        movl    4(%esp), %eax
        cltd
        xorl    %edx, %eax
        subl    %edx, %eax
        ret

//===---------------------------------------------------------------------===//

Take the following code (from 
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=16541):

extern unsigned char first_one[65536];
int FirstOnet(unsigned long long arg1)
{
  if (arg1 >> 48)
    return (first_one[arg1 >> 48]);
  return 0;
}


The following code is currently generated:
FirstOnet:
        movl    8(%esp), %eax
        cmpl    $65536, %eax
        movl    4(%esp), %ecx
        jb      .LBB1_2 # UnifiedReturnBlock
.LBB1_1:        # ifthen
        shrl    $16, %eax
        movzbl  first_one(%eax), %eax
        ret
.LBB1_2:        # UnifiedReturnBlock
        xorl    %eax, %eax
        ret

We could change the "movl 8(%esp), %eax" into "movzwl 10(%esp), %eax"; this
lets us change the cmpl into a testl, which is shorter, and eliminate the shift.

//===---------------------------------------------------------------------===//

We compile this function:

define i32 @foo(i32 %a, i32 %b, i32 %c, i8 zeroext  %d) nounwind  {
entry:
	%tmp2 = icmp eq i8 %d, 0		; <i1> [#uses=1]
	br i1 %tmp2, label %bb7, label %bb

bb:		; preds = %entry
	%tmp6 = add i32 %b, %a		; <i32> [#uses=1]
	ret i32 %tmp6

bb7:		; preds = %entry
	%tmp10 = sub i32 %a, %c		; <i32> [#uses=1]
	ret i32 %tmp10
}

to:

foo:                                    # @foo
# BB#0:                                 # %entry
	movl	4(%esp), %ecx
	cmpb	$0, 16(%esp)
	je	.LBB0_2
# BB#1:                                 # %bb
	movl	8(%esp), %eax
	addl	%ecx, %eax
	ret
.LBB0_2:                                # %bb7
	movl	12(%esp), %edx
	movl	%ecx, %eax
	subl	%edx, %eax
	ret

There's an obviously unnecessary movl in .LBB0_2, and we could eliminate a
couple more movls by putting 4(%esp) into %eax instead of %ecx.

//===---------------------------------------------------------------------===//

See rdar://4653682.

From flops:

LBB1_15:        # bb310
        cvtss2sd        LCPI1_0, %xmm1
        addsd   %xmm1, %xmm0
        movsd   176(%esp), %xmm2
        mulsd   %xmm0, %xmm2
        movapd  %xmm2, %xmm3
        mulsd   %xmm3, %xmm3
        movapd  %xmm3, %xmm4
        mulsd   LCPI1_23, %xmm4
        addsd   LCPI1_24, %xmm4
        mulsd   %xmm3, %xmm4
        addsd   LCPI1_25, %xmm4
        mulsd   %xmm3, %xmm4
        addsd   LCPI1_26, %xmm4
        mulsd   %xmm3, %xmm4
        addsd   LCPI1_27, %xmm4
        mulsd   %xmm3, %xmm4
        addsd   LCPI1_28, %xmm4
        mulsd   %xmm3, %xmm4
        addsd   %xmm1, %xmm4
        mulsd   %xmm2, %xmm4
        movsd   152(%esp), %xmm1
        addsd   %xmm4, %xmm1
        movsd   %xmm1, 152(%esp)
        incl    %eax
        cmpl    %eax, %esi
        jge     LBB1_15 # bb310
LBB1_16:        # bb358.loopexit
        movsd   152(%esp), %xmm0
        addsd   %xmm0, %xmm0
        addsd   LCPI1_22, %xmm0
        movsd   %xmm0, 152(%esp)

Rather than spilling the result of the last addsd in the loop, we should have
insert a copy to split the interval (one for the duration of the loop, one
extending to the fall through). The register pressure in the loop isn't high
enough to warrant the spill.

Also check why xmm7 is not used at all in the function.

//===---------------------------------------------------------------------===//

Take the following:

target datalayout = "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:32:64-f32:32:32-f64:32:64-v64:64:64-v128:128:128-a0:0:64-f80:128:128-S128"
target triple = "i386-apple-darwin8"
@in_exit.4870.b = internal global i1 false		; <i1*> [#uses=2]
define fastcc void @abort_gzip() noreturn nounwind  {
entry:
	%tmp.b.i = load i1* @in_exit.4870.b		; <i1> [#uses=1]
	br i1 %tmp.b.i, label %bb.i, label %bb4.i
bb.i:		; preds = %entry
	tail call void @exit( i32 1 ) noreturn nounwind 
	unreachable
bb4.i:		; preds = %entry
	store i1 true, i1* @in_exit.4870.b
	tail call void @exit( i32 1 ) noreturn nounwind 
	unreachable
}
declare void @exit(i32) noreturn nounwind 

This compiles into:
_abort_gzip:                            ## @abort_gzip
## BB#0:                                ## %entry
	subl	$12, %esp
	movb	_in_exit.4870.b, %al
	cmpb	$1, %al
	jne	LBB0_2

We somehow miss folding the movb into the cmpb.

//===---------------------------------------------------------------------===//

We compile:

int test(int x, int y) {
  return x-y-1;
}

into (-m64):

_test:
	decl	%edi
	movl	%edi, %eax
	subl	%esi, %eax
	ret

it would be better to codegen as: x+~y  (notl+addl)

//===---------------------------------------------------------------------===//

This code:

int foo(const char *str,...)
{
 __builtin_va_list a; int x;
 __builtin_va_start(a,str); x = __builtin_va_arg(a,int); __builtin_va_end(a);
 return x;
}

gets compiled into this on x86-64:
	subq    $200, %rsp
        movaps  %xmm7, 160(%rsp)
        movaps  %xmm6, 144(%rsp)
        movaps  %xmm5, 128(%rsp)
        movaps  %xmm4, 112(%rsp)
        movaps  %xmm3, 96(%rsp)
        movaps  %xmm2, 80(%rsp)
        movaps  %xmm1, 64(%rsp)
        movaps  %xmm0, 48(%rsp)
        movq    %r9, 40(%rsp)
        movq    %r8, 32(%rsp)
        movq    %rcx, 24(%rsp)
        movq    %rdx, 16(%rsp)
        movq    %rsi, 8(%rsp)
        leaq    (%rsp), %rax
        movq    %rax, 192(%rsp)
        leaq    208(%rsp), %rax
        movq    %rax, 184(%rsp)
        movl    $48, 180(%rsp)
        movl    $8, 176(%rsp)
        movl    176(%rsp), %eax
        cmpl    $47, %eax
        jbe     .LBB1_3 # bb
.LBB1_1:        # bb3
        movq    184(%rsp), %rcx
        leaq    8(%rcx), %rax
        movq    %rax, 184(%rsp)
.LBB1_2:        # bb4
        movl    (%rcx), %eax
        addq    $200, %rsp
        ret
.LBB1_3:        # bb
        movl    %eax, %ecx
        addl    $8, %eax
        addq    192(%rsp), %rcx
        movl    %eax, 176(%rsp)
        jmp     .LBB1_2 # bb4

gcc 4.3 generates:
	subq    $96, %rsp
.LCFI0:
        leaq    104(%rsp), %rax
        movq    %rsi, -80(%rsp)
        movl    $8, -120(%rsp)
        movq    %rax, -112(%rsp)
        leaq    -88(%rsp), %rax
        movq    %rax, -104(%rsp)
        movl    $8, %eax
        cmpl    $48, %eax
        jb      .L6
        movq    -112(%rsp), %rdx
        movl    (%rdx), %eax
        addq    $96, %rsp
        ret
        .p2align 4,,10
        .p2align 3
.L6:
        mov     %eax, %edx
        addq    -104(%rsp), %rdx
        addl    $8, %eax
        movl    %eax, -120(%rsp)
        movl    (%rdx), %eax
        addq    $96, %rsp
        ret

and it gets compiled into this on x86:
	pushl   %ebp
        movl    %esp, %ebp
        subl    $4, %esp
        leal    12(%ebp), %eax
        movl    %eax, -4(%ebp)
        leal    16(%ebp), %eax
        movl    %eax, -4(%ebp)
        movl    12(%ebp), %eax
        addl    $4, %esp
        popl    %ebp
        ret

gcc 4.3 generates:
	pushl   %ebp
        movl    %esp, %ebp
        movl    12(%ebp), %eax
        popl    %ebp
        ret

//===---------------------------------------------------------------------===//

Teach tblgen not to check bitconvert source type in some cases. This allows us
to consolidate the following patterns in X86InstrMMX.td:

def : Pat<(v2i32 (bitconvert (i64 (vector_extract (v2i64 VR128:$src),
                                                  (iPTR 0))))),
          (v2i32 (MMX_MOVDQ2Qrr VR128:$src))>;
def : Pat<(v4i16 (bitconvert (i64 (vector_extract (v2i64 VR128:$src),
                                                  (iPTR 0))))),
          (v4i16 (MMX_MOVDQ2Qrr VR128:$src))>;
def : Pat<(v8i8 (bitconvert (i64 (vector_extract (v2i64 VR128:$src),
                                                  (iPTR 0))))),
          (v8i8 (MMX_MOVDQ2Qrr VR128:$src))>;

There are other cases in various td files.

//===---------------------------------------------------------------------===//

Take something like the following on x86-32:
unsigned a(unsigned long long x, unsigned y) {return x % y;}

We currently generate a libcall, but we really shouldn't: the expansion is
shorter and likely faster than the libcall.  The expected code is something
like the following:

	movl	12(%ebp), %eax
	movl	16(%ebp), %ecx
	xorl	%edx, %edx
	divl	%ecx
	movl	8(%ebp), %eax
	divl	%ecx
	movl	%edx, %eax
	ret

A similar code sequence works for division.

//===---------------------------------------------------------------------===//

These should compile to the same code, but the later codegen's to useless
instructions on X86. This may be a trivial dag combine (GCC PR7061):

struct s1 { unsigned char a, b; };
unsigned long f1(struct s1 x) {
    return x.a + x.b;
}
struct s2 { unsigned a: 8, b: 8; };
unsigned long f2(struct s2 x) {
    return x.a + x.b;
}

//===---------------------------------------------------------------------===//

We currently compile this:

define i32 @func1(i32 %v1, i32 %v2) nounwind {
entry:
  %t = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %v1, i32 %v2)
  %sum = extractvalue {i32, i1} %t, 0
  %obit = extractvalue {i32, i1} %t, 1
  br i1 %obit, label %overflow, label %normal
normal:
  ret i32 %sum
overflow:
  call void @llvm.trap()
  unreachable
}
declare {i32, i1} @llvm.sadd.with.overflow.i32(i32, i32)
declare void @llvm.trap()

to:

_func1:
	movl	4(%esp), %eax
	addl	8(%esp), %eax
	jo	LBB1_2	## overflow
LBB1_1:	## normal
	ret
LBB1_2:	## overflow
	ud2

it would be nice to produce "into" someday.

//===---------------------------------------------------------------------===//

Test instructions can be eliminated by using EFLAGS values from arithmetic
instructions. This is currently not done for mul, and, or, xor, neg, shl,
sra, srl, shld, shrd, atomic ops, and others. It is also currently not done
for read-modify-write instructions. It is also current not done if the
OF or CF flags are needed.

The shift operators have the complication that when the shift count is
zero, EFLAGS is not set, so they can only subsume a test instruction if
the shift count is known to be non-zero. Also, using the EFLAGS value
from a shift is apparently very slow on some x86 implementations.

In read-modify-write instructions, the root node in the isel match is
the store, and isel has no way for the use of the EFLAGS result of the
arithmetic to be remapped to the new node.

Add and subtract instructions set OF on signed overflow and CF on unsiged
overflow, while test instructions always clear OF and CF. In order to
replace a test with an add or subtract in a situation where OF or CF is
needed, codegen must be able to prove that the operation cannot see
signed or unsigned overflow, respectively.

//===---------------------------------------------------------------------===//

memcpy/memmove do not lower to SSE copies when possible.  A silly example is:
define <16 x float> @foo(<16 x float> %A) nounwind {
	%tmp = alloca <16 x float>, align 16
	%tmp2 = alloca <16 x float>, align 16
	store <16 x float> %A, <16 x float>* %tmp
	%s = bitcast <16 x float>* %tmp to i8*
	%s2 = bitcast <16 x float>* %tmp2 to i8*
	call void @llvm.memcpy.i64(i8* %s, i8* %s2, i64 64, i32 16)
	%R = load <16 x float>* %tmp2
	ret <16 x float> %R
}

declare void @llvm.memcpy.i64(i8* nocapture, i8* nocapture, i64, i32) nounwind

which compiles to:

_foo:
	subl	$140, %esp
	movaps	%xmm3, 112(%esp)
	movaps	%xmm2, 96(%esp)
	movaps	%xmm1, 80(%esp)
	movaps	%xmm0, 64(%esp)
	movl	60(%esp), %eax
	movl	%eax, 124(%esp)
	movl	56(%esp), %eax
	movl	%eax, 120(%esp)
	movl	52(%esp), %eax
        <many many more 32-bit copies>
      	movaps	(%esp), %xmm0
	movaps	16(%esp), %xmm1
	movaps	32(%esp), %xmm2
	movaps	48(%esp), %xmm3
	addl	$140, %esp
	ret

On Nehalem, it may even be cheaper to just use movups when unaligned than to
fall back to lower-granularity chunks.

//===---------------------------------------------------------------------===//

Implement processor-specific optimizations for parity with GCC on these
processors.  GCC does two optimizations:

1. ix86_pad_returns inserts a noop before ret instructions if immediately
   preceded by a conditional branch or is the target of a jump.
2. ix86_avoid_jump_misspredicts inserts noops in cases where a 16-byte block of
   code contains more than 3 branches.
   
The first one is done for all AMDs, Core2, and "Generic"
The second one is done for: Atom, Pentium Pro, all AMDs, Pentium 4, Nocona,
  Core 2, and "Generic"

//===---------------------------------------------------------------------===//
Testcase:
int x(int a) { return (a&0xf0)>>4; }

Current output:
	movl	4(%esp), %eax
	shrl	$4, %eax
	andl	$15, %eax
	ret

Ideal output:
	movzbl	4(%esp), %eax
	shrl	$4, %eax
	ret

//===---------------------------------------------------------------------===//

Re-implement atomic builtins __sync_add_and_fetch() and __sync_sub_and_fetch
properly.

When the return value is not used (i.e. only care about the value in the
memory), x86 does not have to use add to implement these. Instead, it can use
add, sub, inc, dec instructions with the "lock" prefix.

This is currently implemented using a bit of instruction selection trick. The
issue is the target independent pattern produces one output and a chain and we
want to map it into one that just output a chain. The current trick is to select
it into a MERGE_VALUES with the first definition being an implicit_def. The
proper solution is to add new ISD opcodes for the no-output variant. DAG
combiner can then transform the node before it gets to target node selection.

Problem #2 is we are adding a whole bunch of x86 atomic instructions when in
fact these instructions are identical to the non-lock versions. We need a way to
add target specific information to target nodes and have this information
carried over to machine instructions. Asm printer (or JIT) can use this
information to add the "lock" prefix.

//===---------------------------------------------------------------------===//

struct B {
  unsigned char y0 : 1;
};

int bar(struct B* a) { return a->y0; }

define i32 @bar(%struct.B* nocapture %a) nounwind readonly optsize {
  %1 = getelementptr inbounds %struct.B* %a, i64 0, i32 0
  %2 = load i8* %1, align 1
  %3 = and i8 %2, 1
  %4 = zext i8 %3 to i32
  ret i32 %4
}

bar:                                    # @bar
# BB#0:
        movb    (%rdi), %al
        andb    $1, %al
        movzbl  %al, %eax
        ret

Missed optimization: should be movl+andl.

//===---------------------------------------------------------------------===//

The x86_64 abi says:

Booleans, when stored in a memory object, are stored as single byte objects the
value of which is always 0 (false) or 1 (true).

We are not using this fact:

int bar(_Bool *a) { return *a; }

define i32 @bar(i8* nocapture %a) nounwind readonly optsize {
  %1 = load i8* %a, align 1, !tbaa !0
  %tmp = and i8 %1, 1
  %2 = zext i8 %tmp to i32
  ret i32 %2
}

bar:
        movb    (%rdi), %al
        andb    $1, %al
        movzbl  %al, %eax
        ret

GCC produces

bar:
        movzbl  (%rdi), %eax
        ret

//===---------------------------------------------------------------------===//

Consider the following two functions compiled with clang:
_Bool foo(int *x) { return !(*x & 4); }
unsigned bar(int *x) { return !(*x & 4); }

foo:
	movl	4(%esp), %eax
	testb	$4, (%eax)
	sete	%al
	movzbl	%al, %eax
	ret

bar:
	movl	4(%esp), %eax
	movl	(%eax), %eax
	shrl	$2, %eax
	andl	$1, %eax
	xorl	$1, %eax
	ret

The second function generates more code even though the two functions are
are functionally identical.

//===---------------------------------------------------------------------===//

Take the following C code:
int f(int a, int b) { return (unsigned char)a == (unsigned char)b; }

We generate the following IR with clang:
define i32 @f(i32 %a, i32 %b) nounwind readnone {
entry:
  %tmp = xor i32 %b, %a                           ; <i32> [#uses=1]
  %tmp6 = and i32 %tmp, 255                       ; <i32> [#uses=1]
  %cmp = icmp eq i32 %tmp6, 0                     ; <i1> [#uses=1]
  %conv5 = zext i1 %cmp to i32                    ; <i32> [#uses=1]
  ret i32 %conv5
}

And the following x86 code:
	xorl	%esi, %edi
	testb	$-1, %dil
	sete	%al
	movzbl	%al, %eax
	ret

A cmpb instead of the xorl+testb would be one instruction shorter.

//===---------------------------------------------------------------------===//

Given the following C code:
int f(int a, int b) { return (signed char)a == (signed char)b; }

We generate the following IR with clang:
define i32 @f(i32 %a, i32 %b) nounwind readnone {
entry:
  %sext = shl i32 %a, 24                          ; <i32> [#uses=1]
  %conv1 = ashr i32 %sext, 24                     ; <i32> [#uses=1]
  %sext6 = shl i32 %b, 24                         ; <i32> [#uses=1]
  %conv4 = ashr i32 %sext6, 24                    ; <i32> [#uses=1]
  %cmp = icmp eq i32 %conv1, %conv4               ; <i1> [#uses=1]
  %conv5 = zext i1 %cmp to i32                    ; <i32> [#uses=1]
  ret i32 %conv5
}

And the following x86 code:
	movsbl	%sil, %eax
	movsbl	%dil, %ecx
	cmpl	%eax, %ecx
	sete	%al
	movzbl	%al, %eax
	ret


It should be possible to eliminate the sign extensions.

//===---------------------------------------------------------------------===//

LLVM misses a load+store narrowing opportunity in this code:

%struct.bf = type { i64, i16, i16, i32 }

@bfi = external global %struct.bf*                ; <%struct.bf**> [#uses=2]

define void @t1() nounwind ssp {
entry:
  %0 = load %struct.bf** @bfi, align 8            ; <%struct.bf*> [#uses=1]
  %1 = getelementptr %struct.bf* %0, i64 0, i32 1 ; <i16*> [#uses=1]
  %2 = bitcast i16* %1 to i32*                    ; <i32*> [#uses=2]
  %3 = load i32* %2, align 1                      ; <i32> [#uses=1]
  %4 = and i32 %3, -65537                         ; <i32> [#uses=1]
  store i32 %4, i32* %2, align 1
  %5 = load %struct.bf** @bfi, align 8            ; <%struct.bf*> [#uses=1]
  %6 = getelementptr %struct.bf* %5, i64 0, i32 1 ; <i16*> [#uses=1]
  %7 = bitcast i16* %6 to i32*                    ; <i32*> [#uses=2]
  %8 = load i32* %7, align 1                      ; <i32> [#uses=1]
  %9 = and i32 %8, -131073                        ; <i32> [#uses=1]
  store i32 %9, i32* %7, align 1
  ret void
}

LLVM currently emits this:

  movq  bfi(%rip), %rax
  andl  $-65537, 8(%rax)
  movq  bfi(%rip), %rax
  andl  $-131073, 8(%rax)
  ret

It could narrow the loads and stores to emit this:

  movq  bfi(%rip), %rax
  andb  $-2, 10(%rax)
  movq  bfi(%rip), %rax
  andb  $-3, 10(%rax)
  ret

The trouble is that there is a TokenFactor between the store and the
load, making it non-trivial to determine if there's anything between
the load and the store which would prohibit narrowing.

//===---------------------------------------------------------------------===//

This code:
void foo(unsigned x) {
  if (x == 0) bar();
  else if (x == 1) qux();
}

currently compiles into:
_foo:
	movl	4(%esp), %eax
	cmpl	$1, %eax
	je	LBB0_3
	testl	%eax, %eax
	jne	LBB0_4

the testl could be removed:
_foo:
	movl	4(%esp), %eax
	cmpl	$1, %eax
	je	LBB0_3
	jb	LBB0_4

0 is the only unsigned number < 1.

//===---------------------------------------------------------------------===//

This code:

%0 = type { i32, i1 }

define i32 @add32carry(i32 %sum, i32 %x) nounwind readnone ssp {
entry:
  %uadd = tail call %0 @llvm.uadd.with.overflow.i32(i32 %sum, i32 %x)
  %cmp = extractvalue %0 %uadd, 1
  %inc = zext i1 %cmp to i32
  %add = add i32 %x, %sum
  %z.0 = add i32 %add, %inc
  ret i32 %z.0
}

declare %0 @llvm.uadd.with.overflow.i32(i32, i32) nounwind readnone

compiles to:

_add32carry:                            ## @add32carry
	addl	%esi, %edi
	sbbl	%ecx, %ecx
	movl	%edi, %eax
	subl	%ecx, %eax
	ret

But it could be:

_add32carry:
	leal	(%rsi,%rdi), %eax
	cmpl	%esi, %eax
	adcl	$0, %eax
	ret

//===---------------------------------------------------------------------===//

The hot loop of 256.bzip2 contains code that looks a bit like this:

int foo(char *P, char *Q, int x, int y) {
  if (P[0] != Q[0])
     return P[0] < Q[0];
  if (P[1] != Q[1])
     return P[1] < Q[1];
  if (P[2] != Q[2])
     return P[2] < Q[2];
   return P[3] < Q[3];
}

In the real code, we get a lot more wrong than this.  However, even in this
code we generate:

_foo:                                   ## @foo
## BB#0:                                ## %entry
	movb	(%rsi), %al
	movb	(%rdi), %cl
	cmpb	%al, %cl
	je	LBB0_2
LBB0_1:                                 ## %if.then
	cmpb	%al, %cl
	jmp	LBB0_5
LBB0_2:                                 ## %if.end
	movb	1(%rsi), %al
	movb	1(%rdi), %cl
	cmpb	%al, %cl
	jne	LBB0_1
## BB#3:                                ## %if.end38
	movb	2(%rsi), %al
	movb	2(%rdi), %cl
	cmpb	%al, %cl
	jne	LBB0_1
## BB#4:                                ## %if.end60
	movb	3(%rdi), %al
	cmpb	3(%rsi), %al
LBB0_5:                                 ## %if.end60
	setl	%al
	movzbl	%al, %eax
	ret

Note that we generate jumps to LBB0_1 which does a redundant compare.  The
redundant compare also forces the register values to be live, which prevents
folding one of the loads into the compare.  In contrast, GCC 4.2 produces:

_foo:
	movzbl	(%rsi), %eax
	cmpb	%al, (%rdi)
	jne	L10
L12:
	movzbl	1(%rsi), %eax
	cmpb	%al, 1(%rdi)
	jne	L10
	movzbl	2(%rsi), %eax
	cmpb	%al, 2(%rdi)
	jne	L10
	movzbl	3(%rdi), %eax
	cmpb	3(%rsi), %al
L10:
	setl	%al
	movzbl	%al, %eax
	ret

which is "perfect".

//===---------------------------------------------------------------------===//

For the branch in the following code:
int a();
int b(int x, int y) {
  if (x & (1<<(y&7)))
    return a();
  return y;
}

We currently generate:
	movb	%sil, %al
	andb	$7, %al
	movzbl	%al, %eax
	btl	%eax, %edi
	jae	.LBB0_2

movl+andl would be shorter than the movb+andb+movzbl sequence.

//===---------------------------------------------------------------------===//

For the following:
struct u1 {
    float x, y;
};
float foo(struct u1 u) {
    return u.x + u.y;
}

We currently generate:
	movdqa	%xmm0, %xmm1
	pshufd	$1, %xmm0, %xmm0        # xmm0 = xmm0[1,0,0,0]
	addss	%xmm1, %xmm0
	ret

We could save an instruction here by commuting the addss.

//===---------------------------------------------------------------------===//

This (from PR9661):

float clamp_float(float a) {
        if (a > 1.0f)
                return 1.0f;
        else if (a < 0.0f)
                return 0.0f;
        else
                return a;
}

Could compile to:

clamp_float:                            # @clamp_float
        movss   .LCPI0_0(%rip), %xmm1
        minss   %xmm1, %xmm0
        pxor    %xmm1, %xmm1
        maxss   %xmm1, %xmm0
        ret

with -ffast-math.

//===---------------------------------------------------------------------===//

This function (from PR9803):

int clamp2(int a) {
        if (a > 5)
                a = 5;
        if (a < 0) 
                return 0;
        return a;
}

Compiles to:

_clamp2:                                ## @clamp2
        pushq   %rbp
        movq    %rsp, %rbp
        cmpl    $5, %edi
        movl    $5, %ecx
        cmovlel %edi, %ecx
        testl   %ecx, %ecx
        movl    $0, %eax
        cmovnsl %ecx, %eax
        popq    %rbp
        ret

The move of 0 could be scheduled above the test to make it is xor reg,reg.

//===---------------------------------------------------------------------===//

GCC PR48986.  We currently compile this:

void bar(void);
void yyy(int* p) {
    if (__sync_fetch_and_add(p, -1) == 1)
      bar();
}

into:
	movl	$-1, %eax
	lock
	xaddl	%eax, (%rdi)
	cmpl	$1, %eax
	je	LBB0_2

Instead we could generate:

	lock
	dec %rdi
	je LBB0_2

The trick is to match "fetch_and_add(X, -C) == C".

//===---------------------------------------------------------------------===//

unsigned t(unsigned a, unsigned b) {
  return a <= b ? 5 : -5;
}

We generate:
	movl	$5, %ecx
	cmpl	%esi, %edi
	movl	$-5, %eax
	cmovbel	%ecx, %eax

GCC:
	cmpl	%edi, %esi
	sbbl	%eax, %eax
	andl	$-10, %eax
	addl	$5, %eax

//===---------------------------------------------------------------------===//