summaryrefslogtreecommitdiff
path: root/lib/Target/X86/X86CodeEmitter.cpp
blob: ef2255de19c33e201cce05d34ff62b6162df91f1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
//===-- X86/X86CodeEmitter.cpp - Convert X86 code to machine code ---------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the pass that transforms the X86 machine instructions into
// relocatable machine code.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "x86-emitter"
#include "X86InstrInfo.h"
#include "X86JITInfo.h"
#include "X86Subtarget.h"
#include "X86TargetMachine.h"
#include "X86Relocations.h"
#include "X86.h"
#include "llvm/LLVMContext.h"
#include "llvm/PassManager.h"
#include "llvm/CodeGen/JITCodeEmitter.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/Function.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/MC/MCCodeEmitter.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetOptions.h"
using namespace llvm;

STATISTIC(NumEmitted, "Number of machine instructions emitted");

namespace {
  template<class CodeEmitter>
  class Emitter : public MachineFunctionPass {
    const X86InstrInfo  *II;
    const TargetData    *TD;
    X86TargetMachine    &TM;
    CodeEmitter         &MCE;
    MachineModuleInfo   *MMI;
    intptr_t PICBaseOffset;
    bool Is64BitMode;
    bool IsPIC;
  public:
    static char ID;
    explicit Emitter(X86TargetMachine &tm, CodeEmitter &mce)
      : MachineFunctionPass(ID), II(0), TD(0), TM(tm), 
      MCE(mce), PICBaseOffset(0), Is64BitMode(false),
      IsPIC(TM.getRelocationModel() == Reloc::PIC_) {}
    Emitter(X86TargetMachine &tm, CodeEmitter &mce,
            const X86InstrInfo &ii, const TargetData &td, bool is64)
      : MachineFunctionPass(ID), II(&ii), TD(&td), TM(tm), 
      MCE(mce), PICBaseOffset(0), Is64BitMode(is64),
      IsPIC(TM.getRelocationModel() == Reloc::PIC_) {}

    bool runOnMachineFunction(MachineFunction &MF);

    virtual const char *getPassName() const {
      return "X86 Machine Code Emitter";
    }

    void emitInstruction(const MachineInstr &MI,
                         const TargetInstrDesc *Desc);
    
    void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.setPreservesAll();
      AU.addRequired<MachineModuleInfo>();
      MachineFunctionPass::getAnalysisUsage(AU);
    }

  private:
    void emitPCRelativeBlockAddress(MachineBasicBlock *MBB);
    void emitGlobalAddress(const GlobalValue *GV, unsigned Reloc,
                           intptr_t Disp = 0, intptr_t PCAdj = 0,
                           bool Indirect = false);
    void emitExternalSymbolAddress(const char *ES, unsigned Reloc);
    void emitConstPoolAddress(unsigned CPI, unsigned Reloc, intptr_t Disp = 0,
                              intptr_t PCAdj = 0);
    void emitJumpTableAddress(unsigned JTI, unsigned Reloc,
                              intptr_t PCAdj = 0);

    void emitDisplacementField(const MachineOperand *RelocOp, int DispVal,
                               intptr_t Adj = 0, bool IsPCRel = true);

    void emitRegModRMByte(unsigned ModRMReg, unsigned RegOpcodeField);
    void emitRegModRMByte(unsigned RegOpcodeField);
    void emitSIBByte(unsigned SS, unsigned Index, unsigned Base);
    void emitConstant(uint64_t Val, unsigned Size);

    void emitMemModRMByte(const MachineInstr &MI,
                          unsigned Op, unsigned RegOpcodeField,
                          intptr_t PCAdj = 0);

    unsigned getX86RegNum(unsigned RegNo) const;
  };

template<class CodeEmitter>
  char Emitter<CodeEmitter>::ID = 0;
} // end anonymous namespace.

/// createX86CodeEmitterPass - Return a pass that emits the collected X86 code
/// to the specified templated MachineCodeEmitter object.
FunctionPass *llvm::createX86JITCodeEmitterPass(X86TargetMachine &TM,
                                                JITCodeEmitter &JCE) {
  return new Emitter<JITCodeEmitter>(TM, JCE);
}

template<class CodeEmitter>
bool Emitter<CodeEmitter>::runOnMachineFunction(MachineFunction &MF) {
  MMI = &getAnalysis<MachineModuleInfo>();
  MCE.setModuleInfo(MMI);
  
  II = TM.getInstrInfo();
  TD = TM.getTargetData();
  Is64BitMode = TM.getSubtarget<X86Subtarget>().is64Bit();
  IsPIC = TM.getRelocationModel() == Reloc::PIC_;
  
  do {
    DEBUG(dbgs() << "JITTing function '" 
          << MF.getFunction()->getName() << "'\n");
    MCE.startFunction(MF);
    for (MachineFunction::iterator MBB = MF.begin(), E = MF.end(); 
         MBB != E; ++MBB) {
      MCE.StartMachineBasicBlock(MBB);
      for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end();
           I != E; ++I) {
        const TargetInstrDesc &Desc = I->getDesc();
        emitInstruction(*I, &Desc);
        // MOVPC32r is basically a call plus a pop instruction.
        if (Desc.getOpcode() == X86::MOVPC32r)
          emitInstruction(*I, &II->get(X86::POP32r));
        ++NumEmitted;  // Keep track of the # of mi's emitted
      }
    }
  } while (MCE.finishFunction(MF));

  return false;
}

/// determineREX - Determine if the MachineInstr has to be encoded with a X86-64
/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
/// size, and 3) use of X86-64 extended registers.
static unsigned determineREX(const MachineInstr &MI) {
  unsigned REX = 0;
  const TargetInstrDesc &Desc = MI.getDesc();
  
  // Pseudo instructions do not need REX prefix byte.
  if ((Desc.TSFlags & X86II::FormMask) == X86II::Pseudo)
    return 0;
  if (Desc.TSFlags & X86II::REX_W)
    REX |= 1 << 3;
  
  unsigned NumOps = Desc.getNumOperands();
  if (NumOps) {
    bool isTwoAddr = NumOps > 1 &&
    Desc.getOperandConstraint(1, TOI::TIED_TO) != -1;
    
    // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
    unsigned i = isTwoAddr ? 1 : 0;
    for (unsigned e = NumOps; i != e; ++i) {
      const MachineOperand& MO = MI.getOperand(i);
      if (MO.isReg()) {
        unsigned Reg = MO.getReg();
        if (X86InstrInfo::isX86_64NonExtLowByteReg(Reg))
          REX |= 0x40;
      }
    }
    
    switch (Desc.TSFlags & X86II::FormMask) {
      case X86II::MRMInitReg:
        if (X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0)))
          REX |= (1 << 0) | (1 << 2);
        break;
      case X86II::MRMSrcReg: {
        if (X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0)))
          REX |= 1 << 2;
        i = isTwoAddr ? 2 : 1;
        for (unsigned e = NumOps; i != e; ++i) {
          const MachineOperand& MO = MI.getOperand(i);
          if (X86InstrInfo::isX86_64ExtendedReg(MO))
            REX |= 1 << 0;
        }
        break;
      }
      case X86II::MRMSrcMem: {
        if (X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0)))
          REX |= 1 << 2;
        unsigned Bit = 0;
        i = isTwoAddr ? 2 : 1;
        for (; i != NumOps; ++i) {
          const MachineOperand& MO = MI.getOperand(i);
          if (MO.isReg()) {
            if (X86InstrInfo::isX86_64ExtendedReg(MO))
              REX |= 1 << Bit;
            Bit++;
          }
        }
        break;
      }
      case X86II::MRM0m: case X86II::MRM1m:
      case X86II::MRM2m: case X86II::MRM3m:
      case X86II::MRM4m: case X86II::MRM5m:
      case X86II::MRM6m: case X86II::MRM7m:
      case X86II::MRMDestMem: {
        unsigned e = (isTwoAddr ? X86::AddrNumOperands+1 : X86::AddrNumOperands);
        i = isTwoAddr ? 1 : 0;
        if (NumOps > e && X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(e)))
          REX |= 1 << 2;
        unsigned Bit = 0;
        for (; i != e; ++i) {
          const MachineOperand& MO = MI.getOperand(i);
          if (MO.isReg()) {
            if (X86InstrInfo::isX86_64ExtendedReg(MO))
              REX |= 1 << Bit;
            Bit++;
          }
        }
        break;
      }
      default: {
        if (X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0)))
          REX |= 1 << 0;
        i = isTwoAddr ? 2 : 1;
        for (unsigned e = NumOps; i != e; ++i) {
          const MachineOperand& MO = MI.getOperand(i);
          if (X86InstrInfo::isX86_64ExtendedReg(MO))
            REX |= 1 << 2;
        }
        break;
      }
    }
  }
  return REX;
}


/// emitPCRelativeBlockAddress - This method keeps track of the information
/// necessary to resolve the address of this block later and emits a dummy
/// value.
///
template<class CodeEmitter>
void Emitter<CodeEmitter>::emitPCRelativeBlockAddress(MachineBasicBlock *MBB) {
  // Remember where this reference was and where it is to so we can
  // deal with it later.
  MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(),
                                             X86::reloc_pcrel_word, MBB));
  MCE.emitWordLE(0);
}

/// emitGlobalAddress - Emit the specified address to the code stream assuming
/// this is part of a "take the address of a global" instruction.
///
template<class CodeEmitter>
void Emitter<CodeEmitter>::emitGlobalAddress(const GlobalValue *GV,
                                unsigned Reloc,
                                intptr_t Disp /* = 0 */,
                                intptr_t PCAdj /* = 0 */,
                                bool Indirect /* = false */) {
  intptr_t RelocCST = Disp;
  if (Reloc == X86::reloc_picrel_word)
    RelocCST = PICBaseOffset;
  else if (Reloc == X86::reloc_pcrel_word)
    RelocCST = PCAdj;
  MachineRelocation MR = Indirect
    ? MachineRelocation::getIndirectSymbol(MCE.getCurrentPCOffset(), Reloc,
                                           const_cast<GlobalValue *>(GV),
                                           RelocCST, false)
    : MachineRelocation::getGV(MCE.getCurrentPCOffset(), Reloc,
                               const_cast<GlobalValue *>(GV), RelocCST, false);
  MCE.addRelocation(MR);
  // The relocated value will be added to the displacement
  if (Reloc == X86::reloc_absolute_dword)
    MCE.emitDWordLE(Disp);
  else
    MCE.emitWordLE((int32_t)Disp);
}

/// emitExternalSymbolAddress - Arrange for the address of an external symbol to
/// be emitted to the current location in the function, and allow it to be PC
/// relative.
template<class CodeEmitter>
void Emitter<CodeEmitter>::emitExternalSymbolAddress(const char *ES,
                                                     unsigned Reloc) {
  intptr_t RelocCST = (Reloc == X86::reloc_picrel_word) ? PICBaseOffset : 0;

  // X86 never needs stubs because instruction selection will always pick
  // an instruction sequence that is large enough to hold any address
  // to a symbol.
  // (see X86ISelLowering.cpp, near 2039: X86TargetLowering::LowerCall)
  bool NeedStub = false;
  MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(),
                                                 Reloc, ES, RelocCST,
                                                 0, NeedStub));
  if (Reloc == X86::reloc_absolute_dword)
    MCE.emitDWordLE(0);
  else
    MCE.emitWordLE(0);
}

/// emitConstPoolAddress - Arrange for the address of an constant pool
/// to be emitted to the current location in the function, and allow it to be PC
/// relative.
template<class CodeEmitter>
void Emitter<CodeEmitter>::emitConstPoolAddress(unsigned CPI, unsigned Reloc,
                                   intptr_t Disp /* = 0 */,
                                   intptr_t PCAdj /* = 0 */) {
  intptr_t RelocCST = 0;
  if (Reloc == X86::reloc_picrel_word)
    RelocCST = PICBaseOffset;
  else if (Reloc == X86::reloc_pcrel_word)
    RelocCST = PCAdj;
  MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(),
                                                    Reloc, CPI, RelocCST));
  // The relocated value will be added to the displacement
  if (Reloc == X86::reloc_absolute_dword)
    MCE.emitDWordLE(Disp);
  else
    MCE.emitWordLE((int32_t)Disp);
}

/// emitJumpTableAddress - Arrange for the address of a jump table to
/// be emitted to the current location in the function, and allow it to be PC
/// relative.
template<class CodeEmitter>
void Emitter<CodeEmitter>::emitJumpTableAddress(unsigned JTI, unsigned Reloc,
                                   intptr_t PCAdj /* = 0 */) {
  intptr_t RelocCST = 0;
  if (Reloc == X86::reloc_picrel_word)
    RelocCST = PICBaseOffset;
  else if (Reloc == X86::reloc_pcrel_word)
    RelocCST = PCAdj;
  MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(),
                                                    Reloc, JTI, RelocCST));
  // The relocated value will be added to the displacement
  if (Reloc == X86::reloc_absolute_dword)
    MCE.emitDWordLE(0);
  else
    MCE.emitWordLE(0);
}

template<class CodeEmitter>
unsigned Emitter<CodeEmitter>::getX86RegNum(unsigned RegNo) const {
  return X86RegisterInfo::getX86RegNum(RegNo);
}

inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
                                      unsigned RM) {
  assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
  return RM | (RegOpcode << 3) | (Mod << 6);
}

template<class CodeEmitter>
void Emitter<CodeEmitter>::emitRegModRMByte(unsigned ModRMReg,
                                            unsigned RegOpcodeFld){
  MCE.emitByte(ModRMByte(3, RegOpcodeFld, getX86RegNum(ModRMReg)));
}

template<class CodeEmitter>
void Emitter<CodeEmitter>::emitRegModRMByte(unsigned RegOpcodeFld) {
  MCE.emitByte(ModRMByte(3, RegOpcodeFld, 0));
}

template<class CodeEmitter>
void Emitter<CodeEmitter>::emitSIBByte(unsigned SS, 
                                       unsigned Index,
                                       unsigned Base) {
  // SIB byte is in the same format as the ModRMByte...
  MCE.emitByte(ModRMByte(SS, Index, Base));
}

template<class CodeEmitter>
void Emitter<CodeEmitter>::emitConstant(uint64_t Val, unsigned Size) {
  // Output the constant in little endian byte order...
  for (unsigned i = 0; i != Size; ++i) {
    MCE.emitByte(Val & 255);
    Val >>= 8;
  }
}

/// isDisp8 - Return true if this signed displacement fits in a 8-bit 
/// sign-extended field. 
static bool isDisp8(int Value) {
  return Value == (signed char)Value;
}

static bool gvNeedsNonLazyPtr(const MachineOperand &GVOp,
                              const TargetMachine &TM) {
  // For Darwin-64, simulate the linktime GOT by using the same non-lazy-pointer
  // mechanism as 32-bit mode.
  if (TM.getSubtarget<X86Subtarget>().is64Bit() && 
      !TM.getSubtarget<X86Subtarget>().isTargetDarwin())
    return false;
  
  // Return true if this is a reference to a stub containing the address of the
  // global, not the global itself.
  return isGlobalStubReference(GVOp.getTargetFlags());
}

template<class CodeEmitter>
void Emitter<CodeEmitter>::emitDisplacementField(const MachineOperand *RelocOp,
                                                 int DispVal,
                                                 intptr_t Adj /* = 0 */,
                                                 bool IsPCRel /* = true */) {
  // If this is a simple integer displacement that doesn't require a relocation,
  // emit it now.
  if (!RelocOp) {
    emitConstant(DispVal, 4);
    return;
  }

  // Otherwise, this is something that requires a relocation.  Emit it as such
  // now.
  unsigned RelocType = Is64BitMode ?
    (IsPCRel ? X86::reloc_pcrel_word : X86::reloc_absolute_word_sext)
    : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
  if (RelocOp->isGlobal()) {
    // In 64-bit static small code model, we could potentially emit absolute.
    // But it's probably not beneficial. If the MCE supports using RIP directly
    // do it, otherwise fallback to absolute (this is determined by IsPCRel). 
    //  89 05 00 00 00 00     mov    %eax,0(%rip)  # PC-relative
    //  89 04 25 00 00 00 00  mov    %eax,0x0      # Absolute
    bool Indirect = gvNeedsNonLazyPtr(*RelocOp, TM);
    emitGlobalAddress(RelocOp->getGlobal(), RelocType, RelocOp->getOffset(),
                      Adj, Indirect);
  } else if (RelocOp->isSymbol()) {
    emitExternalSymbolAddress(RelocOp->getSymbolName(), RelocType);
  } else if (RelocOp->isCPI()) {
    emitConstPoolAddress(RelocOp->getIndex(), RelocType,
                         RelocOp->getOffset(), Adj);
  } else {
    assert(RelocOp->isJTI() && "Unexpected machine operand!");
    emitJumpTableAddress(RelocOp->getIndex(), RelocType, Adj);
  }
}

template<class CodeEmitter>
void Emitter<CodeEmitter>::emitMemModRMByte(const MachineInstr &MI,
                                            unsigned Op,unsigned RegOpcodeField,
                                            intptr_t PCAdj) {
  const MachineOperand &Op3 = MI.getOperand(Op+3);
  int DispVal = 0;
  const MachineOperand *DispForReloc = 0;
  
  // Figure out what sort of displacement we have to handle here.
  if (Op3.isGlobal()) {
    DispForReloc = &Op3;
  } else if (Op3.isSymbol()) {
    DispForReloc = &Op3;
  } else if (Op3.isCPI()) {
    if (!MCE.earlyResolveAddresses() || Is64BitMode || IsPIC) {
      DispForReloc = &Op3;
    } else {
      DispVal += MCE.getConstantPoolEntryAddress(Op3.getIndex());
      DispVal += Op3.getOffset();
    }
  } else if (Op3.isJTI()) {
    if (!MCE.earlyResolveAddresses() || Is64BitMode || IsPIC) {
      DispForReloc = &Op3;
    } else {
      DispVal += MCE.getJumpTableEntryAddress(Op3.getIndex());
    }
  } else {
    DispVal = Op3.getImm();
  }

  const MachineOperand &Base     = MI.getOperand(Op);
  const MachineOperand &Scale    = MI.getOperand(Op+1);
  const MachineOperand &IndexReg = MI.getOperand(Op+2);

  unsigned BaseReg = Base.getReg();
  
  // Handle %rip relative addressing.
  if (BaseReg == X86::RIP ||
      (Is64BitMode && DispForReloc)) { // [disp32+RIP] in X86-64 mode
    assert(IndexReg.getReg() == 0 && Is64BitMode &&
           "Invalid rip-relative address");
    MCE.emitByte(ModRMByte(0, RegOpcodeField, 5));
    emitDisplacementField(DispForReloc, DispVal, PCAdj, true);
    return;
  }

  // Indicate that the displacement will use an pcrel or absolute reference
  // by default. MCEs able to resolve addresses on-the-fly use pcrel by default
  // while others, unless explicit asked to use RIP, use absolute references.
  bool IsPCRel = MCE.earlyResolveAddresses() ? true : false;

  // Is a SIB byte needed?
  // If no BaseReg, issue a RIP relative instruction only if the MCE can 
  // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
  // 2-7) and absolute references.
  unsigned BaseRegNo = -1U;
  if (BaseReg != 0 && BaseReg != X86::RIP)
    BaseRegNo = getX86RegNum(BaseReg);

  if (// The SIB byte must be used if there is an index register.
      IndexReg.getReg() == 0 && 
      // The SIB byte must be used if the base is ESP/RSP/R12, all of which
      // encode to an R/M value of 4, which indicates that a SIB byte is
      // present.
      BaseRegNo != N86::ESP &&
      // If there is no base register and we're in 64-bit mode, we need a SIB
      // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
      (!Is64BitMode || BaseReg != 0)) {
    if (BaseReg == 0 ||          // [disp32]     in X86-32 mode
        BaseReg == X86::RIP) {   // [disp32+RIP] in X86-64 mode
      MCE.emitByte(ModRMByte(0, RegOpcodeField, 5));
      emitDisplacementField(DispForReloc, DispVal, PCAdj, true);
      return;
    }
    
    // If the base is not EBP/ESP and there is no displacement, use simple
    // indirect register encoding, this handles addresses like [EAX].  The
    // encoding for [EBP] with no displacement means [disp32] so we handle it
    // by emitting a displacement of 0 below.
    if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) {
      MCE.emitByte(ModRMByte(0, RegOpcodeField, BaseRegNo));
      return;
    }
    
    // Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
    if (!DispForReloc && isDisp8(DispVal)) {
      MCE.emitByte(ModRMByte(1, RegOpcodeField, BaseRegNo));
      emitConstant(DispVal, 1);
      return;
    }
    
    // Otherwise, emit the most general non-SIB encoding: [REG+disp32]
    MCE.emitByte(ModRMByte(2, RegOpcodeField, BaseRegNo));
    emitDisplacementField(DispForReloc, DispVal, PCAdj, IsPCRel);
    return;
  }
  
  // Otherwise we need a SIB byte, so start by outputting the ModR/M byte first.
  assert(IndexReg.getReg() != X86::ESP &&
         IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");

  bool ForceDisp32 = false;
  bool ForceDisp8  = false;
  if (BaseReg == 0) {
    // If there is no base register, we emit the special case SIB byte with
    // MOD=0, BASE=4, to JUST get the index, scale, and displacement.
    MCE.emitByte(ModRMByte(0, RegOpcodeField, 4));
    ForceDisp32 = true;
  } else if (DispForReloc) {
    // Emit the normal disp32 encoding.
    MCE.emitByte(ModRMByte(2, RegOpcodeField, 4));
    ForceDisp32 = true;
  } else if (DispVal == 0 && BaseRegNo != N86::EBP) {
    // Emit no displacement ModR/M byte
    MCE.emitByte(ModRMByte(0, RegOpcodeField, 4));
  } else if (isDisp8(DispVal)) {
    // Emit the disp8 encoding...
    MCE.emitByte(ModRMByte(1, RegOpcodeField, 4));
    ForceDisp8 = true;           // Make sure to force 8 bit disp if Base=EBP
  } else {
    // Emit the normal disp32 encoding...
    MCE.emitByte(ModRMByte(2, RegOpcodeField, 4));
  }

  // Calculate what the SS field value should be...
  static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 };
  unsigned SS = SSTable[Scale.getImm()];

  if (BaseReg == 0) {
    // Handle the SIB byte for the case where there is no base, see Intel 
    // Manual 2A, table 2-7. The displacement has already been output.
    unsigned IndexRegNo;
    if (IndexReg.getReg())
      IndexRegNo = getX86RegNum(IndexReg.getReg());
    else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
      IndexRegNo = 4;
    emitSIBByte(SS, IndexRegNo, 5);
  } else {
    unsigned BaseRegNo = getX86RegNum(BaseReg);
    unsigned IndexRegNo;
    if (IndexReg.getReg())
      IndexRegNo = getX86RegNum(IndexReg.getReg());
    else
      IndexRegNo = 4;   // For example [ESP+1*<noreg>+4]
    emitSIBByte(SS, IndexRegNo, BaseRegNo);
  }

  // Do we need to output a displacement?
  if (ForceDisp8) {
    emitConstant(DispVal, 1);
  } else if (DispVal != 0 || ForceDisp32) {
    emitDisplacementField(DispForReloc, DispVal, PCAdj, IsPCRel);
  }
}

template<class CodeEmitter>
void Emitter<CodeEmitter>::emitInstruction(const MachineInstr &MI,
                                           const TargetInstrDesc *Desc) {
  DEBUG(dbgs() << MI);

  MCE.processDebugLoc(MI.getDebugLoc(), true);

  unsigned Opcode = Desc->Opcode;

  // Emit the lock opcode prefix as needed.
  if (Desc->TSFlags & X86II::LOCK)
    MCE.emitByte(0xF0);

  // Emit segment override opcode prefix as needed.
  switch (Desc->TSFlags & X86II::SegOvrMask) {
  case X86II::FS:
    MCE.emitByte(0x64);
    break;
  case X86II::GS:
    MCE.emitByte(0x65);
    break;
  default: llvm_unreachable("Invalid segment!");
  case 0: break;  // No segment override!
  }

  // Emit the repeat opcode prefix as needed.
  if ((Desc->TSFlags & X86II::Op0Mask) == X86II::REP)
    MCE.emitByte(0xF3);

  // Emit the operand size opcode prefix as needed.
  if (Desc->TSFlags & X86II::OpSize)
    MCE.emitByte(0x66);

  // Emit the address size opcode prefix as needed.
  if (Desc->TSFlags & X86II::AdSize)
    MCE.emitByte(0x67);

  bool Need0FPrefix = false;
  switch (Desc->TSFlags & X86II::Op0Mask) {
  case X86II::TB:  // Two-byte opcode prefix
  case X86II::T8:  // 0F 38
  case X86II::TA:  // 0F 3A
    Need0FPrefix = true;
    break;
  case X86II::TF: // F2 0F 38
    MCE.emitByte(0xF2);
    Need0FPrefix = true;
    break;
  case X86II::REP: break; // already handled.
  case X86II::XS:   // F3 0F
    MCE.emitByte(0xF3);
    Need0FPrefix = true;
    break;
  case X86II::XD:   // F2 0F
    MCE.emitByte(0xF2);
    Need0FPrefix = true;
    break;
  case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB:
  case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF:
    MCE.emitByte(0xD8+
                 (((Desc->TSFlags & X86II::Op0Mask)-X86II::D8)
                                   >> X86II::Op0Shift));
    break; // Two-byte opcode prefix
  default: llvm_unreachable("Invalid prefix!");
  case 0: break;  // No prefix!
  }

  // Handle REX prefix.
  if (Is64BitMode) {
    if (unsigned REX = determineREX(MI))
      MCE.emitByte(0x40 | REX);
  }

  // 0x0F escape code must be emitted just before the opcode.
  if (Need0FPrefix)
    MCE.emitByte(0x0F);

  switch (Desc->TSFlags & X86II::Op0Mask) {
  case X86II::TF:    // F2 0F 38
  case X86II::T8:    // 0F 38
    MCE.emitByte(0x38);
    break;
  case X86II::TA:    // 0F 3A
    MCE.emitByte(0x3A);
    break;
  }

  // If this is a two-address instruction, skip one of the register operands.
  unsigned NumOps = Desc->getNumOperands();
  unsigned CurOp = 0;
  if (NumOps > 1 && Desc->getOperandConstraint(1, TOI::TIED_TO) != -1)
    ++CurOp;
  else if (NumOps > 2 && Desc->getOperandConstraint(NumOps-1, TOI::TIED_TO)== 0)
    // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
    --NumOps;

  unsigned char BaseOpcode = X86II::getBaseOpcodeFor(Desc->TSFlags);
  switch (Desc->TSFlags & X86II::FormMask) {
  default:
    llvm_unreachable("Unknown FormMask value in X86 MachineCodeEmitter!");
  case X86II::Pseudo:
    // Remember the current PC offset, this is the PIC relocation
    // base address.
    switch (Opcode) {
    default: 
      llvm_unreachable("psuedo instructions should be removed before code"
                       " emission");
      break;
    // Do nothing for Int_MemBarrier - it's just a comment.  Add a debug
    // to make it slightly easier to see.
    case X86::Int_MemBarrier:
      DEBUG(dbgs() << "#MEMBARRIER\n");
      break;
    
    case TargetOpcode::INLINEASM:
      // We allow inline assembler nodes with empty bodies - they can
      // implicitly define registers, which is ok for JIT.
      if (MI.getOperand(0).getSymbolName()[0])
        report_fatal_error("JIT does not support inline asm!");
      break;
    case TargetOpcode::PROLOG_LABEL:
    case TargetOpcode::GC_LABEL:
    case TargetOpcode::EH_LABEL:
      MCE.emitLabel(MI.getOperand(0).getMCSymbol());
      break;
    
    case TargetOpcode::IMPLICIT_DEF:
    case TargetOpcode::KILL:
      break;
    case X86::MOVPC32r: {
      // This emits the "call" portion of this pseudo instruction.
      MCE.emitByte(BaseOpcode);
      emitConstant(0, X86II::getSizeOfImm(Desc->TSFlags));
      // Remember PIC base.
      PICBaseOffset = (intptr_t) MCE.getCurrentPCOffset();
      X86JITInfo *JTI = TM.getJITInfo();
      JTI->setPICBase(MCE.getCurrentPCValue());
      break;
    }
    }
    CurOp = NumOps;
    break;
  case X86II::RawFrm: {
    MCE.emitByte(BaseOpcode);

    if (CurOp == NumOps)
      break;
      
    const MachineOperand &MO = MI.getOperand(CurOp++);

    DEBUG(dbgs() << "RawFrm CurOp " << CurOp << "\n");
    DEBUG(dbgs() << "isMBB " << MO.isMBB() << "\n");
    DEBUG(dbgs() << "isGlobal " << MO.isGlobal() << "\n");
    DEBUG(dbgs() << "isSymbol " << MO.isSymbol() << "\n");
    DEBUG(dbgs() << "isImm " << MO.isImm() << "\n");

    if (MO.isMBB()) {
      emitPCRelativeBlockAddress(MO.getMBB());
      break;
    }
    
    if (MO.isGlobal()) {
      emitGlobalAddress(MO.getGlobal(), X86::reloc_pcrel_word,
                        MO.getOffset(), 0);
      break;
    }
    
    if (MO.isSymbol()) {
      emitExternalSymbolAddress(MO.getSymbolName(), X86::reloc_pcrel_word);
      break;
    }

    // FIXME: Only used by hackish MCCodeEmitter, remove when dead.
    if (MO.isJTI()) {
      emitJumpTableAddress(MO.getIndex(), X86::reloc_pcrel_word);
      break;
    }
    
    assert(MO.isImm() && "Unknown RawFrm operand!");
    if (Opcode == X86::CALLpcrel32 || Opcode == X86::CALL64pcrel32) {
      // Fix up immediate operand for pc relative calls.
      intptr_t Imm = (intptr_t)MO.getImm();
      Imm = Imm - MCE.getCurrentPCValue() - 4;
      emitConstant(Imm, X86II::getSizeOfImm(Desc->TSFlags));
    } else
      emitConstant(MO.getImm(), X86II::getSizeOfImm(Desc->TSFlags));
    break;
  }
      
  case X86II::AddRegFrm: {
    MCE.emitByte(BaseOpcode + getX86RegNum(MI.getOperand(CurOp++).getReg()));
    
    if (CurOp == NumOps)
      break;
      
    const MachineOperand &MO1 = MI.getOperand(CurOp++);
    unsigned Size = X86II::getSizeOfImm(Desc->TSFlags);
    if (MO1.isImm()) {
      emitConstant(MO1.getImm(), Size);
      break;
    }
    
    unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
      : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
    if (Opcode == X86::MOV64ri64i32)
      rt = X86::reloc_absolute_word;  // FIXME: add X86II flag?
    // This should not occur on Darwin for relocatable objects.
    if (Opcode == X86::MOV64ri)
      rt = X86::reloc_absolute_dword;  // FIXME: add X86II flag?
    if (MO1.isGlobal()) {
      bool Indirect = gvNeedsNonLazyPtr(MO1, TM);
      emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0,
                        Indirect);
    } else if (MO1.isSymbol())
      emitExternalSymbolAddress(MO1.getSymbolName(), rt);
    else if (MO1.isCPI())
      emitConstPoolAddress(MO1.getIndex(), rt);
    else if (MO1.isJTI())
      emitJumpTableAddress(MO1.getIndex(), rt);
    break;
  }

  case X86II::MRMDestReg: {
    MCE.emitByte(BaseOpcode);
    emitRegModRMByte(MI.getOperand(CurOp).getReg(),
                     getX86RegNum(MI.getOperand(CurOp+1).getReg()));
    CurOp += 2;
    if (CurOp != NumOps)
      emitConstant(MI.getOperand(CurOp++).getImm(),
                   X86II::getSizeOfImm(Desc->TSFlags));
    break;
  }
  case X86II::MRMDestMem: {
    MCE.emitByte(BaseOpcode);
    emitMemModRMByte(MI, CurOp,
                     getX86RegNum(MI.getOperand(CurOp + X86::AddrNumOperands)
                                  .getReg()));
    CurOp +=  X86::AddrNumOperands + 1;
    if (CurOp != NumOps)
      emitConstant(MI.getOperand(CurOp++).getImm(),
                   X86II::getSizeOfImm(Desc->TSFlags));
    break;
  }

  case X86II::MRMSrcReg:
    MCE.emitByte(BaseOpcode);
    emitRegModRMByte(MI.getOperand(CurOp+1).getReg(),
                     getX86RegNum(MI.getOperand(CurOp).getReg()));
    CurOp += 2;
    if (CurOp != NumOps)
      emitConstant(MI.getOperand(CurOp++).getImm(),
                   X86II::getSizeOfImm(Desc->TSFlags));
    break;

  case X86II::MRMSrcMem: {
    int AddrOperands = X86::AddrNumOperands;

    intptr_t PCAdj = (CurOp + AddrOperands + 1 != NumOps) ?
      X86II::getSizeOfImm(Desc->TSFlags) : 0;

    MCE.emitByte(BaseOpcode);
    emitMemModRMByte(MI, CurOp+1, getX86RegNum(MI.getOperand(CurOp).getReg()),
                     PCAdj);
    CurOp += AddrOperands + 1;
    if (CurOp != NumOps)
      emitConstant(MI.getOperand(CurOp++).getImm(),
                   X86II::getSizeOfImm(Desc->TSFlags));
    break;
  }

  case X86II::MRM0r: case X86II::MRM1r:
  case X86II::MRM2r: case X86II::MRM3r:
  case X86II::MRM4r: case X86II::MRM5r:
  case X86II::MRM6r: case X86II::MRM7r: {
    MCE.emitByte(BaseOpcode);
    emitRegModRMByte(MI.getOperand(CurOp++).getReg(),
                     (Desc->TSFlags & X86II::FormMask)-X86II::MRM0r);

    if (CurOp == NumOps)
      break;
    
    const MachineOperand &MO1 = MI.getOperand(CurOp++);
    unsigned Size = X86II::getSizeOfImm(Desc->TSFlags);
    if (MO1.isImm()) {
      emitConstant(MO1.getImm(), Size);
      break;
    }
    
    unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
      : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
    if (Opcode == X86::MOV64ri32)
      rt = X86::reloc_absolute_word_sext;  // FIXME: add X86II flag?
    if (MO1.isGlobal()) {
      bool Indirect = gvNeedsNonLazyPtr(MO1, TM);
      emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0,
                        Indirect);
    } else if (MO1.isSymbol())
      emitExternalSymbolAddress(MO1.getSymbolName(), rt);
    else if (MO1.isCPI())
      emitConstPoolAddress(MO1.getIndex(), rt);
    else if (MO1.isJTI())
      emitJumpTableAddress(MO1.getIndex(), rt);
    break;
  }

  case X86II::MRM0m: case X86II::MRM1m:
  case X86II::MRM2m: case X86II::MRM3m:
  case X86II::MRM4m: case X86II::MRM5m:
  case X86II::MRM6m: case X86II::MRM7m: {
    intptr_t PCAdj = (CurOp + X86::AddrNumOperands != NumOps) ?
      (MI.getOperand(CurOp+X86::AddrNumOperands).isImm() ? 
          X86II::getSizeOfImm(Desc->TSFlags) : 4) : 0;

    MCE.emitByte(BaseOpcode);
    emitMemModRMByte(MI, CurOp, (Desc->TSFlags & X86II::FormMask)-X86II::MRM0m,
                     PCAdj);
    CurOp += X86::AddrNumOperands;

    if (CurOp == NumOps)
      break;
    
    const MachineOperand &MO = MI.getOperand(CurOp++);
    unsigned Size = X86II::getSizeOfImm(Desc->TSFlags);
    if (MO.isImm()) {
      emitConstant(MO.getImm(), Size);
      break;
    }
    
    unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
      : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
    if (Opcode == X86::MOV64mi32)
      rt = X86::reloc_absolute_word_sext;  // FIXME: add X86II flag?
    if (MO.isGlobal()) {
      bool Indirect = gvNeedsNonLazyPtr(MO, TM);
      emitGlobalAddress(MO.getGlobal(), rt, MO.getOffset(), 0,
                        Indirect);
    } else if (MO.isSymbol())
      emitExternalSymbolAddress(MO.getSymbolName(), rt);
    else if (MO.isCPI())
      emitConstPoolAddress(MO.getIndex(), rt);
    else if (MO.isJTI())
      emitJumpTableAddress(MO.getIndex(), rt);
    break;
  }

  case X86II::MRMInitReg:
    MCE.emitByte(BaseOpcode);
    // Duplicate register, used by things like MOV8r0 (aka xor reg,reg).
    emitRegModRMByte(MI.getOperand(CurOp).getReg(),
                     getX86RegNum(MI.getOperand(CurOp).getReg()));
    ++CurOp;
    break;
      
  case X86II::MRM_C1:
    MCE.emitByte(BaseOpcode);
    MCE.emitByte(0xC1);
    break;
  case X86II::MRM_C8:
    MCE.emitByte(BaseOpcode);
    MCE.emitByte(0xC8);
    break;
  case X86II::MRM_C9:
    MCE.emitByte(BaseOpcode);
    MCE.emitByte(0xC9);
    break;
  case X86II::MRM_E8:
    MCE.emitByte(BaseOpcode);
    MCE.emitByte(0xE8);
    break;
  case X86II::MRM_F0:
    MCE.emitByte(BaseOpcode);
    MCE.emitByte(0xF0);
    break;
  }

  if (!Desc->isVariadic() && CurOp != NumOps) {
#ifndef NDEBUG
    dbgs() << "Cannot encode all operands of: " << MI << "\n";
#endif
    llvm_unreachable(0);
  }

  MCE.processDebugLoc(MI.getDebugLoc(), false);
}