summaryrefslogtreecommitdiff
path: root/lib/Target/X86/X86FixupLEAs.cpp
blob: 4be766a19f96efc2f6946931750f349adad9e342 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
//===-- X86FixupLEAs.cpp - use or replace LEA instructions -----------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the pass which will find  instructions  which
// can be re-written as LEA instructions in order to reduce pipeline
// delays for some models of the Intel Atom family.
//
//===----------------------------------------------------------------------===//

#include "X86.h"
#include "X86InstrInfo.h"
#include "X86Subtarget.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
using namespace llvm;

#define DEBUG_TYPE "x86-fixup-LEAs"

STATISTIC(NumLEAs, "Number of LEA instructions created");

namespace {
class FixupLEAPass : public MachineFunctionPass {
  enum RegUsageState { RU_NotUsed, RU_Write, RU_Read };
  static char ID;
  /// \brief Loop over all of the instructions in the basic block
  /// replacing applicable instructions with LEA instructions,
  /// where appropriate.
  bool processBasicBlock(MachineFunction &MF, MachineFunction::iterator MFI);

  const char *getPassName() const override { return "X86 Atom LEA Fixup"; }

  /// \brief Given a machine register, look for the instruction
  /// which writes it in the current basic block. If found,
  /// try to replace it with an equivalent LEA instruction.
  /// If replacement succeeds, then also process the the newly created
  /// instruction.
  void seekLEAFixup(MachineOperand &p, MachineBasicBlock::iterator &I,
                    MachineFunction::iterator MFI);

  /// \brief Given a memory access or LEA instruction
  /// whose address mode uses a base and/or index register, look for
  /// an opportunity to replace the instruction which sets the base or index
  /// register with an equivalent LEA instruction.
  void processInstruction(MachineBasicBlock::iterator &I,
                          MachineFunction::iterator MFI);

  /// \brief Given a LEA instruction which is unprofitable
  /// on Silvermont try to replace it with an equivalent ADD instruction
  void processInstructionForSLM(MachineBasicBlock::iterator &I,
                                MachineFunction::iterator MFI);

  /// \brief Determine if an instruction references a machine register
  /// and, if so, whether it reads or writes the register.
  RegUsageState usesRegister(MachineOperand &p, MachineBasicBlock::iterator I);

  /// \brief Step backwards through a basic block, looking
  /// for an instruction which writes a register within
  /// a maximum of INSTR_DISTANCE_THRESHOLD instruction latency cycles.
  MachineBasicBlock::iterator searchBackwards(MachineOperand &p,
                                              MachineBasicBlock::iterator &I,
                                              MachineFunction::iterator MFI);

  /// \brief if an instruction can be converted to an
  /// equivalent LEA, insert the new instruction into the basic block
  /// and return a pointer to it. Otherwise, return zero.
  MachineInstr *postRAConvertToLEA(MachineFunction::iterator &MFI,
                                   MachineBasicBlock::iterator &MBBI) const;

public:
  FixupLEAPass() : MachineFunctionPass(ID) {}

  /// \brief Loop over all of the basic blocks,
  /// replacing instructions by equivalent LEA instructions
  /// if needed and when possible.
  bool runOnMachineFunction(MachineFunction &MF) override;

private:
  MachineFunction *MF;
  const TargetMachine *TM;
  const X86InstrInfo *TII; // Machine instruction info.
};
char FixupLEAPass::ID = 0;
}

MachineInstr *
FixupLEAPass::postRAConvertToLEA(MachineFunction::iterator &MFI,
                                 MachineBasicBlock::iterator &MBBI) const {
  MachineInstr *MI = MBBI;
  MachineInstr *NewMI;
  switch (MI->getOpcode()) {
  case X86::MOV32rr:
  case X86::MOV64rr: {
    const MachineOperand &Src = MI->getOperand(1);
    const MachineOperand &Dest = MI->getOperand(0);
    NewMI = BuildMI(*MF, MI->getDebugLoc(),
                    TII->get(MI->getOpcode() == X86::MOV32rr ? X86::LEA32r
                                                             : X86::LEA64r))
                .addOperand(Dest)
                .addOperand(Src)
                .addImm(1)
                .addReg(0)
                .addImm(0)
                .addReg(0);
    MFI->insert(MBBI, NewMI); // Insert the new inst
    return NewMI;
  }
  case X86::ADD64ri32:
  case X86::ADD64ri8:
  case X86::ADD64ri32_DB:
  case X86::ADD64ri8_DB:
  case X86::ADD32ri:
  case X86::ADD32ri8:
  case X86::ADD32ri_DB:
  case X86::ADD32ri8_DB:
  case X86::ADD16ri:
  case X86::ADD16ri8:
  case X86::ADD16ri_DB:
  case X86::ADD16ri8_DB:
    if (!MI->getOperand(2).isImm()) {
      // convertToThreeAddress will call getImm()
      // which requires isImm() to be true
      return nullptr;
    }
    break;
  case X86::ADD16rr:
  case X86::ADD16rr_DB:
    if (MI->getOperand(1).getReg() != MI->getOperand(2).getReg()) {
      // if src1 != src2, then convertToThreeAddress will
      // need to create a Virtual register, which we cannot do
      // after register allocation.
      return nullptr;
    }
  }
  return TII->convertToThreeAddress(MFI, MBBI, nullptr);
}

FunctionPass *llvm::createX86FixupLEAs() { return new FixupLEAPass(); }

bool FixupLEAPass::runOnMachineFunction(MachineFunction &Func) {
  MF = &Func;
  TM = &Func.getTarget();
  const X86Subtarget &ST = TM->getSubtarget<X86Subtarget>();
  if (!ST.LEAusesAG() && !ST.slowLEA())
    return false;

  TII = static_cast<const X86InstrInfo *>(TM->getInstrInfo());

  DEBUG(dbgs() << "Start X86FixupLEAs\n";);
  // Process all basic blocks.
  for (MachineFunction::iterator I = Func.begin(), E = Func.end(); I != E; ++I)
    processBasicBlock(Func, I);
  DEBUG(dbgs() << "End X86FixupLEAs\n";);

  return true;
}

FixupLEAPass::RegUsageState
FixupLEAPass::usesRegister(MachineOperand &p, MachineBasicBlock::iterator I) {
  RegUsageState RegUsage = RU_NotUsed;
  MachineInstr *MI = I;

  for (unsigned int i = 0; i < MI->getNumOperands(); ++i) {
    MachineOperand &opnd = MI->getOperand(i);
    if (opnd.isReg() && opnd.getReg() == p.getReg()) {
      if (opnd.isDef())
        return RU_Write;
      RegUsage = RU_Read;
    }
  }
  return RegUsage;
}

/// getPreviousInstr - Given a reference to an instruction in a basic
/// block, return a reference to the previous instruction in the block,
/// wrapping around to the last instruction of the block if the block
/// branches to itself.
static inline bool getPreviousInstr(MachineBasicBlock::iterator &I,
                                    MachineFunction::iterator MFI) {
  if (I == MFI->begin()) {
    if (MFI->isPredecessor(MFI)) {
      I = --MFI->end();
      return true;
    } else
      return false;
  }
  --I;
  return true;
}

MachineBasicBlock::iterator
FixupLEAPass::searchBackwards(MachineOperand &p, MachineBasicBlock::iterator &I,
                              MachineFunction::iterator MFI) {
  int InstrDistance = 1;
  MachineBasicBlock::iterator CurInst;
  static const int INSTR_DISTANCE_THRESHOLD = 5;

  CurInst = I;
  bool Found;
  Found = getPreviousInstr(CurInst, MFI);
  while (Found && I != CurInst) {
    if (CurInst->isCall() || CurInst->isInlineAsm())
      break;
    if (InstrDistance > INSTR_DISTANCE_THRESHOLD)
      break; // too far back to make a difference
    if (usesRegister(p, CurInst) == RU_Write) {
      return CurInst;
    }
    InstrDistance += TII->getInstrLatency(TM->getInstrItineraryData(), CurInst);
    Found = getPreviousInstr(CurInst, MFI);
  }
  return nullptr;
}

void FixupLEAPass::processInstruction(MachineBasicBlock::iterator &I,
                                      MachineFunction::iterator MFI) {
  // Process a load, store, or LEA instruction.
  MachineInstr *MI = I;
  int opcode = MI->getOpcode();
  const MCInstrDesc &Desc = MI->getDesc();
  int AddrOffset = X86II::getMemoryOperandNo(Desc.TSFlags, opcode);
  if (AddrOffset >= 0) {
    AddrOffset += X86II::getOperandBias(Desc);
    MachineOperand &p = MI->getOperand(AddrOffset + X86::AddrBaseReg);
    if (p.isReg() && p.getReg() != X86::ESP) {
      seekLEAFixup(p, I, MFI);
    }
    MachineOperand &q = MI->getOperand(AddrOffset + X86::AddrIndexReg);
    if (q.isReg() && q.getReg() != X86::ESP) {
      seekLEAFixup(q, I, MFI);
    }
  }
}

void FixupLEAPass::seekLEAFixup(MachineOperand &p,
                                MachineBasicBlock::iterator &I,
                                MachineFunction::iterator MFI) {
  MachineBasicBlock::iterator MBI = searchBackwards(p, I, MFI);
  if (MBI) {
    MachineInstr *NewMI = postRAConvertToLEA(MFI, MBI);
    if (NewMI) {
      ++NumLEAs;
      DEBUG(dbgs() << "FixLEA: Candidate to replace:"; MBI->dump(););
      // now to replace with an equivalent LEA...
      DEBUG(dbgs() << "FixLEA: Replaced by: "; NewMI->dump(););
      MFI->erase(MBI);
      MachineBasicBlock::iterator J =
          static_cast<MachineBasicBlock::iterator>(NewMI);
      processInstruction(J, MFI);
    }
  }
}

void FixupLEAPass::processInstructionForSLM(MachineBasicBlock::iterator &I,
                                            MachineFunction::iterator MFI) {
  MachineInstr *MI = I;
  const int opcode = MI->getOpcode();
  if (opcode != X86::LEA16r && opcode != X86::LEA32r && opcode != X86::LEA64r &&
      opcode != X86::LEA64_32r)
    return;
  if (MI->getOperand(5).getReg() != 0 || !MI->getOperand(4).isImm() ||
      !TII->isSafeToClobberEFLAGS(*MFI, I))
    return;
  const unsigned DstR = MI->getOperand(0).getReg();
  const unsigned SrcR1 = MI->getOperand(1).getReg();
  const unsigned SrcR2 = MI->getOperand(3).getReg();
  if ((SrcR1 == 0 || SrcR1 != DstR) && (SrcR2 == 0 || SrcR2 != DstR))
    return;
  if (MI->getOperand(2).getImm() > 1)
    return;
  int addrr_opcode, addri_opcode;
  switch (opcode) {
  case X86::LEA16r:
    addrr_opcode = X86::ADD16rr;
    addri_opcode = X86::ADD16ri;
    break;
  case X86::LEA32r:
    addrr_opcode = X86::ADD32rr;
    addri_opcode = X86::ADD32ri;
    break;
  case X86::LEA64_32r:
  case X86::LEA64r:
    addrr_opcode = X86::ADD64rr;
    addri_opcode = X86::ADD64ri32;
    break;
  default:
    assert(false && "Unexpected LEA instruction");
  }
  DEBUG(dbgs() << "FixLEA: Candidate to replace:"; I->dump(););
  DEBUG(dbgs() << "FixLEA: Replaced by: ";);
  MachineInstr *NewMI = nullptr;
  const MachineOperand &Dst = MI->getOperand(0);
  // Make ADD instruction for two registers writing to LEA's destination
  if (SrcR1 != 0 && SrcR2 != 0) {
    const MachineOperand &Src1 = MI->getOperand(SrcR1 == DstR ? 1 : 3);
    const MachineOperand &Src2 = MI->getOperand(SrcR1 == DstR ? 3 : 1);
    NewMI = BuildMI(*MF, MI->getDebugLoc(), TII->get(addrr_opcode))
                .addOperand(Dst)
                .addOperand(Src1)
                .addOperand(Src2);
    MFI->insert(I, NewMI);
    DEBUG(NewMI->dump(););
  }
  // Make ADD instruction for immediate
  if (MI->getOperand(4).getImm() != 0) {
    const MachineOperand &SrcR = MI->getOperand(SrcR1 == DstR ? 1 : 3);
    NewMI = BuildMI(*MF, MI->getDebugLoc(), TII->get(addri_opcode))
                .addOperand(Dst)
                .addOperand(SrcR)
                .addImm(MI->getOperand(4).getImm());
    MFI->insert(I, NewMI);
    DEBUG(NewMI->dump(););
  }
  if (NewMI) {
    MFI->erase(I);
    I = static_cast<MachineBasicBlock::iterator>(NewMI);
  }
}

bool FixupLEAPass::processBasicBlock(MachineFunction &MF,
                                     MachineFunction::iterator MFI) {

  for (MachineBasicBlock::iterator I = MFI->begin(); I != MFI->end(); ++I) {
    if (TM->getSubtarget<X86Subtarget>().isSLM())
      processInstructionForSLM(I, MFI);
    else
      processInstruction(I, MFI);
  }
  return false;
}