summaryrefslogtreecommitdiff
path: root/lib/Target/X86/X86ISelSimple.cpp
blob: e9dbc4b314ad5d260db286edc46f98534f3bcaaa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
//===-- X86ISelSimple.cpp - A simple instruction selector for x86 ---------===//
// 
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
// 
//===----------------------------------------------------------------------===//
//
// This file defines a simple peephole instruction selector for the x86 target
//
//===----------------------------------------------------------------------===//

#include "X86.h"
#include "X86InstrBuilder.h"
#include "X86InstrInfo.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/Instructions.h"
#include "llvm/Pass.h"
#include "llvm/CodeGen/IntrinsicLowering.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/Target/MRegisterInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/InstVisitor.h"
#include "llvm/ADT/Statistic.h"
using namespace llvm;

namespace {
  Statistic<>
  NumFPKill("x86-codegen", "Number of FP_REG_KILL instructions added");

  /// TypeClass - Used by the X86 backend to group LLVM types by their basic X86
  /// Representation.
  ///
  enum TypeClass {
    cByte, cShort, cInt, cFP, cLong
  };
}

/// getClass - Turn a primitive type into a "class" number which is based on the
/// size of the type, and whether or not it is floating point.
///
static inline TypeClass getClass(const Type *Ty) {
  switch (Ty->getTypeID()) {
  case Type::SByteTyID:
  case Type::UByteTyID:   return cByte;      // Byte operands are class #0
  case Type::ShortTyID:
  case Type::UShortTyID:  return cShort;     // Short operands are class #1
  case Type::IntTyID:
  case Type::UIntTyID:
  case Type::PointerTyID: return cInt;       // Int's and pointers are class #2

  case Type::FloatTyID:
  case Type::DoubleTyID:  return cFP;        // Floating Point is #3

  case Type::LongTyID:
  case Type::ULongTyID:   return cLong;      // Longs are class #4
  default:
    assert(0 && "Invalid type to getClass!");
    return cByte;  // not reached
  }
}

// getClassB - Just like getClass, but treat boolean values as bytes.
static inline TypeClass getClassB(const Type *Ty) {
  if (Ty == Type::BoolTy) return cByte;
  return getClass(Ty);
}

namespace {
  struct ISel : public FunctionPass, InstVisitor<ISel> {
    TargetMachine &TM;
    MachineFunction *F;                 // The function we are compiling into
    MachineBasicBlock *BB;              // The current MBB we are compiling
    int VarArgsFrameIndex;              // FrameIndex for start of varargs area
    int ReturnAddressIndex;             // FrameIndex for the return address

    std::map<Value*, unsigned> RegMap;  // Mapping between Val's and SSA Regs

    // MBBMap - Mapping between LLVM BB -> Machine BB
    std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;

    // AllocaMap - Mapping from fixed sized alloca instructions to the
    // FrameIndex for the alloca.
    std::map<AllocaInst*, unsigned> AllocaMap;

    ISel(TargetMachine &tm) : TM(tm), F(0), BB(0) {}

    /// runOnFunction - Top level implementation of instruction selection for
    /// the entire function.
    ///
    bool runOnFunction(Function &Fn) {
      // First pass over the function, lower any unknown intrinsic functions
      // with the IntrinsicLowering class.
      LowerUnknownIntrinsicFunctionCalls(Fn);

      F = &MachineFunction::construct(&Fn, TM);

      // Create all of the machine basic blocks for the function...
      for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
        F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));

      BB = &F->front();

      // Set up a frame object for the return address.  This is used by the
      // llvm.returnaddress & llvm.frameaddress intrinisics.
      ReturnAddressIndex = F->getFrameInfo()->CreateFixedObject(4, -4);

      // Copy incoming arguments off of the stack...
      LoadArgumentsToVirtualRegs(Fn);

      // Instruction select everything except PHI nodes
      visit(Fn);

      // Select the PHI nodes
      SelectPHINodes();

      // Insert the FP_REG_KILL instructions into blocks that need them.
      InsertFPRegKills();

      RegMap.clear();
      MBBMap.clear();
      AllocaMap.clear();
      F = 0;
      // We always build a machine code representation for the function
      return true;
    }

    virtual const char *getPassName() const {
      return "X86 Simple Instruction Selection";
    }

    /// visitBasicBlock - This method is called when we are visiting a new basic
    /// block.  This simply creates a new MachineBasicBlock to emit code into
    /// and adds it to the current MachineFunction.  Subsequent visit* for
    /// instructions will be invoked for all instructions in the basic block.
    ///
    void visitBasicBlock(BasicBlock &LLVM_BB) {
      BB = MBBMap[&LLVM_BB];
    }

    /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
    /// function, lowering any calls to unknown intrinsic functions into the
    /// equivalent LLVM code.
    ///
    void LowerUnknownIntrinsicFunctionCalls(Function &F);

    /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
    /// from the stack into virtual registers.
    ///
    void LoadArgumentsToVirtualRegs(Function &F);

    /// SelectPHINodes - Insert machine code to generate phis.  This is tricky
    /// because we have to generate our sources into the source basic blocks,
    /// not the current one.
    ///
    void SelectPHINodes();

    /// InsertFPRegKills - Insert FP_REG_KILL instructions into basic blocks
    /// that need them.  This only occurs due to the floating point stackifier
    /// not being aggressive enough to handle arbitrary global stackification.
    ///
    void InsertFPRegKills();

    // Visitation methods for various instructions.  These methods simply emit
    // fixed X86 code for each instruction.
    //

    // Control flow operators
    void visitReturnInst(ReturnInst &RI);
    void visitBranchInst(BranchInst &BI);

    struct ValueRecord {
      Value *Val;
      unsigned Reg;
      const Type *Ty;
      ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {}
      ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {}
    };
    void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
                const std::vector<ValueRecord> &Args);
    void visitCallInst(CallInst &I);
    void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I);

    // Arithmetic operators
    void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
    void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
    void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
    void visitMul(BinaryOperator &B);

    void visitDiv(BinaryOperator &B) { visitDivRem(B); }
    void visitRem(BinaryOperator &B) { visitDivRem(B); }
    void visitDivRem(BinaryOperator &B);

    // Bitwise operators
    void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
    void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
    void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }

    // Comparison operators...
    void visitSetCondInst(SetCondInst &I);
    unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
                            MachineBasicBlock *MBB,
                            MachineBasicBlock::iterator MBBI);
    void visitSelectInst(SelectInst &SI);
    
    
    // Memory Instructions
    void visitLoadInst(LoadInst &I);
    void visitStoreInst(StoreInst &I);
    void visitGetElementPtrInst(GetElementPtrInst &I);
    void visitAllocaInst(AllocaInst &I);
    void visitMallocInst(MallocInst &I);
    void visitFreeInst(FreeInst &I);
    
    // Other operators
    void visitShiftInst(ShiftInst &I);
    void visitPHINode(PHINode &I) {}      // PHI nodes handled by second pass
    void visitCastInst(CastInst &I);
    void visitVANextInst(VANextInst &I);
    void visitVAArgInst(VAArgInst &I);

    void visitInstruction(Instruction &I) {
      std::cerr << "Cannot instruction select: " << I;
      abort();
    }

    /// promote32 - Make a value 32-bits wide, and put it somewhere.
    ///
    void promote32(unsigned targetReg, const ValueRecord &VR);

    /// getAddressingMode - Get the addressing mode to use to address the
    /// specified value.  The returned value should be used with addFullAddress.
    void getAddressingMode(Value *Addr, X86AddressMode &AM);


    /// getGEPIndex - This is used to fold GEP instructions into X86 addressing
    /// expressions.
    void getGEPIndex(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
                     std::vector<Value*> &GEPOps,
                     std::vector<const Type*> &GEPTypes,
                     X86AddressMode &AM);

    /// isGEPFoldable - Return true if the specified GEP can be completely
    /// folded into the addressing mode of a load/store or lea instruction.
    bool isGEPFoldable(MachineBasicBlock *MBB,
                       Value *Src, User::op_iterator IdxBegin,
                       User::op_iterator IdxEnd, X86AddressMode &AM);

    /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
    /// constant expression GEP support.
    ///
    void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
                          Value *Src, User::op_iterator IdxBegin,
                          User::op_iterator IdxEnd, unsigned TargetReg);

    /// emitCastOperation - Common code shared between visitCastInst and
    /// constant expression cast support.
    ///
    void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator IP,
                           Value *Src, const Type *DestTy, unsigned TargetReg);

    /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
    /// and constant expression support.
    ///
    void emitSimpleBinaryOperation(MachineBasicBlock *BB,
                                   MachineBasicBlock::iterator IP,
                                   Value *Op0, Value *Op1,
                                   unsigned OperatorClass, unsigned TargetReg);

    /// emitBinaryFPOperation - This method handles emission of floating point
    /// Add (0), Sub (1), Mul (2), and Div (3) operations.
    void emitBinaryFPOperation(MachineBasicBlock *BB,
                               MachineBasicBlock::iterator IP,
                               Value *Op0, Value *Op1,
                               unsigned OperatorClass, unsigned TargetReg);

    void emitMultiply(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
                      Value *Op0, Value *Op1, unsigned TargetReg);

    void doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
                    unsigned DestReg, const Type *DestTy,
                    unsigned Op0Reg, unsigned Op1Reg);
    void doMultiplyConst(MachineBasicBlock *MBB, 
                         MachineBasicBlock::iterator MBBI,
                         unsigned DestReg, const Type *DestTy,
                         unsigned Op0Reg, unsigned Op1Val);

    void emitDivRemOperation(MachineBasicBlock *BB,
                             MachineBasicBlock::iterator IP,
                             Value *Op0, Value *Op1, bool isDiv,
                             unsigned TargetReg);

    /// emitSetCCOperation - Common code shared between visitSetCondInst and
    /// constant expression support.
    ///
    void emitSetCCOperation(MachineBasicBlock *BB,
                            MachineBasicBlock::iterator IP,
                            Value *Op0, Value *Op1, unsigned Opcode,
                            unsigned TargetReg);

    /// emitShiftOperation - Common code shared between visitShiftInst and
    /// constant expression support.
    ///
    void emitShiftOperation(MachineBasicBlock *MBB,
                            MachineBasicBlock::iterator IP,
                            Value *Op, Value *ShiftAmount, bool isLeftShift,
                            const Type *ResultTy, unsigned DestReg);
      
    /// emitSelectOperation - Common code shared between visitSelectInst and the
    /// constant expression support.
    void emitSelectOperation(MachineBasicBlock *MBB,
                             MachineBasicBlock::iterator IP,
                             Value *Cond, Value *TrueVal, Value *FalseVal,
                             unsigned DestReg);

    /// copyConstantToRegister - Output the instructions required to put the
    /// specified constant into the specified register.
    ///
    void copyConstantToRegister(MachineBasicBlock *MBB,
                                MachineBasicBlock::iterator MBBI,
                                Constant *C, unsigned Reg);

    void emitUCOMr(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
                   unsigned LHS, unsigned RHS);

    /// makeAnotherReg - This method returns the next register number we haven't
    /// yet used.
    ///
    /// Long values are handled somewhat specially.  They are always allocated
    /// as pairs of 32 bit integer values.  The register number returned is the
    /// lower 32 bits of the long value, and the regNum+1 is the upper 32 bits
    /// of the long value.
    ///
    unsigned makeAnotherReg(const Type *Ty) {
      assert(dynamic_cast<const X86RegisterInfo*>(TM.getRegisterInfo()) &&
             "Current target doesn't have X86 reg info??");
      const X86RegisterInfo *MRI =
        static_cast<const X86RegisterInfo*>(TM.getRegisterInfo());
      if (Ty == Type::LongTy || Ty == Type::ULongTy) {
        const TargetRegisterClass *RC = MRI->getRegClassForType(Type::IntTy);
        // Create the lower part
        F->getSSARegMap()->createVirtualRegister(RC);
        // Create the upper part.
        return F->getSSARegMap()->createVirtualRegister(RC)-1;
      }

      // Add the mapping of regnumber => reg class to MachineFunction
      const TargetRegisterClass *RC = MRI->getRegClassForType(Ty);
      return F->getSSARegMap()->createVirtualRegister(RC);
    }

    /// getReg - This method turns an LLVM value into a register number.
    ///
    unsigned getReg(Value &V) { return getReg(&V); }  // Allow references
    unsigned getReg(Value *V) {
      // Just append to the end of the current bb.
      MachineBasicBlock::iterator It = BB->end();
      return getReg(V, BB, It);
    }
    unsigned getReg(Value *V, MachineBasicBlock *MBB,
                    MachineBasicBlock::iterator IPt);

    /// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
    /// that is to be statically allocated with the initial stack frame
    /// adjustment.
    unsigned getFixedSizedAllocaFI(AllocaInst *AI);
  };
}

/// dyn_castFixedAlloca - If the specified value is a fixed size alloca
/// instruction in the entry block, return it.  Otherwise, return a null
/// pointer.
static AllocaInst *dyn_castFixedAlloca(Value *V) {
  if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
    BasicBlock *BB = AI->getParent();
    if (isa<ConstantUInt>(AI->getArraySize()) && BB ==&BB->getParent()->front())
      return AI;
  }
  return 0;
}

/// getReg - This method turns an LLVM value into a register number.
///
unsigned ISel::getReg(Value *V, MachineBasicBlock *MBB,
                      MachineBasicBlock::iterator IPt) {
  // If this operand is a constant, emit the code to copy the constant into
  // the register here...
  if (Constant *C = dyn_cast<Constant>(V)) {
    unsigned Reg = makeAnotherReg(V->getType());
    copyConstantToRegister(MBB, IPt, C, Reg);
    return Reg;
  } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
    // Do not emit noop casts at all, unless it's a double -> float cast.
    if (getClassB(CI->getType()) == getClassB(CI->getOperand(0)->getType()) &&
        (CI->getType() != Type::FloatTy || 
         CI->getOperand(0)->getType() != Type::DoubleTy))
      return getReg(CI->getOperand(0), MBB, IPt);
  } else if (AllocaInst *AI = dyn_castFixedAlloca(V)) {
    // If the alloca address couldn't be folded into the instruction addressing,
    // emit an explicit LEA as appropriate.
    unsigned Reg = makeAnotherReg(V->getType());
    unsigned FI = getFixedSizedAllocaFI(AI);
    addFrameReference(BuildMI(*MBB, IPt, X86::LEA32r, 4, Reg), FI);
    return Reg;
  }

  unsigned &Reg = RegMap[V];
  if (Reg == 0) {
    Reg = makeAnotherReg(V->getType());
    RegMap[V] = Reg;
  }

  return Reg;
}

/// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
/// that is to be statically allocated with the initial stack frame
/// adjustment.
unsigned ISel::getFixedSizedAllocaFI(AllocaInst *AI) {
  // Already computed this?
  std::map<AllocaInst*, unsigned>::iterator I = AllocaMap.lower_bound(AI);
  if (I != AllocaMap.end() && I->first == AI) return I->second;

  const Type *Ty = AI->getAllocatedType();
  ConstantUInt *CUI = cast<ConstantUInt>(AI->getArraySize());
  unsigned TySize = TM.getTargetData().getTypeSize(Ty);
  TySize *= CUI->getValue();   // Get total allocated size...
  unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
      
  // Create a new stack object using the frame manager...
  int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
  AllocaMap.insert(I, std::make_pair(AI, FrameIdx));
  return FrameIdx;
}


/// copyConstantToRegister - Output the instructions required to put the
/// specified constant into the specified register.
///
void ISel::copyConstantToRegister(MachineBasicBlock *MBB,
                                  MachineBasicBlock::iterator IP,
                                  Constant *C, unsigned R) {
  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
    unsigned Class = 0;
    switch (CE->getOpcode()) {
    case Instruction::GetElementPtr:
      emitGEPOperation(MBB, IP, CE->getOperand(0),
                       CE->op_begin()+1, CE->op_end(), R);
      return;
    case Instruction::Cast:
      emitCastOperation(MBB, IP, CE->getOperand(0), CE->getType(), R);
      return;

    case Instruction::Xor: ++Class; // FALL THROUGH
    case Instruction::Or:  ++Class; // FALL THROUGH
    case Instruction::And: ++Class; // FALL THROUGH
    case Instruction::Sub: ++Class; // FALL THROUGH
    case Instruction::Add:
      emitSimpleBinaryOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
                                Class, R);
      return;

    case Instruction::Mul:
      emitMultiply(MBB, IP, CE->getOperand(0), CE->getOperand(1), R);
      return;

    case Instruction::Div:
    case Instruction::Rem:
      emitDivRemOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
                          CE->getOpcode() == Instruction::Div, R);
      return;

    case Instruction::SetNE:
    case Instruction::SetEQ:
    case Instruction::SetLT:
    case Instruction::SetGT:
    case Instruction::SetLE:
    case Instruction::SetGE:
      emitSetCCOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
                         CE->getOpcode(), R);
      return;

    case Instruction::Shl:
    case Instruction::Shr:
      emitShiftOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
                         CE->getOpcode() == Instruction::Shl, CE->getType(), R);
      return;

    case Instruction::Select:
      emitSelectOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
                          CE->getOperand(2), R);
      return;

    default:
      std::cerr << "Offending expr: " << *C << "\n";
      assert(0 && "Constant expression not yet handled!\n");
    }
  }

  if (C->getType()->isIntegral()) {
    unsigned Class = getClassB(C->getType());

    if (Class == cLong) {
      // Copy the value into the register pair.
      uint64_t Val = cast<ConstantInt>(C)->getRawValue();
      BuildMI(*MBB, IP, X86::MOV32ri, 1, R).addImm(Val & 0xFFFFFFFF);
      BuildMI(*MBB, IP, X86::MOV32ri, 1, R+1).addImm(Val >> 32);
      return;
    }

    assert(Class <= cInt && "Type not handled yet!");

    static const unsigned IntegralOpcodeTab[] = {
      X86::MOV8ri, X86::MOV16ri, X86::MOV32ri
    };

    if (C->getType() == Type::BoolTy) {
      BuildMI(*MBB, IP, X86::MOV8ri, 1, R).addImm(C == ConstantBool::True);
    } else {
      ConstantInt *CI = cast<ConstantInt>(C);
      BuildMI(*MBB, IP, IntegralOpcodeTab[Class],1,R).addImm(CI->getRawValue());
    }
  } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
    if (CFP->isExactlyValue(+0.0))
      BuildMI(*MBB, IP, X86::FLD0, 0, R);
    else if (CFP->isExactlyValue(+1.0))
      BuildMI(*MBB, IP, X86::FLD1, 0, R);
    else {
      // Otherwise we need to spill the constant to memory...
      MachineConstantPool *CP = F->getConstantPool();
      unsigned CPI = CP->getConstantPoolIndex(CFP);
      const Type *Ty = CFP->getType();

      assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
      unsigned LoadOpcode = Ty == Type::FloatTy ? X86::FLD32m : X86::FLD64m;
      addConstantPoolReference(BuildMI(*MBB, IP, LoadOpcode, 4, R), CPI);
    }

  } else if (isa<ConstantPointerNull>(C)) {
    // Copy zero (null pointer) to the register.
    BuildMI(*MBB, IP, X86::MOV32ri, 1, R).addImm(0);
  } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
    BuildMI(*MBB, IP, X86::MOV32ri, 1, R).addGlobalAddress(GV);
  } else {
    std::cerr << "Offending constant: " << *C << "\n";
    assert(0 && "Type not handled yet!");
  }
}

/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
/// the stack into virtual registers.
///
void ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
  // Emit instructions to load the arguments...  On entry to a function on the
  // X86, the stack frame looks like this:
  //
  // [ESP] -- return address
  // [ESP + 4] -- first argument (leftmost lexically)
  // [ESP + 8] -- second argument, if first argument is four bytes in size
  //    ... 
  //
  unsigned ArgOffset = 0;   // Frame mechanisms handle retaddr slot
  MachineFrameInfo *MFI = F->getFrameInfo();

  for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) {
    bool ArgLive = !I->use_empty();
    unsigned Reg = ArgLive ? getReg(*I) : 0;
    int FI;          // Frame object index

    switch (getClassB(I->getType())) {
    case cByte:
      if (ArgLive) {
        FI = MFI->CreateFixedObject(1, ArgOffset);
        addFrameReference(BuildMI(BB, X86::MOV8rm, 4, Reg), FI);
      }
      break;
    case cShort:
      if (ArgLive) {
        FI = MFI->CreateFixedObject(2, ArgOffset);
        addFrameReference(BuildMI(BB, X86::MOV16rm, 4, Reg), FI);
      }
      break;
    case cInt:
      if (ArgLive) {
        FI = MFI->CreateFixedObject(4, ArgOffset);
        addFrameReference(BuildMI(BB, X86::MOV32rm, 4, Reg), FI);
      }
      break;
    case cLong:
      if (ArgLive) {
        FI = MFI->CreateFixedObject(8, ArgOffset);
        addFrameReference(BuildMI(BB, X86::MOV32rm, 4, Reg), FI);
        addFrameReference(BuildMI(BB, X86::MOV32rm, 4, Reg+1), FI, 4);
      }
      ArgOffset += 4;   // longs require 4 additional bytes
      break;
    case cFP:
      if (ArgLive) {
        unsigned Opcode;
        if (I->getType() == Type::FloatTy) {
          Opcode = X86::FLD32m;
          FI = MFI->CreateFixedObject(4, ArgOffset);
        } else {
          Opcode = X86::FLD64m;
          FI = MFI->CreateFixedObject(8, ArgOffset);
        }
        addFrameReference(BuildMI(BB, Opcode, 4, Reg), FI);
      }
      if (I->getType() == Type::DoubleTy)
        ArgOffset += 4;   // doubles require 4 additional bytes
      break;
    default:
      assert(0 && "Unhandled argument type!");
    }
    ArgOffset += 4;  // Each argument takes at least 4 bytes on the stack...
  }

  // If the function takes variable number of arguments, add a frame offset for
  // the start of the first vararg value... this is used to expand
  // llvm.va_start.
  if (Fn.getFunctionType()->isVarArg())
    VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
}


/// SelectPHINodes - Insert machine code to generate phis.  This is tricky
/// because we have to generate our sources into the source basic blocks, not
/// the current one.
///
void ISel::SelectPHINodes() {
  const TargetInstrInfo &TII = *TM.getInstrInfo();
  const Function &LF = *F->getFunction();  // The LLVM function...
  for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
    const BasicBlock *BB = I;
    MachineBasicBlock &MBB = *MBBMap[I];

    // Loop over all of the PHI nodes in the LLVM basic block...
    MachineBasicBlock::iterator PHIInsertPoint = MBB.begin();
    for (BasicBlock::const_iterator I = BB->begin();
         PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I)); ++I) {

      // Create a new machine instr PHI node, and insert it.
      unsigned PHIReg = getReg(*PN);
      MachineInstr *PhiMI = BuildMI(MBB, PHIInsertPoint,
                                    X86::PHI, PN->getNumOperands(), PHIReg);

      MachineInstr *LongPhiMI = 0;
      if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy)
        LongPhiMI = BuildMI(MBB, PHIInsertPoint,
                            X86::PHI, PN->getNumOperands(), PHIReg+1);

      // PHIValues - Map of blocks to incoming virtual registers.  We use this
      // so that we only initialize one incoming value for a particular block,
      // even if the block has multiple entries in the PHI node.
      //
      std::map<MachineBasicBlock*, unsigned> PHIValues;

      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
        MachineBasicBlock *PredMBB = MBBMap[PN->getIncomingBlock(i)];
        unsigned ValReg;
        std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
          PHIValues.lower_bound(PredMBB);

        if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
          // We already inserted an initialization of the register for this
          // predecessor.  Recycle it.
          ValReg = EntryIt->second;

        } else {        
          // Get the incoming value into a virtual register.
          //
          Value *Val = PN->getIncomingValue(i);

          // If this is a constant or GlobalValue, we may have to insert code
          // into the basic block to compute it into a virtual register.
          if ((isa<Constant>(Val) && !isa<ConstantExpr>(Val))) {
            // Simple constants get emitted at the end of the basic block,
            // before any terminator instructions.  We "know" that the code to
            // move a constant into a register will never clobber any flags.
            ValReg = getReg(Val, PredMBB, PredMBB->getFirstTerminator());
          } else {
            // Because we don't want to clobber any values which might be in
            // physical registers with the computation of this constant (which
            // might be arbitrarily complex if it is a constant expression),
            // just insert the computation at the top of the basic block.
            MachineBasicBlock::iterator PI = PredMBB->begin();
            
            // Skip over any PHI nodes though!
            while (PI != PredMBB->end() && PI->getOpcode() == X86::PHI)
              ++PI;
            
            ValReg = getReg(Val, PredMBB, PI);
          }

          // Remember that we inserted a value for this PHI for this predecessor
          PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
        }

        PhiMI->addRegOperand(ValReg);
        PhiMI->addMachineBasicBlockOperand(PredMBB);
        if (LongPhiMI) {
          LongPhiMI->addRegOperand(ValReg+1);
          LongPhiMI->addMachineBasicBlockOperand(PredMBB);
        }
      }

      // Now that we emitted all of the incoming values for the PHI node, make
      // sure to reposition the InsertPoint after the PHI that we just added.
      // This is needed because we might have inserted a constant into this
      // block, right after the PHI's which is before the old insert point!
      PHIInsertPoint = LongPhiMI ? LongPhiMI : PhiMI;
      ++PHIInsertPoint;
    }
  }
}

/// RequiresFPRegKill - The floating point stackifier pass cannot insert
/// compensation code on critical edges.  As such, it requires that we kill all
/// FP registers on the exit from any blocks that either ARE critical edges, or
/// branch to a block that has incoming critical edges.
///
/// Note that this kill instruction will eventually be eliminated when
/// restrictions in the stackifier are relaxed.
///
static bool RequiresFPRegKill(const MachineBasicBlock *MBB) {
#if 0
  const BasicBlock *BB = MBB->getBasicBlock ();
  for (succ_const_iterator SI = succ_begin(BB), E = succ_end(BB); SI!=E; ++SI) {
    const BasicBlock *Succ = *SI;
    pred_const_iterator PI = pred_begin(Succ), PE = pred_end(Succ);
    ++PI;  // Block have at least one predecessory
    if (PI != PE) {             // If it has exactly one, this isn't crit edge
      // If this block has more than one predecessor, check all of the
      // predecessors to see if they have multiple successors.  If so, then the
      // block we are analyzing needs an FPRegKill.
      for (PI = pred_begin(Succ); PI != PE; ++PI) {
        const BasicBlock *Pred = *PI;
        succ_const_iterator SI2 = succ_begin(Pred);
        ++SI2;  // There must be at least one successor of this block.
        if (SI2 != succ_end(Pred))
          return true;   // Yes, we must insert the kill on this edge.
      }
    }
  }
  // If we got this far, there is no need to insert the kill instruction.
  return false;
#else
  return true;
#endif
}

// InsertFPRegKills - Insert FP_REG_KILL instructions into basic blocks that
// need them.  This only occurs due to the floating point stackifier not being
// aggressive enough to handle arbitrary global stackification.
//
// Currently we insert an FP_REG_KILL instruction into each block that uses or
// defines a floating point virtual register.
//
// When the global register allocators (like linear scan) finally update live
// variable analysis, we can keep floating point values in registers across
// portions of the CFG that do not involve critical edges.  This will be a big
// win, but we are waiting on the global allocators before we can do this.
//
// With a bit of work, the floating point stackifier pass can be enhanced to
// break critical edges as needed (to make a place to put compensation code),
// but this will require some infrastructure improvements as well.
//
void ISel::InsertFPRegKills() {
  SSARegMap &RegMap = *F->getSSARegMap();

  for (MachineFunction::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
    for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I!=E; ++I)
      for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
      MachineOperand& MO = I->getOperand(i);
        if (MO.isRegister() && MO.getReg()) {
          unsigned Reg = MO.getReg();
          if (MRegisterInfo::isVirtualRegister(Reg))
            if (RegMap.getRegClass(Reg)->getSize() == 10)
              goto UsesFPReg;
        }
      }
    // If we haven't found an FP register use or def in this basic block, check
    // to see if any of our successors has an FP PHI node, which will cause a
    // copy to be inserted into this block.
    for (MachineBasicBlock::const_succ_iterator SI = BB->succ_begin(),
         SE = BB->succ_end(); SI != SE; ++SI) {
      MachineBasicBlock *SBB = *SI;
      for (MachineBasicBlock::iterator I = SBB->begin();
           I != SBB->end() && I->getOpcode() == X86::PHI; ++I) {
        if (RegMap.getRegClass(I->getOperand(0).getReg())->getSize() == 10)
          goto UsesFPReg;
      }
    }
    continue;
  UsesFPReg:
    // Okay, this block uses an FP register.  If the block has successors (ie,
    // it's not an unwind/return), insert the FP_REG_KILL instruction.
    if (BB->succ_size () && RequiresFPRegKill(BB)) {
      BuildMI(*BB, BB->getFirstTerminator(), X86::FP_REG_KILL, 0);
      ++NumFPKill;
    }
  }
}


void ISel::getAddressingMode(Value *Addr, X86AddressMode &AM) {
  AM.BaseType = X86AddressMode::RegBase;
  AM.Base.Reg = 0; AM.Scale = 1; AM.IndexReg = 0; AM.Disp = 0;
  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Addr)) {
    if (isGEPFoldable(BB, GEP->getOperand(0), GEP->op_begin()+1, GEP->op_end(),
                       AM))
      return;
  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
    if (CE->getOpcode() == Instruction::GetElementPtr)
      if (isGEPFoldable(BB, CE->getOperand(0), CE->op_begin()+1, CE->op_end(),
                        AM))
        return;
  } else if (AllocaInst *AI = dyn_castFixedAlloca(Addr)) {
    AM.BaseType = X86AddressMode::FrameIndexBase;
    AM.Base.FrameIndex = getFixedSizedAllocaFI(AI);
    return;
  }

  // If it's not foldable, reset addr mode.
  AM.BaseType = X86AddressMode::RegBase;
  AM.Base.Reg = getReg(Addr);
  AM.Scale = 1; AM.IndexReg = 0; AM.Disp = 0;
}

// canFoldSetCCIntoBranchOrSelect - Return the setcc instruction if we can fold
// it into the conditional branch or select instruction which is the only user
// of the cc instruction.  This is the case if the conditional branch is the
// only user of the setcc.  We also don't handle long arguments below, so we 
// reject them here as well.
//
static SetCondInst *canFoldSetCCIntoBranchOrSelect(Value *V) {
  if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
    if (SCI->hasOneUse()) {
      Instruction *User = cast<Instruction>(SCI->use_back());
      if ((isa<BranchInst>(User) || isa<SelectInst>(User)) &&
          (getClassB(SCI->getOperand(0)->getType()) != cLong ||
           SCI->getOpcode() == Instruction::SetEQ ||
           SCI->getOpcode() == Instruction::SetNE))
        return SCI;
    }
  return 0;
}

// Return a fixed numbering for setcc instructions which does not depend on the
// order of the opcodes.
//
static unsigned getSetCCNumber(unsigned Opcode) {
  switch(Opcode) {
  default: assert(0 && "Unknown setcc instruction!");
  case Instruction::SetEQ: return 0;
  case Instruction::SetNE: return 1;
  case Instruction::SetLT: return 2;
  case Instruction::SetGE: return 3;
  case Instruction::SetGT: return 4;
  case Instruction::SetLE: return 5;
  }
}

// LLVM  -> X86 signed  X86 unsigned
// -----    ----------  ------------
// seteq -> sete        sete
// setne -> setne       setne
// setlt -> setl        setb
// setge -> setge       setae
// setgt -> setg        seta
// setle -> setle       setbe
// ----
//          sets                       // Used by comparison with 0 optimization
//          setns
static const unsigned SetCCOpcodeTab[2][8] = {
  { X86::SETEr, X86::SETNEr, X86::SETBr, X86::SETAEr, X86::SETAr, X86::SETBEr,
    0, 0 },
  { X86::SETEr, X86::SETNEr, X86::SETLr, X86::SETGEr, X86::SETGr, X86::SETLEr,
    X86::SETSr, X86::SETNSr },
};

/// emitUCOMr - In the future when we support processors before the P6, this
/// wraps the logic for emitting an FUCOMr vs FUCOMIr.
void ISel::emitUCOMr(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
                     unsigned LHS, unsigned RHS) {
  if (0) { // for processors prior to the P6
    BuildMI(*MBB, IP, X86::FUCOMr, 2).addReg(LHS).addReg(RHS);
    BuildMI(*MBB, IP, X86::FNSTSW8r, 0);
    BuildMI(*MBB, IP, X86::SAHF, 1);
  } else {
    BuildMI(*MBB, IP, X86::FUCOMIr, 2).addReg(LHS).addReg(RHS);
  }
}

// EmitComparison - This function emits a comparison of the two operands,
// returning the extended setcc code to use.
unsigned ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
                              MachineBasicBlock *MBB,
                              MachineBasicBlock::iterator IP) {
  // The arguments are already supposed to be of the same type.
  const Type *CompTy = Op0->getType();
  unsigned Class = getClassB(CompTy);
  unsigned Op0r = getReg(Op0, MBB, IP);

  // Special case handling of: cmp R, i
  if (isa<ConstantPointerNull>(Op1)) {
    if (OpNum < 2)    // seteq/setne -> test
      BuildMI(*MBB, IP, X86::TEST32rr, 2).addReg(Op0r).addReg(Op0r);
    else
      BuildMI(*MBB, IP, X86::CMP32ri, 2).addReg(Op0r).addImm(0);
    return OpNum;

  } else if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
    if (Class == cByte || Class == cShort || Class == cInt) {
      unsigned Op1v = CI->getRawValue();

      // Mask off any upper bits of the constant, if there are any...
      Op1v &= (1ULL << (8 << Class)) - 1;

      // If this is a comparison against zero, emit more efficient code.  We
      // can't handle unsigned comparisons against zero unless they are == or
      // !=.  These should have been strength reduced already anyway.
      if (Op1v == 0 && (CompTy->isSigned() || OpNum < 2)) {
        static const unsigned TESTTab[] = {
          X86::TEST8rr, X86::TEST16rr, X86::TEST32rr
        };
        BuildMI(*MBB, IP, TESTTab[Class], 2).addReg(Op0r).addReg(Op0r);

        if (OpNum == 2) return 6;   // Map jl -> js
        if (OpNum == 3) return 7;   // Map jg -> jns
        return OpNum;
      }

      static const unsigned CMPTab[] = {
        X86::CMP8ri, X86::CMP16ri, X86::CMP32ri
      };

      BuildMI(*MBB, IP, CMPTab[Class], 2).addReg(Op0r).addImm(Op1v);
      return OpNum;
    } else {
      assert(Class == cLong && "Unknown integer class!");
      unsigned LowCst = CI->getRawValue();
      unsigned HiCst = CI->getRawValue() >> 32;
      if (OpNum < 2) {    // seteq, setne
        unsigned LoTmp = Op0r;
        if (LowCst != 0) {
          LoTmp = makeAnotherReg(Type::IntTy);
          BuildMI(*MBB, IP, X86::XOR32ri, 2, LoTmp).addReg(Op0r).addImm(LowCst);
        }
        unsigned HiTmp = Op0r+1;
        if (HiCst != 0) {
          HiTmp = makeAnotherReg(Type::IntTy);
          BuildMI(*MBB, IP, X86::XOR32ri, 2,HiTmp).addReg(Op0r+1).addImm(HiCst);
        }
        unsigned FinalTmp = makeAnotherReg(Type::IntTy);
        BuildMI(*MBB, IP, X86::OR32rr, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
        return OpNum;
      } else {
        // Emit a sequence of code which compares the high and low parts once
        // each, then uses a conditional move to handle the overflow case.  For
        // example, a setlt for long would generate code like this:
        //
        // AL = lo(op1) < lo(op2)   // Always unsigned comparison
        // BL = hi(op1) < hi(op2)   // Signedness depends on operands
        // dest = hi(op1) == hi(op2) ? BL : AL;
        //

        // FIXME: This would be much better if we had hierarchical register
        // classes!  Until then, hardcode registers so that we can deal with
        // their aliases (because we don't have conditional byte moves).
        //
        BuildMI(*MBB, IP, X86::CMP32ri, 2).addReg(Op0r).addImm(LowCst);
        BuildMI(*MBB, IP, SetCCOpcodeTab[0][OpNum], 0, X86::AL);
        BuildMI(*MBB, IP, X86::CMP32ri, 2).addReg(Op0r+1).addImm(HiCst);
        BuildMI(*MBB, IP, SetCCOpcodeTab[CompTy->isSigned()][OpNum], 0,X86::BL);
        BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::BH);
        BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::AH);
        BuildMI(*MBB, IP, X86::CMOVE16rr, 2, X86::BX).addReg(X86::BX)
          .addReg(X86::AX);
        // NOTE: visitSetCondInst knows that the value is dumped into the BL
        // register at this point for long values...
        return OpNum;
      }
    }
  }

  // Special case handling of comparison against +/- 0.0
  if (ConstantFP *CFP = dyn_cast<ConstantFP>(Op1))
    if (CFP->isExactlyValue(+0.0) || CFP->isExactlyValue(-0.0)) {
      BuildMI(*MBB, IP, X86::FTST, 1).addReg(Op0r);
      BuildMI(*MBB, IP, X86::FNSTSW8r, 0);
      BuildMI(*MBB, IP, X86::SAHF, 1);
      return OpNum;
    }

  unsigned Op1r = getReg(Op1, MBB, IP);
  switch (Class) {
  default: assert(0 && "Unknown type class!");
    // Emit: cmp <var1>, <var2> (do the comparison).  We can
    // compare 8-bit with 8-bit, 16-bit with 16-bit, 32-bit with
    // 32-bit.
  case cByte:
    BuildMI(*MBB, IP, X86::CMP8rr, 2).addReg(Op0r).addReg(Op1r);
    break;
  case cShort:
    BuildMI(*MBB, IP, X86::CMP16rr, 2).addReg(Op0r).addReg(Op1r);
    break;
  case cInt:
    BuildMI(*MBB, IP, X86::CMP32rr, 2).addReg(Op0r).addReg(Op1r);
    break;
  case cFP:
    emitUCOMr(MBB, IP, Op0r, Op1r);
    break;

  case cLong:
    if (OpNum < 2) {    // seteq, setne
      unsigned LoTmp = makeAnotherReg(Type::IntTy);
      unsigned HiTmp = makeAnotherReg(Type::IntTy);
      unsigned FinalTmp = makeAnotherReg(Type::IntTy);
      BuildMI(*MBB, IP, X86::XOR32rr, 2, LoTmp).addReg(Op0r).addReg(Op1r);
      BuildMI(*MBB, IP, X86::XOR32rr, 2, HiTmp).addReg(Op0r+1).addReg(Op1r+1);
      BuildMI(*MBB, IP, X86::OR32rr,  2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
      break;  // Allow the sete or setne to be generated from flags set by OR
    } else {
      // Emit a sequence of code which compares the high and low parts once
      // each, then uses a conditional move to handle the overflow case.  For
      // example, a setlt for long would generate code like this:
      //
      // AL = lo(op1) < lo(op2)   // Signedness depends on operands
      // BL = hi(op1) < hi(op2)   // Always unsigned comparison
      // dest = hi(op1) == hi(op2) ? BL : AL;
      //

      // FIXME: This would be much better if we had hierarchical register
      // classes!  Until then, hardcode registers so that we can deal with their
      // aliases (because we don't have conditional byte moves).
      //
      BuildMI(*MBB, IP, X86::CMP32rr, 2).addReg(Op0r).addReg(Op1r);
      BuildMI(*MBB, IP, SetCCOpcodeTab[0][OpNum], 0, X86::AL);
      BuildMI(*MBB, IP, X86::CMP32rr, 2).addReg(Op0r+1).addReg(Op1r+1);
      BuildMI(*MBB, IP, SetCCOpcodeTab[CompTy->isSigned()][OpNum], 0, X86::BL);
      BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::BH);
      BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::AH);
      BuildMI(*MBB, IP, X86::CMOVE16rr, 2, X86::BX).addReg(X86::BX)
                                                   .addReg(X86::AX);
      // NOTE: visitSetCondInst knows that the value is dumped into the BL
      // register at this point for long values...
      return OpNum;
    }
  }
  return OpNum;
}

/// SetCC instructions - Here we just emit boilerplate code to set a byte-sized
/// register, then move it to wherever the result should be. 
///
void ISel::visitSetCondInst(SetCondInst &I) {
  if (canFoldSetCCIntoBranchOrSelect(&I))
    return;  // Fold this into a branch or select.

  unsigned DestReg = getReg(I);
  MachineBasicBlock::iterator MII = BB->end();
  emitSetCCOperation(BB, MII, I.getOperand(0), I.getOperand(1), I.getOpcode(),
                     DestReg);
}

/// emitSetCCOperation - Common code shared between visitSetCondInst and
/// constant expression support.
///
void ISel::emitSetCCOperation(MachineBasicBlock *MBB,
                              MachineBasicBlock::iterator IP,
                              Value *Op0, Value *Op1, unsigned Opcode,
                              unsigned TargetReg) {
  unsigned OpNum = getSetCCNumber(Opcode);
  OpNum = EmitComparison(OpNum, Op0, Op1, MBB, IP);

  const Type *CompTy = Op0->getType();
  unsigned CompClass = getClassB(CompTy);
  bool isSigned = CompTy->isSigned() && CompClass != cFP;

  if (CompClass != cLong || OpNum < 2) {
    // Handle normal comparisons with a setcc instruction...
    BuildMI(*MBB, IP, SetCCOpcodeTab[isSigned][OpNum], 0, TargetReg);
  } else {
    // Handle long comparisons by copying the value which is already in BL into
    // the register we want...
    BuildMI(*MBB, IP, X86::MOV8rr, 1, TargetReg).addReg(X86::BL);
  }
}

void ISel::visitSelectInst(SelectInst &SI) {
  unsigned DestReg = getReg(SI);
  MachineBasicBlock::iterator MII = BB->end();
  emitSelectOperation(BB, MII, SI.getCondition(), SI.getTrueValue(),
                      SI.getFalseValue(), DestReg);
}
 
/// emitSelect - Common code shared between visitSelectInst and the constant
/// expression support.
void ISel::emitSelectOperation(MachineBasicBlock *MBB,
                               MachineBasicBlock::iterator IP,
                               Value *Cond, Value *TrueVal, Value *FalseVal,
                               unsigned DestReg) {
  unsigned SelectClass = getClassB(TrueVal->getType());
  
  // We don't support 8-bit conditional moves.  If we have incoming constants,
  // transform them into 16-bit constants to avoid having a run-time conversion.
  if (SelectClass == cByte) {
    if (Constant *T = dyn_cast<Constant>(TrueVal))
      TrueVal = ConstantExpr::getCast(T, Type::ShortTy);
    if (Constant *F = dyn_cast<Constant>(FalseVal))
      FalseVal = ConstantExpr::getCast(F, Type::ShortTy);
  }

  unsigned TrueReg  = getReg(TrueVal, MBB, IP);
  unsigned FalseReg = getReg(FalseVal, MBB, IP);
  if (TrueReg == FalseReg) {
    static const unsigned Opcode[] = {
      X86::MOV8rr, X86::MOV16rr, X86::MOV32rr, X86::FpMOV, X86::MOV32rr
    };
    BuildMI(*MBB, IP, Opcode[SelectClass], 1, DestReg).addReg(TrueReg);
    if (SelectClass == cLong)
      BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg+1).addReg(TrueReg+1);
    return;
  }

  unsigned Opcode;
  if (SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(Cond)) {
    // We successfully folded the setcc into the select instruction.
    
    unsigned OpNum = getSetCCNumber(SCI->getOpcode());
    OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), MBB,
                           IP);

    const Type *CompTy = SCI->getOperand(0)->getType();
    bool isSigned = CompTy->isSigned() && getClassB(CompTy) != cFP;
  
    // LLVM  -> X86 signed  X86 unsigned
    // -----    ----------  ------------
    // seteq -> cmovNE      cmovNE
    // setne -> cmovE       cmovE
    // setlt -> cmovGE      cmovAE
    // setge -> cmovL       cmovB
    // setgt -> cmovLE      cmovBE
    // setle -> cmovG       cmovA
    // ----
    //          cmovNS              // Used by comparison with 0 optimization
    //          cmovS
    
    switch (SelectClass) {
    default: assert(0 && "Unknown value class!");
    case cFP: {
      // Annoyingly, we don't have a full set of floating point conditional
      // moves.  :(
      static const unsigned OpcodeTab[2][8] = {
        { X86::FCMOVNE, X86::FCMOVE, X86::FCMOVAE, X86::FCMOVB,
          X86::FCMOVBE, X86::FCMOVA, 0, 0 },
        { X86::FCMOVNE, X86::FCMOVE, 0, 0, 0, 0, 0, 0 },
      };
      Opcode = OpcodeTab[isSigned][OpNum];

      // If opcode == 0, we hit a case that we don't support.  Output a setcc
      // and compare the result against zero.
      if (Opcode == 0) {
        unsigned CompClass = getClassB(CompTy);
        unsigned CondReg;
        if (CompClass != cLong || OpNum < 2) {
          CondReg = makeAnotherReg(Type::BoolTy);
          // Handle normal comparisons with a setcc instruction...
          BuildMI(*MBB, IP, SetCCOpcodeTab[isSigned][OpNum], 0, CondReg);
        } else {
          // Long comparisons end up in the BL register.
          CondReg = X86::BL;
        }
        
        BuildMI(*MBB, IP, X86::TEST8rr, 2).addReg(CondReg).addReg(CondReg);
        Opcode = X86::FCMOVE;
      }
      break;
    }
    case cByte:
    case cShort: {
      static const unsigned OpcodeTab[2][8] = {
        { X86::CMOVNE16rr, X86::CMOVE16rr, X86::CMOVAE16rr, X86::CMOVB16rr,
          X86::CMOVBE16rr, X86::CMOVA16rr, 0, 0 },
        { X86::CMOVNE16rr, X86::CMOVE16rr, X86::CMOVGE16rr, X86::CMOVL16rr,
          X86::CMOVLE16rr, X86::CMOVG16rr, X86::CMOVNS16rr, X86::CMOVS16rr },
      };
      Opcode = OpcodeTab[isSigned][OpNum];
      break;
    }
    case cInt:
    case cLong: {
      static const unsigned OpcodeTab[2][8] = {
        { X86::CMOVNE32rr, X86::CMOVE32rr, X86::CMOVAE32rr, X86::CMOVB32rr,
          X86::CMOVBE32rr, X86::CMOVA32rr, 0, 0 },
        { X86::CMOVNE32rr, X86::CMOVE32rr, X86::CMOVGE32rr, X86::CMOVL32rr,
          X86::CMOVLE32rr, X86::CMOVG32rr, X86::CMOVNS32rr, X86::CMOVS32rr },
      };
      Opcode = OpcodeTab[isSigned][OpNum];
      break;
    }
    }
  } else {
    // Get the value being branched on, and use it to set the condition codes.
    unsigned CondReg = getReg(Cond, MBB, IP);
    BuildMI(*MBB, IP, X86::TEST8rr, 2).addReg(CondReg).addReg(CondReg);
    switch (SelectClass) {
    default: assert(0 && "Unknown value class!");
    case cFP:    Opcode = X86::FCMOVE; break;
    case cByte:
    case cShort: Opcode = X86::CMOVE16rr; break;
    case cInt:
    case cLong:  Opcode = X86::CMOVE32rr; break;
    }
  }

  unsigned RealDestReg = DestReg;


  // Annoyingly enough, X86 doesn't HAVE 8-bit conditional moves.  Because of
  // this, we have to promote the incoming values to 16 bits, perform a 16-bit
  // cmove, then truncate the result.
  if (SelectClass == cByte) {
    DestReg = makeAnotherReg(Type::ShortTy);
    if (getClassB(TrueVal->getType()) == cByte) {
      // Promote the true value, by storing it into AL, and reading from AX.
      BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::AL).addReg(TrueReg);
      BuildMI(*MBB, IP, X86::MOV8ri, 1, X86::AH).addImm(0);
      TrueReg = makeAnotherReg(Type::ShortTy);
      BuildMI(*MBB, IP, X86::MOV16rr, 1, TrueReg).addReg(X86::AX);
    }
    if (getClassB(FalseVal->getType()) == cByte) {
      // Promote the true value, by storing it into CL, and reading from CX.
      BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::CL).addReg(FalseReg);
      BuildMI(*MBB, IP, X86::MOV8ri, 1, X86::CH).addImm(0);
      FalseReg = makeAnotherReg(Type::ShortTy);
      BuildMI(*MBB, IP, X86::MOV16rr, 1, FalseReg).addReg(X86::CX);
    }
  }

  BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(TrueReg).addReg(FalseReg);

  switch (SelectClass) {
  case cByte:
    // We did the computation with 16-bit registers.  Truncate back to our
    // result by copying into AX then copying out AL.
    BuildMI(*MBB, IP, X86::MOV16rr, 1, X86::AX).addReg(DestReg);
    BuildMI(*MBB, IP, X86::MOV8rr, 1, RealDestReg).addReg(X86::AL);
    break;
  case cLong:
    // Move the upper half of the value as well.
    BuildMI(*MBB, IP, Opcode, 2,DestReg+1).addReg(TrueReg+1).addReg(FalseReg+1);
    break;
  }
}



/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
/// operand, in the specified target register.
///
void ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
  bool isUnsigned = VR.Ty->isUnsigned() || VR.Ty == Type::BoolTy;

  Value *Val = VR.Val;
  const Type *Ty = VR.Ty;
  if (Val) {
    if (Constant *C = dyn_cast<Constant>(Val)) {
      Val = ConstantExpr::getCast(C, Type::IntTy);
      Ty = Type::IntTy;
    }

    // If this is a simple constant, just emit a MOVri directly to avoid the
    // copy.
    if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
      int TheVal = CI->getRawValue() & 0xFFFFFFFF;
      BuildMI(BB, X86::MOV32ri, 1, targetReg).addImm(TheVal);
      return;
    }
  }

  // Make sure we have the register number for this value...
  unsigned Reg = Val ? getReg(Val) : VR.Reg;

  switch (getClassB(Ty)) {
  case cByte:
    // Extend value into target register (8->32)
    if (isUnsigned)
      BuildMI(BB, X86::MOVZX32rr8, 1, targetReg).addReg(Reg);
    else
      BuildMI(BB, X86::MOVSX32rr8, 1, targetReg).addReg(Reg);
    break;
  case cShort:
    // Extend value into target register (16->32)
    if (isUnsigned)
      BuildMI(BB, X86::MOVZX32rr16, 1, targetReg).addReg(Reg);
    else
      BuildMI(BB, X86::MOVSX32rr16, 1, targetReg).addReg(Reg);
    break;
  case cInt:
    // Move value into target register (32->32)
    BuildMI(BB, X86::MOV32rr, 1, targetReg).addReg(Reg);
    break;
  default:
    assert(0 && "Unpromotable operand class in promote32");
  }
}

/// 'ret' instruction - Here we are interested in meeting the x86 ABI.  As such,
/// we have the following possibilities:
///
///   ret void: No return value, simply emit a 'ret' instruction
///   ret sbyte, ubyte : Extend value into EAX and return
///   ret short, ushort: Extend value into EAX and return
///   ret int, uint    : Move value into EAX and return
///   ret pointer      : Move value into EAX and return
///   ret long, ulong  : Move value into EAX/EDX and return
///   ret float/double : Top of FP stack
///
void ISel::visitReturnInst(ReturnInst &I) {
  if (I.getNumOperands() == 0) {
    BuildMI(BB, X86::RET, 0); // Just emit a 'ret' instruction
    return;
  }

  Value *RetVal = I.getOperand(0);
  switch (getClassB(RetVal->getType())) {
  case cByte:   // integral return values: extend or move into EAX and return
  case cShort:
  case cInt:
    promote32(X86::EAX, ValueRecord(RetVal));
    // Declare that EAX is live on exit
    BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::EAX).addReg(X86::ESP);
    break;
  case cFP: {                  // Floats & Doubles: Return in ST(0)
    unsigned RetReg = getReg(RetVal);
    BuildMI(BB, X86::FpSETRESULT, 1).addReg(RetReg);
    // Declare that top-of-stack is live on exit
    BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::ST0).addReg(X86::ESP);
    break;
  }
  case cLong: {
    unsigned RetReg = getReg(RetVal);
    BuildMI(BB, X86::MOV32rr, 1, X86::EAX).addReg(RetReg);
    BuildMI(BB, X86::MOV32rr, 1, X86::EDX).addReg(RetReg+1);
    // Declare that EAX & EDX are live on exit
    BuildMI(BB, X86::IMPLICIT_USE, 3).addReg(X86::EAX).addReg(X86::EDX)
      .addReg(X86::ESP);
    break;
  }
  default:
    visitInstruction(I);
  }
  // Emit a 'ret' instruction
  BuildMI(BB, X86::RET, 0);
}

// getBlockAfter - Return the basic block which occurs lexically after the
// specified one.
static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
  Function::iterator I = BB; ++I;  // Get iterator to next block
  return I != BB->getParent()->end() ? &*I : 0;
}

/// visitBranchInst - Handle conditional and unconditional branches here.  Note
/// that since code layout is frozen at this point, that if we are trying to
/// jump to a block that is the immediate successor of the current block, we can
/// just make a fall-through (but we don't currently).
///
void ISel::visitBranchInst(BranchInst &BI) {
  // Update machine-CFG edges
  BB->addSuccessor (MBBMap[BI.getSuccessor(0)]);
  if (BI.isConditional())
    BB->addSuccessor (MBBMap[BI.getSuccessor(1)]);

  BasicBlock *NextBB = getBlockAfter(BI.getParent());  // BB after current one

  if (!BI.isConditional()) {  // Unconditional branch?
    if (BI.getSuccessor(0) != NextBB)
      BuildMI(BB, X86::JMP, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
    return;
  }

  // See if we can fold the setcc into the branch itself...
  SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(BI.getCondition());
  if (SCI == 0) {
    // Nope, cannot fold setcc into this branch.  Emit a branch on a condition
    // computed some other way...
    unsigned condReg = getReg(BI.getCondition());
    BuildMI(BB, X86::TEST8rr, 2).addReg(condReg).addReg(condReg);
    if (BI.getSuccessor(1) == NextBB) {
      if (BI.getSuccessor(0) != NextBB)
        BuildMI(BB, X86::JNE, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
    } else {
      BuildMI(BB, X86::JE, 1).addMBB(MBBMap[BI.getSuccessor(1)]);
      
      if (BI.getSuccessor(0) != NextBB)
        BuildMI(BB, X86::JMP, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
    }
    return;
  }

  unsigned OpNum = getSetCCNumber(SCI->getOpcode());
  MachineBasicBlock::iterator MII = BB->end();
  OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII);

  const Type *CompTy = SCI->getOperand(0)->getType();
  bool isSigned = CompTy->isSigned() && getClassB(CompTy) != cFP;
  

  // LLVM  -> X86 signed  X86 unsigned
  // -----    ----------  ------------
  // seteq -> je          je
  // setne -> jne         jne
  // setlt -> jl          jb
  // setge -> jge         jae
  // setgt -> jg          ja
  // setle -> jle         jbe
  // ----
  //          js                  // Used by comparison with 0 optimization
  //          jns

  static const unsigned OpcodeTab[2][8] = {
    { X86::JE, X86::JNE, X86::JB, X86::JAE, X86::JA, X86::JBE, 0, 0 },
    { X86::JE, X86::JNE, X86::JL, X86::JGE, X86::JG, X86::JLE,
      X86::JS, X86::JNS },
  };
  
  if (BI.getSuccessor(0) != NextBB) {
    BuildMI(BB, OpcodeTab[isSigned][OpNum], 1)
      .addMBB(MBBMap[BI.getSuccessor(0)]);
    if (BI.getSuccessor(1) != NextBB)
      BuildMI(BB, X86::JMP, 1).addMBB(MBBMap[BI.getSuccessor(1)]);
  } else {
    // Change to the inverse condition...
    if (BI.getSuccessor(1) != NextBB) {
      OpNum ^= 1;
      BuildMI(BB, OpcodeTab[isSigned][OpNum], 1)
        .addMBB(MBBMap[BI.getSuccessor(1)]);
    }
  }
}


/// doCall - This emits an abstract call instruction, setting up the arguments
/// and the return value as appropriate.  For the actual function call itself,
/// it inserts the specified CallMI instruction into the stream.
///
void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
                  const std::vector<ValueRecord> &Args) {

  // Count how many bytes are to be pushed on the stack...
  unsigned NumBytes = 0;

  if (!Args.empty()) {
    for (unsigned i = 0, e = Args.size(); i != e; ++i)
      switch (getClassB(Args[i].Ty)) {
      case cByte: case cShort: case cInt:
        NumBytes += 4; break;
      case cLong:
        NumBytes += 8; break;
      case cFP:
        NumBytes += Args[i].Ty == Type::FloatTy ? 4 : 8;
        break;
      default: assert(0 && "Unknown class!");
      }

    // Adjust the stack pointer for the new arguments...
    BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addImm(NumBytes);

    // Arguments go on the stack in reverse order, as specified by the ABI.
    unsigned ArgOffset = 0;
    for (unsigned i = 0, e = Args.size(); i != e; ++i) {
      unsigned ArgReg;
      switch (getClassB(Args[i].Ty)) {
      case cByte:
        if (Args[i].Val && isa<ConstantBool>(Args[i].Val)) {
          addRegOffset(BuildMI(BB, X86::MOV32mi, 5), X86::ESP, ArgOffset)
            .addImm(Args[i].Val == ConstantBool::True);
          break;
        }
        // FALL THROUGH
      case cShort:
        if (Args[i].Val && isa<ConstantInt>(Args[i].Val)) {
          // Zero/Sign extend constant, then stuff into memory.
          ConstantInt *Val = cast<ConstantInt>(Args[i].Val);
          Val = cast<ConstantInt>(ConstantExpr::getCast(Val, Type::IntTy));
          addRegOffset(BuildMI(BB, X86::MOV32mi, 5), X86::ESP, ArgOffset)
            .addImm(Val->getRawValue() & 0xFFFFFFFF);
        } else {
          // Promote arg to 32 bits wide into a temporary register...
          ArgReg = makeAnotherReg(Type::UIntTy);
          promote32(ArgReg, Args[i]);
          addRegOffset(BuildMI(BB, X86::MOV32mr, 5),
                       X86::ESP, ArgOffset).addReg(ArgReg);
        }
        break;
      case cInt:
        if (Args[i].Val && isa<ConstantInt>(Args[i].Val)) {
          unsigned Val = cast<ConstantInt>(Args[i].Val)->getRawValue();
          addRegOffset(BuildMI(BB, X86::MOV32mi, 5),
                       X86::ESP, ArgOffset).addImm(Val);
        } else if (Args[i].Val && isa<ConstantPointerNull>(Args[i].Val)) {
          addRegOffset(BuildMI(BB, X86::MOV32mi, 5),
                       X86::ESP, ArgOffset).addImm(0);
        } else {
          ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
          addRegOffset(BuildMI(BB, X86::MOV32mr, 5),
                       X86::ESP, ArgOffset).addReg(ArgReg);
        }
        break;
      case cLong:
        if (Args[i].Val && isa<ConstantInt>(Args[i].Val)) {
          uint64_t Val = cast<ConstantInt>(Args[i].Val)->getRawValue();
          addRegOffset(BuildMI(BB, X86::MOV32mi, 5),
                       X86::ESP, ArgOffset).addImm(Val & ~0U);
          addRegOffset(BuildMI(BB, X86::MOV32mi, 5),
                       X86::ESP, ArgOffset+4).addImm(Val >> 32ULL);
        } else {
          ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
          addRegOffset(BuildMI(BB, X86::MOV32mr, 5),
                       X86::ESP, ArgOffset).addReg(ArgReg);
          addRegOffset(BuildMI(BB, X86::MOV32mr, 5),
                       X86::ESP, ArgOffset+4).addReg(ArgReg+1);
        }
        ArgOffset += 4;        // 8 byte entry, not 4.
        break;
        
      case cFP:
        ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
        if (Args[i].Ty == Type::FloatTy) {
          addRegOffset(BuildMI(BB, X86::FST32m, 5),
                       X86::ESP, ArgOffset).addReg(ArgReg);
        } else {
          assert(Args[i].Ty == Type::DoubleTy && "Unknown FP type!");
          addRegOffset(BuildMI(BB, X86::FST64m, 5),
                       X86::ESP, ArgOffset).addReg(ArgReg);
          ArgOffset += 4;       // 8 byte entry, not 4.
        }
        break;

      default: assert(0 && "Unknown class!");
      }
      ArgOffset += 4;
    }
  } else {
    BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addImm(0);
  }

  BB->push_back(CallMI);

  BuildMI(BB, X86::ADJCALLSTACKUP, 1).addImm(NumBytes);

  // If there is a return value, scavenge the result from the location the call
  // leaves it in...
  //
  if (Ret.Ty != Type::VoidTy) {
    unsigned DestClass = getClassB(Ret.Ty);
    switch (DestClass) {
    case cByte:
    case cShort:
    case cInt: {
      // Integral results are in %eax, or the appropriate portion
      // thereof.
      static const unsigned regRegMove[] = {
        X86::MOV8rr, X86::MOV16rr, X86::MOV32rr
      };
      static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX };
      BuildMI(BB, regRegMove[DestClass], 1, Ret.Reg).addReg(AReg[DestClass]);
      break;
    }
    case cFP:     // Floating-point return values live in %ST(0)
      BuildMI(BB, X86::FpGETRESULT, 1, Ret.Reg);
      break;
    case cLong:   // Long values are left in EDX:EAX
      BuildMI(BB, X86::MOV32rr, 1, Ret.Reg).addReg(X86::EAX);
      BuildMI(BB, X86::MOV32rr, 1, Ret.Reg+1).addReg(X86::EDX);
      break;
    default: assert(0 && "Unknown class!");
    }
  }
}


/// visitCallInst - Push args on stack and do a procedure call instruction.
void ISel::visitCallInst(CallInst &CI) {
  MachineInstr *TheCall;
  if (Function *F = CI.getCalledFunction()) {
    // Is it an intrinsic function call?
    if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
      visitIntrinsicCall(ID, CI);   // Special intrinsics are not handled here
      return;
    }

    // Emit a CALL instruction with PC-relative displacement.
    TheCall = BuildMI(X86::CALLpcrel32, 1).addGlobalAddress(F, true);
  } else {  // Emit an indirect call...
    unsigned Reg = getReg(CI.getCalledValue());
    TheCall = BuildMI(X86::CALL32r, 1).addReg(Reg);
  }

  std::vector<ValueRecord> Args;
  for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
    Args.push_back(ValueRecord(CI.getOperand(i)));

  unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
  doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args);
}         

/// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
/// function, lowering any calls to unknown intrinsic functions into the
/// equivalent LLVM code.
///
void ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) {
  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
      if (CallInst *CI = dyn_cast<CallInst>(I++))
        if (Function *F = CI->getCalledFunction())
          switch (F->getIntrinsicID()) {
          case Intrinsic::not_intrinsic:
          case Intrinsic::vastart:
          case Intrinsic::vacopy:
          case Intrinsic::vaend:
          case Intrinsic::returnaddress:
          case Intrinsic::frameaddress:
          case Intrinsic::memcpy:
          case Intrinsic::memset:
          case Intrinsic::isunordered:
          case Intrinsic::readport:
          case Intrinsic::writeport:
            // We directly implement these intrinsics
            break;
          case Intrinsic::readio: {
            // On X86, memory operations are in-order.  Lower this intrinsic
            // into a volatile load.
            Instruction *Before = CI->getPrev();
            LoadInst * LI = new LoadInst(CI->getOperand(1), "", true, CI);
            CI->replaceAllUsesWith(LI);
            BB->getInstList().erase(CI);
            break;
          }
          case Intrinsic::writeio: {
            // On X86, memory operations are in-order.  Lower this intrinsic
            // into a volatile store.
            Instruction *Before = CI->getPrev();
            StoreInst *LI = new StoreInst(CI->getOperand(1),
                                          CI->getOperand(2), true, CI);
            CI->replaceAllUsesWith(LI);
            BB->getInstList().erase(CI);
            break;
          }
          default:
            // All other intrinsic calls we must lower.
            Instruction *Before = CI->getPrev();
            TM.getIntrinsicLowering().LowerIntrinsicCall(CI);
            if (Before) {        // Move iterator to instruction after call
              I = Before; ++I;
            } else {
              I = BB->begin();
            }
          }
}

void ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) {
  unsigned TmpReg1, TmpReg2;
  switch (ID) {
  case Intrinsic::vastart:
    // Get the address of the first vararg value...
    TmpReg1 = getReg(CI);
    addFrameReference(BuildMI(BB, X86::LEA32r, 5, TmpReg1), VarArgsFrameIndex);
    return;

  case Intrinsic::vacopy:
    TmpReg1 = getReg(CI);
    TmpReg2 = getReg(CI.getOperand(1));
    BuildMI(BB, X86::MOV32rr, 1, TmpReg1).addReg(TmpReg2);
    return;
  case Intrinsic::vaend: return;   // Noop on X86

  case Intrinsic::returnaddress:
  case Intrinsic::frameaddress:
    TmpReg1 = getReg(CI);
    if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
      if (ID == Intrinsic::returnaddress) {
        // Just load the return address
        addFrameReference(BuildMI(BB, X86::MOV32rm, 4, TmpReg1),
                          ReturnAddressIndex);
      } else {
        addFrameReference(BuildMI(BB, X86::LEA32r, 4, TmpReg1),
                          ReturnAddressIndex, -4);
      }
    } else {
      // Values other than zero are not implemented yet.
      BuildMI(BB, X86::MOV32ri, 1, TmpReg1).addImm(0);
    }
    return;

  case Intrinsic::isunordered:
    TmpReg1 = getReg(CI.getOperand(1));
    TmpReg2 = getReg(CI.getOperand(2));
    emitUCOMr(BB, BB->end(), TmpReg2, TmpReg1);
    TmpReg2 = getReg(CI);
    BuildMI(BB, X86::SETPr, 0, TmpReg2);
    return;

  case Intrinsic::memcpy: {
    assert(CI.getNumOperands() == 5 && "Illegal llvm.memcpy call!");
    unsigned Align = 1;
    if (ConstantInt *AlignC = dyn_cast<ConstantInt>(CI.getOperand(4))) {
      Align = AlignC->getRawValue();
      if (Align == 0) Align = 1;
    }

    // Turn the byte code into # iterations
    unsigned CountReg;
    unsigned Opcode;
    switch (Align & 3) {
    case 2:   // WORD aligned
      if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
        CountReg = getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/2));
      } else {
        CountReg = makeAnotherReg(Type::IntTy);
        unsigned ByteReg = getReg(CI.getOperand(3));
        BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(1);
      }
      Opcode = X86::REP_MOVSW;
      break;
    case 0:   // DWORD aligned
      if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
        CountReg = getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/4));
      } else {
        CountReg = makeAnotherReg(Type::IntTy);
        unsigned ByteReg = getReg(CI.getOperand(3));
        BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(2);
      }
      Opcode = X86::REP_MOVSD;
      break;
    default:  // BYTE aligned
      CountReg = getReg(CI.getOperand(3));
      Opcode = X86::REP_MOVSB;
      break;
    }

    // No matter what the alignment is, we put the source in ESI, the
    // destination in EDI, and the count in ECX.
    TmpReg1 = getReg(CI.getOperand(1));
    TmpReg2 = getReg(CI.getOperand(2));
    BuildMI(BB, X86::MOV32rr, 1, X86::ECX).addReg(CountReg);
    BuildMI(BB, X86::MOV32rr, 1, X86::EDI).addReg(TmpReg1);
    BuildMI(BB, X86::MOV32rr, 1, X86::ESI).addReg(TmpReg2);
    BuildMI(BB, Opcode, 0);
    return;
  }
  case Intrinsic::memset: {
    assert(CI.getNumOperands() == 5 && "Illegal llvm.memset call!");
    unsigned Align = 1;
    if (ConstantInt *AlignC = dyn_cast<ConstantInt>(CI.getOperand(4))) {
      Align = AlignC->getRawValue();
      if (Align == 0) Align = 1;
    }

    // Turn the byte code into # iterations
    unsigned CountReg;
    unsigned Opcode;
    if (ConstantInt *ValC = dyn_cast<ConstantInt>(CI.getOperand(2))) {
      unsigned Val = ValC->getRawValue() & 255;

      // If the value is a constant, then we can potentially use larger copies.
      switch (Align & 3) {
      case 2:   // WORD aligned
        if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
          CountReg =getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/2));
        } else {
          CountReg = makeAnotherReg(Type::IntTy);
          unsigned ByteReg = getReg(CI.getOperand(3));
          BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(1);
        }
        BuildMI(BB, X86::MOV16ri, 1, X86::AX).addImm((Val << 8) | Val);
        Opcode = X86::REP_STOSW;
        break;
      case 0:   // DWORD aligned
        if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
          CountReg =getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/4));
        } else {
          CountReg = makeAnotherReg(Type::IntTy);
          unsigned ByteReg = getReg(CI.getOperand(3));
          BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(2);
        }
        Val = (Val << 8) | Val;
        BuildMI(BB, X86::MOV32ri, 1, X86::EAX).addImm((Val << 16) | Val);
        Opcode = X86::REP_STOSD;
        break;
      default:  // BYTE aligned
        CountReg = getReg(CI.getOperand(3));
        BuildMI(BB, X86::MOV8ri, 1, X86::AL).addImm(Val);
        Opcode = X86::REP_STOSB;
        break;
      }
    } else {
      // If it's not a constant value we are storing, just fall back.  We could
      // try to be clever to form 16 bit and 32 bit values, but we don't yet.
      unsigned ValReg = getReg(CI.getOperand(2));
      BuildMI(BB, X86::MOV8rr, 1, X86::AL).addReg(ValReg);
      CountReg = getReg(CI.getOperand(3));
      Opcode = X86::REP_STOSB;
    }

    // No matter what the alignment is, we put the source in ESI, the
    // destination in EDI, and the count in ECX.
    TmpReg1 = getReg(CI.getOperand(1));
    //TmpReg2 = getReg(CI.getOperand(2));
    BuildMI(BB, X86::MOV32rr, 1, X86::ECX).addReg(CountReg);
    BuildMI(BB, X86::MOV32rr, 1, X86::EDI).addReg(TmpReg1);
    BuildMI(BB, Opcode, 0);
    return;
  }

  case Intrinsic::readport: {
    // First, determine that the size of the operand falls within the acceptable
    // range for this architecture.
    //
    if (getClassB(CI.getOperand(1)->getType()) != cShort) {
      std::cerr << "llvm.readport: Address size is not 16 bits\n";
      exit(1);
    }

    // Now, move the I/O port address into the DX register and use the IN
    // instruction to get the input data.
    //
    unsigned Class = getClass(CI.getCalledFunction()->getReturnType());
    unsigned DestReg = getReg(CI);

    // If the port is a single-byte constant, use the immediate form.
    if (ConstantInt *C = dyn_cast<ConstantInt>(CI.getOperand(1)))
      if ((C->getRawValue() & 255) == C->getRawValue()) {
        switch (Class) {
        case cByte:
          BuildMI(BB, X86::IN8ri, 1).addImm((unsigned char)C->getRawValue());
          BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::AL);
          return;
        case cShort:
          BuildMI(BB, X86::IN16ri, 1).addImm((unsigned char)C->getRawValue());
          BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::AX);
          return;
        case cInt:
          BuildMI(BB, X86::IN32ri, 1).addImm((unsigned char)C->getRawValue());
          BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::EAX);
          return;
        }
      }

    unsigned Reg = getReg(CI.getOperand(1));
    BuildMI(BB, X86::MOV16rr, 1, X86::DX).addReg(Reg);
    switch (Class) {
    case cByte:
      BuildMI(BB, X86::IN8rr, 0);
      BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::AL);
      break;
    case cShort:
      BuildMI(BB, X86::IN16rr, 0);
      BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::AX);
      break;
    case cInt:
      BuildMI(BB, X86::IN32rr, 0);
      BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::EAX);
      break;
    default:
      std::cerr << "Cannot do input on this data type";
      exit (1);
    }
    return;
  }

  case Intrinsic::writeport: {
    // First, determine that the size of the operand falls within the
    // acceptable range for this architecture.
    if (getClass(CI.getOperand(2)->getType()) != cShort) {
      std::cerr << "llvm.writeport: Address size is not 16 bits\n";
      exit(1);
    }

    unsigned Class = getClassB(CI.getOperand(1)->getType());
    unsigned ValReg = getReg(CI.getOperand(1));
    switch (Class) {
    case cByte:
      BuildMI(BB, X86::MOV8rr, 1, X86::AL).addReg(ValReg);
      break;
    case cShort:
      BuildMI(BB, X86::MOV16rr, 1, X86::AX).addReg(ValReg);
      break;
    case cInt:
      BuildMI(BB, X86::MOV32rr, 1, X86::EAX).addReg(ValReg);
      break;
    default:
      std::cerr << "llvm.writeport: invalid data type for X86 target";
      exit(1);
    }


    // If the port is a single-byte constant, use the immediate form.
    if (ConstantInt *C = dyn_cast<ConstantInt>(CI.getOperand(2)))
      if ((C->getRawValue() & 255) == C->getRawValue()) {
        static const unsigned O[] = { X86::OUT8ir, X86::OUT16ir, X86::OUT32ir };
        BuildMI(BB, O[Class], 1).addImm((unsigned char)C->getRawValue());
        return;
      }

    // Otherwise, move the I/O port address into the DX register and the value
    // to write into the AL/AX/EAX register.
    static const unsigned Opc[] = { X86::OUT8rr, X86::OUT16rr, X86::OUT32rr };
    unsigned Reg = getReg(CI.getOperand(2));
    BuildMI(BB, X86::MOV16rr, 1, X86::DX).addReg(Reg);
    BuildMI(BB, Opc[Class], 0);
    return;
  }
    
  default: assert(0 && "Error: unknown intrinsics should have been lowered!");
  }
}

static bool isSafeToFoldLoadIntoInstruction(LoadInst &LI, Instruction &User) {
  if (LI.getParent() != User.getParent())
    return false;
  BasicBlock::iterator It = &LI;
  // Check all of the instructions between the load and the user.  We should
  // really use alias analysis here, but for now we just do something simple.
  for (++It; It != BasicBlock::iterator(&User); ++It) {
    switch (It->getOpcode()) {
    case Instruction::Free:
    case Instruction::Store:
    case Instruction::Call:
    case Instruction::Invoke:
      return false;
    case Instruction::Load:
      if (cast<LoadInst>(It)->isVolatile() && LI.isVolatile())
        return false;
      break;
    }
  }
  return true;
}

/// visitSimpleBinary - Implement simple binary operators for integral types...
/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for
/// Xor.
///
void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
  unsigned DestReg = getReg(B);
  MachineBasicBlock::iterator MI = BB->end();
  Value *Op0 = B.getOperand(0), *Op1 = B.getOperand(1);
  unsigned Class = getClassB(B.getType());

  // Special case: op Reg, load [mem]
  if (isa<LoadInst>(Op0) && !isa<LoadInst>(Op1) && Class != cLong &&
      Op0->hasOneUse() && 
      isSafeToFoldLoadIntoInstruction(*cast<LoadInst>(Op0), B))
    if (!B.swapOperands())
      std::swap(Op0, Op1);  // Make sure any loads are in the RHS.

  if (isa<LoadInst>(Op1) && Class != cLong && Op1->hasOneUse() &&
      isSafeToFoldLoadIntoInstruction(*cast<LoadInst>(Op1), B)) {

    unsigned Opcode;
    if (Class != cFP) {
      static const unsigned OpcodeTab[][3] = {
        // Arithmetic operators
        { X86::ADD8rm, X86::ADD16rm, X86::ADD32rm },  // ADD
        { X86::SUB8rm, X86::SUB16rm, X86::SUB32rm },  // SUB
        
        // Bitwise operators
        { X86::AND8rm, X86::AND16rm, X86::AND32rm },  // AND
        { X86:: OR8rm, X86:: OR16rm, X86:: OR32rm },  // OR
        { X86::XOR8rm, X86::XOR16rm, X86::XOR32rm },  // XOR
      };
      Opcode = OpcodeTab[OperatorClass][Class];
    } else {
      static const unsigned OpcodeTab[][2] = {
        { X86::FADD32m, X86::FADD64m },  // ADD
        { X86::FSUB32m, X86::FSUB64m },  // SUB
      };
      const Type *Ty = Op0->getType();
      assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
      Opcode = OpcodeTab[OperatorClass][Ty == Type::DoubleTy];
    }

    unsigned Op0r = getReg(Op0);
    if (AllocaInst *AI =
        dyn_castFixedAlloca(cast<LoadInst>(Op1)->getOperand(0))) {
      unsigned FI = getFixedSizedAllocaFI(AI);
      addFrameReference(BuildMI(BB, Opcode, 5, DestReg).addReg(Op0r), FI);

    } else {
      X86AddressMode AM;
      getAddressingMode(cast<LoadInst>(Op1)->getOperand(0), AM);
      
      addFullAddress(BuildMI(BB, Opcode, 5, DestReg).addReg(Op0r), AM);
    }
    return;
  }

  // If this is a floating point subtract, check to see if we can fold the first
  // operand in.
  if (Class == cFP && OperatorClass == 1 &&
      isa<LoadInst>(Op0) && 
      isSafeToFoldLoadIntoInstruction(*cast<LoadInst>(Op0), B)) {
    const Type *Ty = Op0->getType();
    assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
    unsigned Opcode = Ty == Type::FloatTy ? X86::FSUBR32m : X86::FSUBR64m;

    unsigned Op1r = getReg(Op1);
    if (AllocaInst *AI =
        dyn_castFixedAlloca(cast<LoadInst>(Op0)->getOperand(0))) {
      unsigned FI = getFixedSizedAllocaFI(AI);
      addFrameReference(BuildMI(BB, Opcode, 5, DestReg).addReg(Op1r), FI);
    } else {
      X86AddressMode AM;
      getAddressingMode(cast<LoadInst>(Op0)->getOperand(0), AM);
      
      addFullAddress(BuildMI(BB, Opcode, 5, DestReg).addReg(Op1r), AM);
    }
    return;
  }

  emitSimpleBinaryOperation(BB, MI, Op0, Op1, OperatorClass, DestReg);
}


/// emitBinaryFPOperation - This method handles emission of floating point
/// Add (0), Sub (1), Mul (2), and Div (3) operations.
void ISel::emitBinaryFPOperation(MachineBasicBlock *BB,
                                 MachineBasicBlock::iterator IP,
                                 Value *Op0, Value *Op1,
                                 unsigned OperatorClass, unsigned DestReg) {

  // Special case: op Reg, <const fp>
  if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1))
    if (!Op1C->isExactlyValue(+0.0) && !Op1C->isExactlyValue(+1.0)) {
      // Create a constant pool entry for this constant.
      MachineConstantPool *CP = F->getConstantPool();
      unsigned CPI = CP->getConstantPoolIndex(Op1C);
      const Type *Ty = Op1->getType();

      static const unsigned OpcodeTab[][4] = {
        { X86::FADD32m, X86::FSUB32m, X86::FMUL32m, X86::FDIV32m },   // Float
        { X86::FADD64m, X86::FSUB64m, X86::FMUL64m, X86::FDIV64m },   // Double
      };

      assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
      unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
      unsigned Op0r = getReg(Op0, BB, IP);
      addConstantPoolReference(BuildMI(*BB, IP, Opcode, 5,
                                       DestReg).addReg(Op0r), CPI);
      return;
    }
  
  // Special case: R1 = op <const fp>, R2
  if (ConstantFP *CFP = dyn_cast<ConstantFP>(Op0))
    if (CFP->isExactlyValue(-0.0) && OperatorClass == 1) {
      // -0.0 - X === -X
      unsigned op1Reg = getReg(Op1, BB, IP);
      BuildMI(*BB, IP, X86::FCHS, 1, DestReg).addReg(op1Reg);
      return;
    } else if (!CFP->isExactlyValue(+0.0) && !CFP->isExactlyValue(+1.0)) {
      // R1 = op CST, R2  -->  R1 = opr R2, CST

      // Create a constant pool entry for this constant.
      MachineConstantPool *CP = F->getConstantPool();
      unsigned CPI = CP->getConstantPoolIndex(CFP);
      const Type *Ty = CFP->getType();

      static const unsigned OpcodeTab[][4] = {
        { X86::FADD32m, X86::FSUBR32m, X86::FMUL32m, X86::FDIVR32m }, // Float
        { X86::FADD64m, X86::FSUBR64m, X86::FMUL64m, X86::FDIVR64m }, // Double
      };
      
      assert(Ty == Type::FloatTy||Ty == Type::DoubleTy && "Unknown FP type!");
      unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
      unsigned Op1r = getReg(Op1, BB, IP);
      addConstantPoolReference(BuildMI(*BB, IP, Opcode, 5,
                                       DestReg).addReg(Op1r), CPI);
      return;
    }

  // General case.
  static const unsigned OpcodeTab[4] = {
    X86::FpADD, X86::FpSUB, X86::FpMUL, X86::FpDIV
  };

  unsigned Opcode = OpcodeTab[OperatorClass];
  unsigned Op0r = getReg(Op0, BB, IP);
  unsigned Op1r = getReg(Op1, BB, IP);
  BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
}

/// emitSimpleBinaryOperation - Implement simple binary operators for integral
/// types...  OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for
/// Or, 4 for Xor.
///
/// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
/// and constant expression support.
///
void ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB,
                                     MachineBasicBlock::iterator IP,
                                     Value *Op0, Value *Op1,
                                     unsigned OperatorClass, unsigned DestReg) {
  unsigned Class = getClassB(Op0->getType());

  if (Class == cFP) {
    assert(OperatorClass < 2 && "No logical ops for FP!");
    emitBinaryFPOperation(MBB, IP, Op0, Op1, OperatorClass, DestReg);
    return;
  }

  if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0))
    if (OperatorClass == 1) {
      static unsigned const NEGTab[] = {
        X86::NEG8r, X86::NEG16r, X86::NEG32r, 0, X86::NEG32r
      };

      // sub 0, X -> neg X
      if (CI->isNullValue()) {
        unsigned op1Reg = getReg(Op1, MBB, IP);
        BuildMI(*MBB, IP, NEGTab[Class], 1, DestReg).addReg(op1Reg);
      
        if (Class == cLong) {
          // We just emitted: Dl = neg Sl
          // Now emit       : T  = addc Sh, 0
          //                : Dh = neg T
          unsigned T = makeAnotherReg(Type::IntTy);
          BuildMI(*MBB, IP, X86::ADC32ri, 2, T).addReg(op1Reg+1).addImm(0);
          BuildMI(*MBB, IP, X86::NEG32r, 1, DestReg+1).addReg(T);
        }
        return;
      } else if (Op1->hasOneUse() && Class != cLong) {
        // sub C, X -> tmp = neg X; DestReg = add tmp, C.  This is better
        // than copying C into a temporary register, because of register
        // pressure (tmp and destreg can share a register.
        static unsigned const ADDRITab[] = { 
          X86::ADD8ri, X86::ADD16ri, X86::ADD32ri, 0, X86::ADD32ri
        };
        unsigned op1Reg = getReg(Op1, MBB, IP);
        unsigned Tmp = makeAnotherReg(Op0->getType());
        BuildMI(*MBB, IP, NEGTab[Class], 1, Tmp).addReg(op1Reg);
        BuildMI(*MBB, IP, ADDRITab[Class], 2,
                DestReg).addReg(Tmp).addImm(CI->getRawValue());
        return;
      }
    }

  // Special case: op Reg, <const int>
  if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
    unsigned Op0r = getReg(Op0, MBB, IP);

    // xor X, -1 -> not X
    if (OperatorClass == 4 && Op1C->isAllOnesValue()) {
      static unsigned const NOTTab[] = {
        X86::NOT8r, X86::NOT16r, X86::NOT32r, 0, X86::NOT32r
      };
      BuildMI(*MBB, IP, NOTTab[Class], 1, DestReg).addReg(Op0r);
      if (Class == cLong)  // Invert the top part too
        BuildMI(*MBB, IP, X86::NOT32r, 1, DestReg+1).addReg(Op0r+1);
      return;
    }

    // add X, -1 -> dec X
    if (OperatorClass == 0 && Op1C->isAllOnesValue() && Class != cLong) {
      // Note that we can't use dec for 64-bit decrements, because it does not
      // set the carry flag!
      static unsigned const DECTab[] = { X86::DEC8r, X86::DEC16r, X86::DEC32r };
      BuildMI(*MBB, IP, DECTab[Class], 1, DestReg).addReg(Op0r);
      return;
    }

    // add X, 1 -> inc X
    if (OperatorClass == 0 && Op1C->equalsInt(1) && Class != cLong) {
      // Note that we can't use inc for 64-bit increments, because it does not
      // set the carry flag!
      static unsigned const INCTab[] = { X86::INC8r, X86::INC16r, X86::INC32r };
      BuildMI(*MBB, IP, INCTab[Class], 1, DestReg).addReg(Op0r);
      return;
    }
  
    static const unsigned OpcodeTab[][5] = {
      // Arithmetic operators
      { X86::ADD8ri, X86::ADD16ri, X86::ADD32ri, 0, X86::ADD32ri },  // ADD
      { X86::SUB8ri, X86::SUB16ri, X86::SUB32ri, 0, X86::SUB32ri },  // SUB
    
      // Bitwise operators
      { X86::AND8ri, X86::AND16ri, X86::AND32ri, 0, X86::AND32ri },  // AND
      { X86:: OR8ri, X86:: OR16ri, X86:: OR32ri, 0, X86::OR32ri  },  // OR
      { X86::XOR8ri, X86::XOR16ri, X86::XOR32ri, 0, X86::XOR32ri },  // XOR
    };
  
    unsigned Opcode = OpcodeTab[OperatorClass][Class];
    unsigned Op1l = cast<ConstantInt>(Op1C)->getRawValue();

    if (Class != cLong) {
      BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addImm(Op1l);
      return;
    }
    
    // If this is a long value and the high or low bits have a special
    // property, emit some special cases.
    unsigned Op1h = cast<ConstantInt>(Op1C)->getRawValue() >> 32LL;
    
    // If the constant is zero in the low 32-bits, just copy the low part
    // across and apply the normal 32-bit operation to the high parts.  There
    // will be no carry or borrow into the top.
    if (Op1l == 0) {
      if (OperatorClass != 2) // All but and...
        BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg).addReg(Op0r);
      else
        BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg).addImm(0);
      BuildMI(*MBB, IP, OpcodeTab[OperatorClass][cLong], 2, DestReg+1)
        .addReg(Op0r+1).addImm(Op1h);
      return;
    }
    
    // If this is a logical operation and the top 32-bits are zero, just
    // operate on the lower 32.
    if (Op1h == 0 && OperatorClass > 1) {
      BuildMI(*MBB, IP, OpcodeTab[OperatorClass][cLong], 2, DestReg)
        .addReg(Op0r).addImm(Op1l);
      if (OperatorClass != 2)  // All but and
        BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg+1).addReg(Op0r+1);
      else
        BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg+1).addImm(0);
      return;
    }
    
    // TODO: We could handle lots of other special cases here, such as AND'ing
    // with 0xFFFFFFFF00000000 -> noop, etc.
    
    // Otherwise, code generate the full operation with a constant.
    static const unsigned TopTab[] = {
      X86::ADC32ri, X86::SBB32ri, X86::AND32ri, X86::OR32ri, X86::XOR32ri
    };
    
    BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addImm(Op1l);
    BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg+1)
      .addReg(Op0r+1).addImm(Op1h);
    return;
  }

  // Finally, handle the general case now.
  static const unsigned OpcodeTab[][5] = {
    // Arithmetic operators
    { X86::ADD8rr, X86::ADD16rr, X86::ADD32rr, 0, X86::ADD32rr },  // ADD
    { X86::SUB8rr, X86::SUB16rr, X86::SUB32rr, 0, X86::SUB32rr },  // SUB
      
    // Bitwise operators
    { X86::AND8rr, X86::AND16rr, X86::AND32rr, 0, X86::AND32rr },  // AND
    { X86:: OR8rr, X86:: OR16rr, X86:: OR32rr, 0, X86:: OR32rr },  // OR
    { X86::XOR8rr, X86::XOR16rr, X86::XOR32rr, 0, X86::XOR32rr },  // XOR
  };
    
  unsigned Opcode = OpcodeTab[OperatorClass][Class];
  unsigned Op0r = getReg(Op0, MBB, IP);
  unsigned Op1r = getReg(Op1, MBB, IP);
  BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
    
  if (Class == cLong) {        // Handle the upper 32 bits of long values...
    static const unsigned TopTab[] = {
      X86::ADC32rr, X86::SBB32rr, X86::AND32rr, X86::OR32rr, X86::XOR32rr
    };
    BuildMI(*MBB, IP, TopTab[OperatorClass], 2,
            DestReg+1).addReg(Op0r+1).addReg(Op1r+1);
  }
}

/// doMultiply - Emit appropriate instructions to multiply together the
/// registers op0Reg and op1Reg, and put the result in DestReg.  The type of the
/// result should be given as DestTy.
///
void ISel::doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
                      unsigned DestReg, const Type *DestTy,
                      unsigned op0Reg, unsigned op1Reg) {
  unsigned Class = getClass(DestTy);
  switch (Class) {
  case cInt:
  case cShort:
    BuildMI(*MBB, MBBI, Class == cInt ? X86::IMUL32rr:X86::IMUL16rr, 2, DestReg)
      .addReg(op0Reg).addReg(op1Reg);
    return;
  case cByte:
    // Must use the MUL instruction, which forces use of AL...
    BuildMI(*MBB, MBBI, X86::MOV8rr, 1, X86::AL).addReg(op0Reg);
    BuildMI(*MBB, MBBI, X86::MUL8r, 1).addReg(op1Reg);
    BuildMI(*MBB, MBBI, X86::MOV8rr, 1, DestReg).addReg(X86::AL);
    return;
  default:
  case cLong: assert(0 && "doMultiply cannot operate on LONG values!");
  }
}

// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N.  It
// returns zero when the input is not exactly a power of two.
static unsigned ExactLog2(unsigned Val) {
  if (Val == 0 || (Val & (Val-1))) return 0;
  unsigned Count = 0;
  while (Val != 1) {
    Val >>= 1;
    ++Count;
  }
  return Count+1;
}


/// doMultiplyConst - This function is specialized to efficiently codegen an 8,
/// 16, or 32-bit integer multiply by a constant.
void ISel::doMultiplyConst(MachineBasicBlock *MBB,
                           MachineBasicBlock::iterator IP,
                           unsigned DestReg, const Type *DestTy,
                           unsigned op0Reg, unsigned ConstRHS) {
  static const unsigned MOVrrTab[] = {X86::MOV8rr, X86::MOV16rr, X86::MOV32rr};
  static const unsigned MOVriTab[] = {X86::MOV8ri, X86::MOV16ri, X86::MOV32ri};
  static const unsigned ADDrrTab[] = {X86::ADD8rr, X86::ADD16rr, X86::ADD32rr};
  static const unsigned NEGrTab[]  = {X86::NEG8r , X86::NEG16r , X86::NEG32r };

  unsigned Class = getClass(DestTy);
  unsigned TmpReg;

  // Handle special cases here.
  switch (ConstRHS) {
  case -2:
    TmpReg = makeAnotherReg(DestTy);
    BuildMI(*MBB, IP, NEGrTab[Class], 1, TmpReg).addReg(op0Reg);
    BuildMI(*MBB, IP, ADDrrTab[Class], 1,DestReg).addReg(TmpReg).addReg(TmpReg);
    return;
  case -1:
    BuildMI(*MBB, IP, NEGrTab[Class], 1, DestReg).addReg(op0Reg);
    return;
  case 0:
    BuildMI(*MBB, IP, MOVriTab[Class], 1, DestReg).addImm(0);
    return;
  case 1:
    BuildMI(*MBB, IP, MOVrrTab[Class], 1, DestReg).addReg(op0Reg);
    return;
  case 2:
    BuildMI(*MBB, IP, ADDrrTab[Class], 1,DestReg).addReg(op0Reg).addReg(op0Reg);
    return;
  case 3:
  case 5:
  case 9:
    if (Class == cInt) {
      X86AddressMode AM;
      AM.BaseType = X86AddressMode::RegBase;
      AM.Base.Reg = op0Reg;
      AM.Scale = ConstRHS-1;
      AM.IndexReg = op0Reg;
      AM.Disp = 0;
      addFullAddress(BuildMI(*MBB, IP, X86::LEA32r, 5, DestReg), AM);
      return;
    }
  case -3:
  case -5:
  case -9:
    if (Class == cInt) {
      TmpReg = makeAnotherReg(DestTy);
      X86AddressMode AM;
      AM.BaseType = X86AddressMode::RegBase;
      AM.Base.Reg = op0Reg;
      AM.Scale = -ConstRHS-1;
      AM.IndexReg = op0Reg;
      AM.Disp = 0;
      addFullAddress(BuildMI(*MBB, IP, X86::LEA32r, 5, TmpReg), AM);
      BuildMI(*MBB, IP, NEGrTab[Class], 1, DestReg).addReg(TmpReg);
      return;
    }
  }

  // If the element size is exactly a power of 2, use a shift to get it.
  if (unsigned Shift = ExactLog2(ConstRHS)) {
    switch (Class) {
    default: assert(0 && "Unknown class for this function!");
    case cByte:
      BuildMI(*MBB, IP, X86::SHL8ri,2, DestReg).addReg(op0Reg).addImm(Shift-1);
      return;
    case cShort:
      BuildMI(*MBB, IP, X86::SHL16ri,2, DestReg).addReg(op0Reg).addImm(Shift-1);
      return;
    case cInt:
      BuildMI(*MBB, IP, X86::SHL32ri,2, DestReg).addReg(op0Reg).addImm(Shift-1);
      return;
    }
  }

  // If the element size is a negative power of 2, use a shift/neg to get it.
  if (unsigned Shift = ExactLog2(-ConstRHS)) {
    TmpReg = makeAnotherReg(DestTy);
    BuildMI(*MBB, IP, NEGrTab[Class], 1, TmpReg).addReg(op0Reg);
    switch (Class) {
    default: assert(0 && "Unknown class for this function!");
    case cByte:
      BuildMI(*MBB, IP, X86::SHL8ri,2, DestReg).addReg(TmpReg).addImm(Shift-1);
      return;
    case cShort:
      BuildMI(*MBB, IP, X86::SHL16ri,2, DestReg).addReg(TmpReg).addImm(Shift-1);
      return;
    case cInt:
      BuildMI(*MBB, IP, X86::SHL32ri,2, DestReg).addReg(TmpReg).addImm(Shift-1);
      return;
    }
  }
  
  if (Class == cShort) {
    BuildMI(*MBB, IP, X86::IMUL16rri,2,DestReg).addReg(op0Reg).addImm(ConstRHS);
    return;
  } else if (Class == cInt) {
    BuildMI(*MBB, IP, X86::IMUL32rri,2,DestReg).addReg(op0Reg).addImm(ConstRHS);
    return;
  }

  // Most general case, emit a normal multiply...
  TmpReg = makeAnotherReg(DestTy);
  BuildMI(*MBB, IP, MOVriTab[Class], 1, TmpReg).addImm(ConstRHS);
  
  // Emit a MUL to multiply the register holding the index by
  // elementSize, putting the result in OffsetReg.
  doMultiply(MBB, IP, DestReg, DestTy, op0Reg, TmpReg);
}

/// visitMul - Multiplies are not simple binary operators because they must deal
/// with the EAX register explicitly.
///
void ISel::visitMul(BinaryOperator &I) {
  unsigned ResultReg = getReg(I);

  Value *Op0 = I.getOperand(0);
  Value *Op1 = I.getOperand(1);

  // Fold loads into floating point multiplies.
  if (getClass(Op0->getType()) == cFP) {
    if (isa<LoadInst>(Op0) && !isa<LoadInst>(Op1))
      if (!I.swapOperands())
        std::swap(Op0, Op1);  // Make sure any loads are in the RHS.
    if (LoadInst *LI = dyn_cast<LoadInst>(Op1))
      if (isSafeToFoldLoadIntoInstruction(*LI, I)) {
        const Type *Ty = Op0->getType();
        assert(Ty == Type::FloatTy||Ty == Type::DoubleTy && "Unknown FP type!");
        unsigned Opcode = Ty == Type::FloatTy ? X86::FMUL32m : X86::FMUL64m;
        
        unsigned Op0r = getReg(Op0);
        if (AllocaInst *AI = dyn_castFixedAlloca(LI->getOperand(0))) {
          unsigned FI = getFixedSizedAllocaFI(AI);
          addFrameReference(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op0r), FI);
        } else {
          X86AddressMode AM;
          getAddressingMode(LI->getOperand(0), AM);
          
          addFullAddress(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op0r), AM);
        }
        return;
      }
  }

  MachineBasicBlock::iterator IP = BB->end();
  emitMultiply(BB, IP, Op0, Op1, ResultReg);
}

void ISel::emitMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
                        Value *Op0, Value *Op1, unsigned DestReg) {
  MachineBasicBlock &BB = *MBB;
  TypeClass Class = getClass(Op0->getType());

  // Simple scalar multiply?
  unsigned Op0Reg  = getReg(Op0, &BB, IP);
  switch (Class) {
  case cByte:
  case cShort:
  case cInt:
    if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
      unsigned Val = (unsigned)CI->getRawValue(); // Isn't a 64-bit constant
      doMultiplyConst(&BB, IP, DestReg, Op0->getType(), Op0Reg, Val);
    } else {
      unsigned Op1Reg  = getReg(Op1, &BB, IP);
      doMultiply(&BB, IP, DestReg, Op1->getType(), Op0Reg, Op1Reg);
    }
    return;
  case cFP:
    emitBinaryFPOperation(MBB, IP, Op0, Op1, 2, DestReg);
    return;
  case cLong:
    break;
  }

  // Long value.  We have to do things the hard way...
  if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
    unsigned CLow = CI->getRawValue();
    unsigned CHi  = CI->getRawValue() >> 32;
    
    if (CLow == 0) {
      // If the low part of the constant is all zeros, things are simple.
      BuildMI(BB, IP, X86::MOV32ri, 1, DestReg).addImm(0);
      doMultiplyConst(&BB, IP, DestReg+1, Type::UIntTy, Op0Reg, CHi);
      return;
    }
    
    // Multiply the two low parts... capturing carry into EDX
    unsigned OverflowReg = 0;
    if (CLow == 1) {
      BuildMI(BB, IP, X86::MOV32rr, 1, DestReg).addReg(Op0Reg);
    } else {
      unsigned Op1RegL = makeAnotherReg(Type::UIntTy);
      OverflowReg = makeAnotherReg(Type::UIntTy);
      BuildMI(BB, IP, X86::MOV32ri, 1, Op1RegL).addImm(CLow);
      BuildMI(BB, IP, X86::MOV32rr, 1, X86::EAX).addReg(Op0Reg);
      BuildMI(BB, IP, X86::MUL32r, 1).addReg(Op1RegL);  // AL*BL
      
      BuildMI(BB, IP, X86::MOV32rr, 1, DestReg).addReg(X86::EAX);   // AL*BL
      BuildMI(BB, IP, X86::MOV32rr, 1,
              OverflowReg).addReg(X86::EDX);                    // AL*BL >> 32
    }
    
    unsigned AHBLReg = makeAnotherReg(Type::UIntTy);   // AH*BL
    doMultiplyConst(&BB, IP, AHBLReg, Type::UIntTy, Op0Reg+1, CLow);
    
    unsigned AHBLplusOverflowReg;
    if (OverflowReg) {
      AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
      BuildMI(BB, IP, X86::ADD32rr, 2,                // AH*BL+(AL*BL >> 32)
              AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
    } else {
      AHBLplusOverflowReg = AHBLReg;
    }
    
    if (CHi == 0) {
      BuildMI(BB, IP, X86::MOV32rr, 1, DestReg+1).addReg(AHBLplusOverflowReg);
    } else {
      unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
      doMultiplyConst(&BB, IP, ALBHReg, Type::UIntTy, Op0Reg, CHi);
      
      BuildMI(BB, IP, X86::ADD32rr, 2,      // AL*BH + AH*BL + (AL*BL >> 32)
              DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
    }
    return;
  }

  // General 64x64 multiply

  unsigned Op1Reg  = getReg(Op1, &BB, IP);
  // Multiply the two low parts... capturing carry into EDX
  BuildMI(BB, IP, X86::MOV32rr, 1, X86::EAX).addReg(Op0Reg);
  BuildMI(BB, IP, X86::MUL32r, 1).addReg(Op1Reg);  // AL*BL
  
  unsigned OverflowReg = makeAnotherReg(Type::UIntTy);
  BuildMI(BB, IP, X86::MOV32rr, 1, DestReg).addReg(X86::EAX);     // AL*BL
  BuildMI(BB, IP, X86::MOV32rr, 1,
          OverflowReg).addReg(X86::EDX); // AL*BL >> 32
  
  unsigned AHBLReg = makeAnotherReg(Type::UIntTy);   // AH*BL
  BuildMI(BB, IP, X86::IMUL32rr, 2,
          AHBLReg).addReg(Op0Reg+1).addReg(Op1Reg);
  
  unsigned AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
  BuildMI(BB, IP, X86::ADD32rr, 2,                // AH*BL+(AL*BL >> 32)
          AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
  
  unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
  BuildMI(BB, IP, X86::IMUL32rr, 2,
          ALBHReg).addReg(Op0Reg).addReg(Op1Reg+1);
  
  BuildMI(BB, IP, X86::ADD32rr, 2,      // AL*BH + AH*BL + (AL*BL >> 32)
          DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
}


/// visitDivRem - Handle division and remainder instructions... these
/// instruction both require the same instructions to be generated, they just
/// select the result from a different register.  Note that both of these
/// instructions work differently for signed and unsigned operands.
///
void ISel::visitDivRem(BinaryOperator &I) {
  unsigned ResultReg = getReg(I);
  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);

  // Fold loads into floating point divides.
  if (getClass(Op0->getType()) == cFP) {
    if (LoadInst *LI = dyn_cast<LoadInst>(Op1))
      if (isSafeToFoldLoadIntoInstruction(*LI, I)) {
        const Type *Ty = Op0->getType();
        assert(Ty == Type::FloatTy||Ty == Type::DoubleTy && "Unknown FP type!");
        unsigned Opcode = Ty == Type::FloatTy ? X86::FDIV32m : X86::FDIV64m;
        
        unsigned Op0r = getReg(Op0);
        if (AllocaInst *AI = dyn_castFixedAlloca(LI->getOperand(0))) {
          unsigned FI = getFixedSizedAllocaFI(AI);
          addFrameReference(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op0r), FI);
        } else {
          X86AddressMode AM;
          getAddressingMode(LI->getOperand(0), AM);
          
          addFullAddress(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op0r), AM);
        }
        return;
      }

    if (LoadInst *LI = dyn_cast<LoadInst>(Op0))
      if (isSafeToFoldLoadIntoInstruction(*LI, I)) {
        const Type *Ty = Op0->getType();
        assert(Ty == Type::FloatTy||Ty == Type::DoubleTy && "Unknown FP type!");
        unsigned Opcode = Ty == Type::FloatTy ? X86::FDIVR32m : X86::FDIVR64m;
        
        unsigned Op1r = getReg(Op1);
        if (AllocaInst *AI = dyn_castFixedAlloca(LI->getOperand(0))) {
          unsigned FI = getFixedSizedAllocaFI(AI);
          addFrameReference(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op1r), FI);
        } else {
          X86AddressMode AM;
          getAddressingMode(LI->getOperand(0), AM);
          addFullAddress(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op1r), AM);
        }
        return;
      }
  }


  MachineBasicBlock::iterator IP = BB->end();
  emitDivRemOperation(BB, IP, Op0, Op1,
                      I.getOpcode() == Instruction::Div, ResultReg);
}

void ISel::emitDivRemOperation(MachineBasicBlock *BB,
                               MachineBasicBlock::iterator IP,
                               Value *Op0, Value *Op1, bool isDiv,
                               unsigned ResultReg) {
  const Type *Ty = Op0->getType();
  unsigned Class = getClass(Ty);
  switch (Class) {
  case cFP:              // Floating point divide
    if (isDiv) {
      emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg);
      return;
    } else {               // Floating point remainder...
      unsigned Op0Reg = getReg(Op0, BB, IP);
      unsigned Op1Reg = getReg(Op1, BB, IP);
      MachineInstr *TheCall =
        BuildMI(X86::CALLpcrel32, 1).addExternalSymbol("fmod", true);
      std::vector<ValueRecord> Args;
      Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy));
      Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy));
      doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args);
    }
    return;
  case cLong: {
    static const char *FnName[] =
      { "__moddi3", "__divdi3", "__umoddi3", "__udivdi3" };
    unsigned Op0Reg = getReg(Op0, BB, IP);
    unsigned Op1Reg = getReg(Op1, BB, IP);
    unsigned NameIdx = Ty->isUnsigned()*2 + isDiv;
    MachineInstr *TheCall =
      BuildMI(X86::CALLpcrel32, 1).addExternalSymbol(FnName[NameIdx], true);

    std::vector<ValueRecord> Args;
    Args.push_back(ValueRecord(Op0Reg, Type::LongTy));
    Args.push_back(ValueRecord(Op1Reg, Type::LongTy));
    doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args);
    return;
  }
  case cByte: case cShort: case cInt:
    break;          // Small integrals, handled below...
  default: assert(0 && "Unknown class!");
  }

  static const unsigned MovOpcode[]={ X86::MOV8rr, X86::MOV16rr, X86::MOV32rr };
  static const unsigned NEGOpcode[] = { X86::NEG8r, X86::NEG16r, X86::NEG32r };
  static const unsigned SAROpcode[]={ X86::SAR8ri, X86::SAR16ri, X86::SAR32ri };
  static const unsigned SHROpcode[]={ X86::SHR8ri, X86::SHR16ri, X86::SHR32ri };
  static const unsigned ADDOpcode[]={ X86::ADD8rr, X86::ADD16rr, X86::ADD32rr };

  // Special case signed division by power of 2.
  if (isDiv)
    if (ConstantSInt *CI = dyn_cast<ConstantSInt>(Op1)) {
      assert(Class != cLong && "This doesn't handle 64-bit divides!");
      int V = CI->getValue();

      if (V == 1) {       // X /s 1 => X
        unsigned Op0Reg = getReg(Op0, BB, IP);
        BuildMI(*BB, IP, MovOpcode[Class], 1, ResultReg).addReg(Op0Reg);
        return;
      }

      if (V == -1) {      // X /s -1 => -X
        unsigned Op0Reg = getReg(Op0, BB, IP);
        BuildMI(*BB, IP, NEGOpcode[Class], 1, ResultReg).addReg(Op0Reg);
        return;
      }

      bool isNeg = false;
      if (V < 0) {         // Not a positive power of 2?
        V = -V;
        isNeg = true;      // Maybe it's a negative power of 2.
      }
      if (unsigned Log = ExactLog2(V)) {
        --Log;
        unsigned Op0Reg = getReg(Op0, BB, IP);
        unsigned TmpReg = makeAnotherReg(Op0->getType());
        if (Log != 1) 
          BuildMI(*BB, IP, SAROpcode[Class], 2, TmpReg)
            .addReg(Op0Reg).addImm(Log-1);
        else
          BuildMI(*BB, IP, MovOpcode[Class], 1, TmpReg).addReg(Op0Reg);
        unsigned TmpReg2 = makeAnotherReg(Op0->getType());
        BuildMI(*BB, IP, SHROpcode[Class], 2, TmpReg2)
          .addReg(TmpReg).addImm(32-Log);
        unsigned TmpReg3 = makeAnotherReg(Op0->getType());
        BuildMI(*BB, IP, ADDOpcode[Class], 2, TmpReg3)
          .addReg(Op0Reg).addReg(TmpReg2);

        unsigned TmpReg4 = isNeg ? makeAnotherReg(Op0->getType()) : ResultReg;
        BuildMI(*BB, IP, SAROpcode[Class], 2, TmpReg4)
          .addReg(Op0Reg).addImm(Log);
        if (isNeg)
          BuildMI(*BB, IP, NEGOpcode[Class], 1, ResultReg).addReg(TmpReg4);
        return;
      }
    }

  static const unsigned Regs[]     ={ X86::AL    , X86::AX     , X86::EAX     };
  static const unsigned ClrOpcode[]={ X86::MOV8ri, X86::MOV16ri, X86::MOV32ri };
  static const unsigned ExtRegs[]  ={ X86::AH    , X86::DX     , X86::EDX     };

  static const unsigned DivOpcode[][4] = {
    { X86::DIV8r , X86::DIV16r , X86::DIV32r , 0 },  // Unsigned division
    { X86::IDIV8r, X86::IDIV16r, X86::IDIV32r, 0 },  // Signed division
  };

  unsigned Reg    = Regs[Class];
  unsigned ExtReg = ExtRegs[Class];

  // Put the first operand into one of the A registers...
  unsigned Op0Reg = getReg(Op0, BB, IP);
  unsigned Op1Reg = getReg(Op1, BB, IP);
  BuildMI(*BB, IP, MovOpcode[Class], 1, Reg).addReg(Op0Reg);

  if (Ty->isSigned()) {
    // Emit a sign extension instruction...
    unsigned ShiftResult = makeAnotherReg(Op0->getType());
    BuildMI(*BB, IP, SAROpcode[Class], 2,ShiftResult).addReg(Op0Reg).addImm(31);
    BuildMI(*BB, IP, MovOpcode[Class], 1, ExtReg).addReg(ShiftResult);

    // Emit the appropriate divide or remainder instruction...
    BuildMI(*BB, IP, DivOpcode[1][Class], 1).addReg(Op1Reg);
  } else {
    // If unsigned, emit a zeroing instruction... (reg = 0)
    BuildMI(*BB, IP, ClrOpcode[Class], 2, ExtReg).addImm(0);

    // Emit the appropriate divide or remainder instruction...
    BuildMI(*BB, IP, DivOpcode[0][Class], 1).addReg(Op1Reg);
  }

  // Figure out which register we want to pick the result out of...
  unsigned DestReg = isDiv ? Reg : ExtReg;
  
  // Put the result into the destination register...
  BuildMI(*BB, IP, MovOpcode[Class], 1, ResultReg).addReg(DestReg);
}


/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
/// for constant immediate shift values, and for constant immediate
/// shift values equal to 1. Even the general case is sort of special,
/// because the shift amount has to be in CL, not just any old register.
///
void ISel::visitShiftInst(ShiftInst &I) {
  MachineBasicBlock::iterator IP = BB->end ();
  emitShiftOperation (BB, IP, I.getOperand (0), I.getOperand (1),
                      I.getOpcode () == Instruction::Shl, I.getType (),
                      getReg (I));
}

/// emitShiftOperation - Common code shared between visitShiftInst and
/// constant expression support.
void ISel::emitShiftOperation(MachineBasicBlock *MBB,
                              MachineBasicBlock::iterator IP,
                              Value *Op, Value *ShiftAmount, bool isLeftShift,
                              const Type *ResultTy, unsigned DestReg) {
  unsigned SrcReg = getReg (Op, MBB, IP);
  bool isSigned = ResultTy->isSigned ();
  unsigned Class = getClass (ResultTy);
  
  static const unsigned ConstantOperand[][4] = {
    { X86::SHR8ri, X86::SHR16ri, X86::SHR32ri, X86::SHRD32rri8 },  // SHR
    { X86::SAR8ri, X86::SAR16ri, X86::SAR32ri, X86::SHRD32rri8 },  // SAR
    { X86::SHL8ri, X86::SHL16ri, X86::SHL32ri, X86::SHLD32rri8 },  // SHL
    { X86::SHL8ri, X86::SHL16ri, X86::SHL32ri, X86::SHLD32rri8 },  // SAL = SHL
  };

  static const unsigned NonConstantOperand[][4] = {
    { X86::SHR8rCL, X86::SHR16rCL, X86::SHR32rCL },  // SHR
    { X86::SAR8rCL, X86::SAR16rCL, X86::SAR32rCL },  // SAR
    { X86::SHL8rCL, X86::SHL16rCL, X86::SHL32rCL },  // SHL
    { X86::SHL8rCL, X86::SHL16rCL, X86::SHL32rCL },  // SAL = SHL
  };

  // Longs, as usual, are handled specially...
  if (Class == cLong) {
    // If we have a constant shift, we can generate much more efficient code
    // than otherwise...
    //
    if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
      unsigned Amount = CUI->getValue();
      if (Amount < 32) {
        const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
        if (isLeftShift) {
          BuildMI(*MBB, IP, Opc[3], 3, 
              DestReg+1).addReg(SrcReg+1).addReg(SrcReg).addImm(Amount);
          BuildMI(*MBB, IP, Opc[2], 2, DestReg).addReg(SrcReg).addImm(Amount);
        } else {
          BuildMI(*MBB, IP, Opc[3], 3,
              DestReg).addReg(SrcReg  ).addReg(SrcReg+1).addImm(Amount);
          BuildMI(*MBB, IP, Opc[2],2,DestReg+1).addReg(SrcReg+1).addImm(Amount);
        }
      } else {                 // Shifting more than 32 bits
        Amount -= 32;
        if (isLeftShift) {
          if (Amount != 0) {
            BuildMI(*MBB, IP, X86::SHL32ri, 2,
                    DestReg + 1).addReg(SrcReg).addImm(Amount);
          } else {
            BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg+1).addReg(SrcReg);
          }
          BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg).addImm(0);
        } else {
          if (Amount != 0) {
            BuildMI(*MBB, IP, isSigned ? X86::SAR32ri : X86::SHR32ri, 2,
                    DestReg).addReg(SrcReg+1).addImm(Amount);
          } else {
            BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg).addReg(SrcReg+1);
          }
          BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg+1).addImm(0);
        }
      }
    } else {
      unsigned TmpReg = makeAnotherReg(Type::IntTy);

      if (!isLeftShift && isSigned) {
        // If this is a SHR of a Long, then we need to do funny sign extension
        // stuff.  TmpReg gets the value to use as the high-part if we are
        // shifting more than 32 bits.
        BuildMI(*MBB, IP, X86::SAR32ri, 2, TmpReg).addReg(SrcReg).addImm(31);
      } else {
        // Other shifts use a fixed zero value if the shift is more than 32
        // bits.
        BuildMI(*MBB, IP, X86::MOV32ri, 1, TmpReg).addImm(0);
      }

      // Initialize CL with the shift amount...
      unsigned ShiftAmountReg = getReg(ShiftAmount, MBB, IP);
      BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::CL).addReg(ShiftAmountReg);

      unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
      unsigned TmpReg3 = makeAnotherReg(Type::IntTy);
      if (isLeftShift) {
        // TmpReg2 = shld inHi, inLo
        BuildMI(*MBB, IP, X86::SHLD32rrCL,2,TmpReg2).addReg(SrcReg+1)
                                                    .addReg(SrcReg);
        // TmpReg3 = shl  inLo, CL
        BuildMI(*MBB, IP, X86::SHL32rCL, 1, TmpReg3).addReg(SrcReg);

        // Set the flags to indicate whether the shift was by more than 32 bits.
        BuildMI(*MBB, IP, X86::TEST8ri, 2).addReg(X86::CL).addImm(32);

        // DestHi = (>32) ? TmpReg3 : TmpReg2;
        BuildMI(*MBB, IP, X86::CMOVNE32rr, 2, 
                DestReg+1).addReg(TmpReg2).addReg(TmpReg3);
        // DestLo = (>32) ? TmpReg : TmpReg3;
        BuildMI(*MBB, IP, X86::CMOVNE32rr, 2,
            DestReg).addReg(TmpReg3).addReg(TmpReg);
      } else {
        // TmpReg2 = shrd inLo, inHi
        BuildMI(*MBB, IP, X86::SHRD32rrCL,2,TmpReg2).addReg(SrcReg)
                                                    .addReg(SrcReg+1);
        // TmpReg3 = s[ah]r  inHi, CL
        BuildMI(*MBB, IP, isSigned ? X86::SAR32rCL : X86::SHR32rCL, 1, TmpReg3)
                       .addReg(SrcReg+1);

        // Set the flags to indicate whether the shift was by more than 32 bits.
        BuildMI(*MBB, IP, X86::TEST8ri, 2).addReg(X86::CL).addImm(32);

        // DestLo = (>32) ? TmpReg3 : TmpReg2;
        BuildMI(*MBB, IP, X86::CMOVNE32rr, 2, 
                DestReg).addReg(TmpReg2).addReg(TmpReg3);

        // DestHi = (>32) ? TmpReg : TmpReg3;
        BuildMI(*MBB, IP, X86::CMOVNE32rr, 2, 
                DestReg+1).addReg(TmpReg3).addReg(TmpReg);
      }
    }
    return;
  }

  if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
    // The shift amount is constant, guaranteed to be a ubyte. Get its value.
    assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");

    const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
    BuildMI(*MBB, IP, Opc[Class], 2,
        DestReg).addReg(SrcReg).addImm(CUI->getValue());
  } else {                  // The shift amount is non-constant.
    unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
    BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::CL).addReg(ShiftAmountReg);

    const unsigned *Opc = NonConstantOperand[isLeftShift*2+isSigned];
    BuildMI(*MBB, IP, Opc[Class], 1, DestReg).addReg(SrcReg);
  }
}


/// visitLoadInst - Implement LLVM load instructions in terms of the x86 'mov'
/// instruction.  The load and store instructions are the only place where we
/// need to worry about the memory layout of the target machine.
///
void ISel::visitLoadInst(LoadInst &I) {
  // Check to see if this load instruction is going to be folded into a binary
  // instruction, like add.  If so, we don't want to emit it.  Wouldn't a real
  // pattern matching instruction selector be nice?
  unsigned Class = getClassB(I.getType());
  if (I.hasOneUse()) {
    Instruction *User = cast<Instruction>(I.use_back());
    switch (User->getOpcode()) {
    case Instruction::Cast:
      // If this is a cast from a signed-integer type to a floating point type,
      // fold the cast here.
      if (getClassB(User->getType()) == cFP &&
          (I.getType() == Type::ShortTy || I.getType() == Type::IntTy ||
           I.getType() == Type::LongTy)) {
        unsigned DestReg = getReg(User);
        static const unsigned Opcode[] = {
          0/*BYTE*/, X86::FILD16m, X86::FILD32m, 0/*FP*/, X86::FILD64m
        };

        if (AllocaInst *AI = dyn_castFixedAlloca(I.getOperand(0))) {
          unsigned FI = getFixedSizedAllocaFI(AI);
          addFrameReference(BuildMI(BB, Opcode[Class], 4, DestReg), FI);
        } else {
          X86AddressMode AM;
          getAddressingMode(I.getOperand(0), AM);
          addFullAddress(BuildMI(BB, Opcode[Class], 4, DestReg), AM);
        }
        return;
      } else {
        User = 0;
      }
      break;

    case Instruction::Add:
    case Instruction::Sub:
    case Instruction::And:
    case Instruction::Or:
    case Instruction::Xor:
      if (Class == cLong) User = 0;
      break;
    case Instruction::Mul:
    case Instruction::Div:
      if (Class != cFP) User = 0;
      break;  // Folding only implemented for floating point.
    default: User = 0; break;
    }

    if (User) {
      // Okay, we found a user.  If the load is the first operand and there is
      // no second operand load, reverse the operand ordering.  Note that this
      // can fail for a subtract (ie, no change will be made).
      bool Swapped = false;
      if (!isa<LoadInst>(User->getOperand(1)))
        Swapped = !cast<BinaryOperator>(User)->swapOperands();
      
      // Okay, now that everything is set up, if this load is used by the second
      // operand, and if there are no instructions that invalidate the load
      // before the binary operator, eliminate the load.
      if (User->getOperand(1) == &I &&
          isSafeToFoldLoadIntoInstruction(I, *User))
        return;   // Eliminate the load!

      // If this is a floating point sub or div, we won't be able to swap the
      // operands, but we will still be able to eliminate the load.
      if (Class == cFP && User->getOperand(0) == &I &&
          !isa<LoadInst>(User->getOperand(1)) &&
          (User->getOpcode() == Instruction::Sub ||
           User->getOpcode() == Instruction::Div) &&
          isSafeToFoldLoadIntoInstruction(I, *User))
        return;  // Eliminate the load!

      // If we swapped the operands to the instruction, but couldn't fold the
      // load anyway, swap them back.  We don't want to break add X, int 
      // folding.
      if (Swapped) cast<BinaryOperator>(User)->swapOperands();
    }
  }

  static const unsigned Opcodes[] = {
    X86::MOV8rm, X86::MOV16rm, X86::MOV32rm, X86::FLD32m, X86::MOV32rm
  };
  unsigned Opcode = Opcodes[Class];
  if (I.getType() == Type::DoubleTy) Opcode = X86::FLD64m;

  unsigned DestReg = getReg(I);

  if (AllocaInst *AI = dyn_castFixedAlloca(I.getOperand(0))) {
    unsigned FI = getFixedSizedAllocaFI(AI);
    if (Class == cLong) {
      addFrameReference(BuildMI(BB, X86::MOV32rm, 4, DestReg), FI);
      addFrameReference(BuildMI(BB, X86::MOV32rm, 4, DestReg+1), FI, 4);
    } else {
      addFrameReference(BuildMI(BB, Opcode, 4, DestReg), FI);
    }
  } else {
    X86AddressMode AM;
    getAddressingMode(I.getOperand(0), AM);
    
    if (Class == cLong) {
      addFullAddress(BuildMI(BB, X86::MOV32rm, 4, DestReg), AM);
      AM.Disp += 4;
      addFullAddress(BuildMI(BB, X86::MOV32rm, 4, DestReg+1), AM);
    } else {
      addFullAddress(BuildMI(BB, Opcode, 4, DestReg), AM);
    }
  }
}

/// visitStoreInst - Implement LLVM store instructions in terms of the x86 'mov'
/// instruction.
///
void ISel::visitStoreInst(StoreInst &I) {
  X86AddressMode AM;
  getAddressingMode(I.getOperand(1), AM);

  const Type *ValTy = I.getOperand(0)->getType();
  unsigned Class = getClassB(ValTy);

  if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(0))) {
    uint64_t Val = CI->getRawValue();
    if (Class == cLong) {
      addFullAddress(BuildMI(BB, X86::MOV32mi, 5), AM).addImm(Val & ~0U);
      AM.Disp += 4;
      addFullAddress(BuildMI(BB, X86::MOV32mi, 5), AM).addImm(Val>>32);
    } else {
      static const unsigned Opcodes[] = {
        X86::MOV8mi, X86::MOV16mi, X86::MOV32mi
      };
      unsigned Opcode = Opcodes[Class];
      addFullAddress(BuildMI(BB, Opcode, 5), AM).addImm(Val);
    }
  } else if (isa<ConstantPointerNull>(I.getOperand(0))) {
     addFullAddress(BuildMI(BB, X86::MOV32mi, 5), AM).addImm(0);
  } else if (ConstantBool *CB = dyn_cast<ConstantBool>(I.getOperand(0))) {
    addFullAddress(BuildMI(BB, X86::MOV8mi, 5), AM).addImm(CB->getValue());
  } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0))) {
    // Store constant FP values with integer instructions to avoid having to
    // load the constants from the constant pool then do a store.
    if (CFP->getType() == Type::FloatTy) {
      union {
        unsigned I;
        float    F;
      } V;
      V.F = CFP->getValue();
      addFullAddress(BuildMI(BB, X86::MOV32mi, 5), AM).addImm(V.I);
    } else {
      union {
        uint64_t I;
        double   F;
      } V;
      V.F = CFP->getValue();
      addFullAddress(BuildMI(BB, X86::MOV32mi, 5), AM).addImm((unsigned)V.I);
      AM.Disp += 4;
      addFullAddress(BuildMI(BB, X86::MOV32mi, 5), AM).addImm(
                                                          unsigned(V.I >> 32));
    }
    
  } else if (Class == cLong) {
    unsigned ValReg = getReg(I.getOperand(0));
    addFullAddress(BuildMI(BB, X86::MOV32mr, 5), AM).addReg(ValReg);
    AM.Disp += 4;
    addFullAddress(BuildMI(BB, X86::MOV32mr, 5), AM).addReg(ValReg+1);
  } else {
    unsigned ValReg = getReg(I.getOperand(0));
    static const unsigned Opcodes[] = {
      X86::MOV8mr, X86::MOV16mr, X86::MOV32mr, X86::FST32m
    };
    unsigned Opcode = Opcodes[Class];
    if (ValTy == Type::DoubleTy) Opcode = X86::FST64m;

    addFullAddress(BuildMI(BB, Opcode, 1+4), AM).addReg(ValReg);
  }
}


/// visitCastInst - Here we have various kinds of copying with or without sign
/// extension going on.
///
void ISel::visitCastInst(CastInst &CI) {
  Value *Op = CI.getOperand(0);

  unsigned SrcClass = getClassB(Op->getType());
  unsigned DestClass = getClassB(CI.getType());
  // Noop casts are not emitted: getReg will return the source operand as the
  // register to use for any uses of the noop cast.
  if (DestClass == SrcClass) {
    // The only detail in this plan is that casts from double -> float are 
    // truncating operations that we have to codegen through memory (despite
    // the fact that the source/dest registers are the same class).
    if (CI.getType() != Type::FloatTy || Op->getType() != Type::DoubleTy)
      return;
  }

  // If this is a cast from a 32-bit integer to a Long type, and the only uses
  // of the case are GEP instructions, then the cast does not need to be
  // generated explicitly, it will be folded into the GEP.
  if (DestClass == cLong && SrcClass == cInt) {
    bool AllUsesAreGEPs = true;
    for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
      if (!isa<GetElementPtrInst>(*I)) {
        AllUsesAreGEPs = false;
        break;
      }        

    // No need to codegen this cast if all users are getelementptr instrs...
    if (AllUsesAreGEPs) return;
  }

  // If this cast converts a load from a short,int, or long integer to a FP
  // value, we will have folded this cast away.
  if (DestClass == cFP && isa<LoadInst>(Op) && Op->hasOneUse() &&
      (Op->getType() == Type::ShortTy || Op->getType() == Type::IntTy ||
       Op->getType() == Type::LongTy))
    return;


  unsigned DestReg = getReg(CI);
  MachineBasicBlock::iterator MI = BB->end();
  emitCastOperation(BB, MI, Op, CI.getType(), DestReg);
}

/// emitCastOperation - Common code shared between visitCastInst and constant
/// expression cast support.
///
void ISel::emitCastOperation(MachineBasicBlock *BB,
                             MachineBasicBlock::iterator IP,
                             Value *Src, const Type *DestTy,
                             unsigned DestReg) {
  const Type *SrcTy = Src->getType();
  unsigned SrcClass = getClassB(SrcTy);
  unsigned DestClass = getClassB(DestTy);
  unsigned SrcReg = getReg(Src, BB, IP);

  // Implement casts to bool by using compare on the operand followed by set if
  // not zero on the result.
  if (DestTy == Type::BoolTy) {
    switch (SrcClass) {
    case cByte:
      BuildMI(*BB, IP, X86::TEST8rr, 2).addReg(SrcReg).addReg(SrcReg);
      break;
    case cShort:
      BuildMI(*BB, IP, X86::TEST16rr, 2).addReg(SrcReg).addReg(SrcReg);
      break;
    case cInt:
      BuildMI(*BB, IP, X86::TEST32rr, 2).addReg(SrcReg).addReg(SrcReg);
      break;
    case cLong: {
      unsigned TmpReg = makeAnotherReg(Type::IntTy);
      BuildMI(*BB, IP, X86::OR32rr, 2, TmpReg).addReg(SrcReg).addReg(SrcReg+1);
      break;
    }
    case cFP:
      BuildMI(*BB, IP, X86::FTST, 1).addReg(SrcReg);
      BuildMI(*BB, IP, X86::FNSTSW8r, 0);
      BuildMI(*BB, IP, X86::SAHF, 1);
      break;
    }

    // If the zero flag is not set, then the value is true, set the byte to
    // true.
    BuildMI(*BB, IP, X86::SETNEr, 1, DestReg);
    return;
  }

  static const unsigned RegRegMove[] = {
    X86::MOV8rr, X86::MOV16rr, X86::MOV32rr, X86::FpMOV, X86::MOV32rr
  };

  // Implement casts between values of the same type class (as determined by
  // getClass) by using a register-to-register move.
  if (SrcClass == DestClass) {
    if (SrcClass <= cInt || (SrcClass == cFP && SrcTy == DestTy)) {
      BuildMI(*BB, IP, RegRegMove[SrcClass], 1, DestReg).addReg(SrcReg);
    } else if (SrcClass == cFP) {
      if (SrcTy == Type::FloatTy) {  // double -> float
        assert(DestTy == Type::DoubleTy && "Unknown cFP member!");
        BuildMI(*BB, IP, X86::FpMOV, 1, DestReg).addReg(SrcReg);
      } else {                       // float -> double
        assert(SrcTy == Type::DoubleTy && DestTy == Type::FloatTy &&
               "Unknown cFP member!");
        // Truncate from double to float by storing to memory as short, then
        // reading it back.
        unsigned FltAlign = TM.getTargetData().getFloatAlignment();
        int FrameIdx = F->getFrameInfo()->CreateStackObject(4, FltAlign);
        addFrameReference(BuildMI(*BB, IP, X86::FST32m, 5), FrameIdx).addReg(SrcReg);
        addFrameReference(BuildMI(*BB, IP, X86::FLD32m, 5, DestReg), FrameIdx);
      }
    } else if (SrcClass == cLong) {
      BuildMI(*BB, IP, X86::MOV32rr, 1, DestReg).addReg(SrcReg);
      BuildMI(*BB, IP, X86::MOV32rr, 1, DestReg+1).addReg(SrcReg+1);
    } else {
      assert(0 && "Cannot handle this type of cast instruction!");
      abort();
    }
    return;
  }

  // Handle cast of SMALLER int to LARGER int using a move with sign extension
  // or zero extension, depending on whether the source type was signed.
  if (SrcClass <= cInt && (DestClass <= cInt || DestClass == cLong) &&
      SrcClass < DestClass) {
    bool isLong = DestClass == cLong;
    if (isLong) DestClass = cInt;

    static const unsigned Opc[][4] = {
      { X86::MOVSX16rr8, X86::MOVSX32rr8, X86::MOVSX32rr16, X86::MOV32rr }, // s
      { X86::MOVZX16rr8, X86::MOVZX32rr8, X86::MOVZX32rr16, X86::MOV32rr }  // u
    };
    
    bool isUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy;
    BuildMI(*BB, IP, Opc[isUnsigned][SrcClass + DestClass - 1], 1,
        DestReg).addReg(SrcReg);

    if (isLong) {  // Handle upper 32 bits as appropriate...
      if (isUnsigned)     // Zero out top bits...
        BuildMI(*BB, IP, X86::MOV32ri, 1, DestReg+1).addImm(0);
      else                // Sign extend bottom half...
        BuildMI(*BB, IP, X86::SAR32ri, 2, DestReg+1).addReg(DestReg).addImm(31);
    }
    return;
  }

  // Special case long -> int ...
  if (SrcClass == cLong && DestClass == cInt) {
    BuildMI(*BB, IP, X86::MOV32rr, 1, DestReg).addReg(SrcReg);
    return;
  }
  
  // Handle cast of LARGER int to SMALLER int using a move to EAX followed by a
  // move out of AX or AL.
  if ((SrcClass <= cInt || SrcClass == cLong) && DestClass <= cInt
      && SrcClass > DestClass) {
    static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX, 0, X86::EAX };
    BuildMI(*BB, IP, RegRegMove[SrcClass], 1, AReg[SrcClass]).addReg(SrcReg);
    BuildMI(*BB, IP, RegRegMove[DestClass], 1, DestReg).addReg(AReg[DestClass]);
    return;
  }

  // Handle casts from integer to floating point now...
  if (DestClass == cFP) {
    // Promote the integer to a type supported by FLD.  We do this because there
    // are no unsigned FLD instructions, so we must promote an unsigned value to
    // a larger signed value, then use FLD on the larger value.
    //
    const Type *PromoteType = 0;
    unsigned PromoteOpcode = 0;
    unsigned RealDestReg = DestReg;
    switch (SrcTy->getTypeID()) {
    case Type::BoolTyID:
    case Type::SByteTyID:
      // We don't have the facilities for directly loading byte sized data from
      // memory (even signed).  Promote it to 16 bits.
      PromoteType = Type::ShortTy;
      PromoteOpcode = X86::MOVSX16rr8;
      break;
    case Type::UByteTyID:
      PromoteType = Type::ShortTy;
      PromoteOpcode = X86::MOVZX16rr8;
      break;
    case Type::UShortTyID:
      PromoteType = Type::IntTy;
      PromoteOpcode = X86::MOVZX32rr16;
      break;
    case Type::UIntTyID: {
      // Make a 64 bit temporary... and zero out the top of it...
      unsigned TmpReg = makeAnotherReg(Type::LongTy);
      BuildMI(*BB, IP, X86::MOV32rr, 1, TmpReg).addReg(SrcReg);
      BuildMI(*BB, IP, X86::MOV32ri, 1, TmpReg+1).addImm(0);
      SrcTy = Type::LongTy;
      SrcClass = cLong;
      SrcReg = TmpReg;
      break;
    }
    case Type::ULongTyID:
      // Don't fild into the read destination.
      DestReg = makeAnotherReg(Type::DoubleTy);
      break;
    default:  // No promotion needed...
      break;
    }
    
    if (PromoteType) {
      unsigned TmpReg = makeAnotherReg(PromoteType);
      BuildMI(*BB, IP, PromoteOpcode, 1, TmpReg).addReg(SrcReg);
      SrcTy = PromoteType;
      SrcClass = getClass(PromoteType);
      SrcReg = TmpReg;
    }

    // Spill the integer to memory and reload it from there...
    int FrameIdx =
      F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData());

    if (SrcClass == cLong) {
      addFrameReference(BuildMI(*BB, IP, X86::MOV32mr, 5),
                        FrameIdx).addReg(SrcReg);
      addFrameReference(BuildMI(*BB, IP, X86::MOV32mr, 5),
                        FrameIdx, 4).addReg(SrcReg+1);
    } else {
      static const unsigned Op1[] = { X86::MOV8mr, X86::MOV16mr, X86::MOV32mr };
      addFrameReference(BuildMI(*BB, IP, Op1[SrcClass], 5),
                        FrameIdx).addReg(SrcReg);
    }

    static const unsigned Op2[] =
      { 0/*byte*/, X86::FILD16m, X86::FILD32m, 0/*FP*/, X86::FILD64m };
    addFrameReference(BuildMI(*BB, IP, Op2[SrcClass], 5, DestReg), FrameIdx);

    // We need special handling for unsigned 64-bit integer sources.  If the
    // input number has the "sign bit" set, then we loaded it incorrectly as a
    // negative 64-bit number.  In this case, add an offset value.
    if (SrcTy == Type::ULongTy) {
      // Emit a test instruction to see if the dynamic input value was signed.
      BuildMI(*BB, IP, X86::TEST32rr, 2).addReg(SrcReg+1).addReg(SrcReg+1);

      // If the sign bit is set, get a pointer to an offset, otherwise get a
      // pointer to a zero.
      MachineConstantPool *CP = F->getConstantPool();
      unsigned Zero = makeAnotherReg(Type::IntTy);
      Constant *Null = Constant::getNullValue(Type::UIntTy);
      addConstantPoolReference(BuildMI(*BB, IP, X86::LEA32r, 5, Zero), 
                               CP->getConstantPoolIndex(Null));
      unsigned Offset = makeAnotherReg(Type::IntTy);
      Constant *OffsetCst = ConstantUInt::get(Type::UIntTy, 0x5f800000);
                                             
      addConstantPoolReference(BuildMI(*BB, IP, X86::LEA32r, 5, Offset),
                               CP->getConstantPoolIndex(OffsetCst));
      unsigned Addr = makeAnotherReg(Type::IntTy);
      BuildMI(*BB, IP, X86::CMOVS32rr, 2, Addr).addReg(Zero).addReg(Offset);

      // Load the constant for an add.  FIXME: this could make an 'fadd' that
      // reads directly from memory, but we don't support these yet.
      unsigned ConstReg = makeAnotherReg(Type::DoubleTy);
      addDirectMem(BuildMI(*BB, IP, X86::FLD32m, 4, ConstReg), Addr);

      BuildMI(*BB, IP, X86::FpADD, 2, RealDestReg)
                .addReg(ConstReg).addReg(DestReg);
    }

    return;
  }

  // Handle casts from floating point to integer now...
  if (SrcClass == cFP) {
    // Change the floating point control register to use "round towards zero"
    // mode when truncating to an integer value.
    //
    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
    addFrameReference(BuildMI(*BB, IP, X86::FNSTCW16m, 4), CWFrameIdx);

    // Load the old value of the high byte of the control word...
    unsigned HighPartOfCW = makeAnotherReg(Type::UByteTy);
    addFrameReference(BuildMI(*BB, IP, X86::MOV8rm, 4, HighPartOfCW),
                      CWFrameIdx, 1);

    // Set the high part to be round to zero...
    addFrameReference(BuildMI(*BB, IP, X86::MOV8mi, 5),
                      CWFrameIdx, 1).addImm(12);

    // Reload the modified control word now...
    addFrameReference(BuildMI(*BB, IP, X86::FLDCW16m, 4), CWFrameIdx);
    
    // Restore the memory image of control word to original value
    addFrameReference(BuildMI(*BB, IP, X86::MOV8mr, 5),
                      CWFrameIdx, 1).addReg(HighPartOfCW);

    // We don't have the facilities for directly storing byte sized data to
    // memory.  Promote it to 16 bits.  We also must promote unsigned values to
    // larger classes because we only have signed FP stores.
    unsigned StoreClass  = DestClass;
    const Type *StoreTy  = DestTy;
    if (StoreClass == cByte || DestTy->isUnsigned())
      switch (StoreClass) {
      case cByte:  StoreTy = Type::ShortTy; StoreClass = cShort; break;
      case cShort: StoreTy = Type::IntTy;   StoreClass = cInt;   break;
      case cInt:   StoreTy = Type::LongTy;  StoreClass = cLong;  break;
      // The following treatment of cLong may not be perfectly right,
      // but it survives chains of casts of the form
      // double->ulong->double.
      case cLong:  StoreTy = Type::LongTy;  StoreClass = cLong;  break;
      default: assert(0 && "Unknown store class!");
      }

    // Spill the integer to memory and reload it from there...
    int FrameIdx =
      F->getFrameInfo()->CreateStackObject(StoreTy, TM.getTargetData());

    static const unsigned Op1[] =
      { 0, X86::FIST16m, X86::FIST32m, 0, X86::FISTP64m };
    addFrameReference(BuildMI(*BB, IP, Op1[StoreClass], 5),
                      FrameIdx).addReg(SrcReg);

    if (DestClass == cLong) {
      addFrameReference(BuildMI(*BB, IP, X86::MOV32rm, 4, DestReg), FrameIdx);
      addFrameReference(BuildMI(*BB, IP, X86::MOV32rm, 4, DestReg+1),
                        FrameIdx, 4);
    } else {
      static const unsigned Op2[] = { X86::MOV8rm, X86::MOV16rm, X86::MOV32rm };
      addFrameReference(BuildMI(*BB, IP, Op2[DestClass], 4, DestReg), FrameIdx);
    }

    // Reload the original control word now...
    addFrameReference(BuildMI(*BB, IP, X86::FLDCW16m, 4), CWFrameIdx);
    return;
  }

  // Anything we haven't handled already, we can't (yet) handle at all.
  assert(0 && "Unhandled cast instruction!");
  abort();
}

/// visitVANextInst - Implement the va_next instruction...
///
void ISel::visitVANextInst(VANextInst &I) {
  unsigned VAList = getReg(I.getOperand(0));
  unsigned DestReg = getReg(I);

  unsigned Size;
  switch (I.getArgType()->getTypeID()) {
  default:
    std::cerr << I;
    assert(0 && "Error: bad type for va_next instruction!");
    return;
  case Type::PointerTyID:
  case Type::UIntTyID:
  case Type::IntTyID:
    Size = 4;
    break;
  case Type::ULongTyID:
  case Type::LongTyID:
  case Type::DoubleTyID:
    Size = 8;
    break;
  }

  // Increment the VAList pointer...
  BuildMI(BB, X86::ADD32ri, 2, DestReg).addReg(VAList).addImm(Size);
}

void ISel::visitVAArgInst(VAArgInst &I) {
  unsigned VAList = getReg(I.getOperand(0));
  unsigned DestReg = getReg(I);

  switch (I.getType()->getTypeID()) {
  default:
    std::cerr << I;
    assert(0 && "Error: bad type for va_next instruction!");
    return;
  case Type::PointerTyID:
  case Type::UIntTyID:
  case Type::IntTyID:
    addDirectMem(BuildMI(BB, X86::MOV32rm, 4, DestReg), VAList);
    break;
  case Type::ULongTyID:
  case Type::LongTyID:
    addDirectMem(BuildMI(BB, X86::MOV32rm, 4, DestReg), VAList);
    addRegOffset(BuildMI(BB, X86::MOV32rm, 4, DestReg+1), VAList, 4);
    break;
  case Type::DoubleTyID:
    addDirectMem(BuildMI(BB, X86::FLD64m, 4, DestReg), VAList);
    break;
  }
}

/// visitGetElementPtrInst - instruction-select GEP instructions
///
void ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
  // If this GEP instruction will be folded into all of its users, we don't need
  // to explicitly calculate it!
  X86AddressMode AM;
  if (isGEPFoldable(0, I.getOperand(0), I.op_begin()+1, I.op_end(), AM)) {
    // Check all of the users of the instruction to see if they are loads and
    // stores.
    bool AllWillFold = true;
    for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E; ++UI)
      if (cast<Instruction>(*UI)->getOpcode() != Instruction::Load)
        if (cast<Instruction>(*UI)->getOpcode() != Instruction::Store ||
            cast<Instruction>(*UI)->getOperand(0) == &I) {
          AllWillFold = false;
          break;
        }

    // If the instruction is foldable, and will be folded into all users, don't
    // emit it!
    if (AllWillFold) return;
  }

  unsigned outputReg = getReg(I);
  emitGEPOperation(BB, BB->end(), I.getOperand(0),
                   I.op_begin()+1, I.op_end(), outputReg);
}

/// getGEPIndex - Inspect the getelementptr operands specified with GEPOps and
/// GEPTypes (the derived types being stepped through at each level).  On return
/// from this function, if some indexes of the instruction are representable as
/// an X86 lea instruction, the machine operands are put into the Ops
/// instruction and the consumed indexes are poped from the GEPOps/GEPTypes
/// lists.  Otherwise, GEPOps.size() is returned.  If this returns a an
/// addressing mode that only partially consumes the input, the BaseReg input of
/// the addressing mode must be left free.
///
/// Note that there is one fewer entry in GEPTypes than there is in GEPOps.
///
void ISel::getGEPIndex(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
                       std::vector<Value*> &GEPOps,
                       std::vector<const Type*> &GEPTypes,
                       X86AddressMode &AM) {
  const TargetData &TD = TM.getTargetData();

  // Clear out the state we are working with...
  AM.BaseType = X86AddressMode::RegBase;
  AM.Base.Reg = 0;   // No base register
  AM.Scale = 1;      // Unit scale
  AM.IndexReg = 0;   // No index register
  AM.Disp = 0;       // No displacement

  // While there are GEP indexes that can be folded into the current address,
  // keep processing them.
  while (!GEPTypes.empty()) {
    if (const StructType *StTy = dyn_cast<StructType>(GEPTypes.back())) {
      // It's a struct access.  CUI is the index into the structure,
      // which names the field. This index must have unsigned type.
      const ConstantUInt *CUI = cast<ConstantUInt>(GEPOps.back());
      
      // Use the TargetData structure to pick out what the layout of the
      // structure is in memory.  Since the structure index must be constant, we
      // can get its value and use it to find the right byte offset from the
      // StructLayout class's list of structure member offsets.
      AM.Disp += TD.getStructLayout(StTy)->MemberOffsets[CUI->getValue()];
      GEPOps.pop_back();        // Consume a GEP operand
      GEPTypes.pop_back();
    } else {
      // It's an array or pointer access: [ArraySize x ElementType].
      const SequentialType *SqTy = cast<SequentialType>(GEPTypes.back());
      Value *idx = GEPOps.back();

      // idx is the index into the array.  Unlike with structure
      // indices, we may not know its actual value at code-generation
      // time.

      // If idx is a constant, fold it into the offset.
      unsigned TypeSize = TD.getTypeSize(SqTy->getElementType());
      if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(idx)) {
        AM.Disp += TypeSize*CSI->getValue();
      } else if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(idx)) {
        AM.Disp += TypeSize*CUI->getValue();
      } else {
        // If the index reg is already taken, we can't handle this index.
        if (AM.IndexReg) return;

        // If this is a size that we can handle, then add the index as 
        switch (TypeSize) {
        case 1: case 2: case 4: case 8:
          // These are all acceptable scales on X86.
          AM.Scale = TypeSize;
          break;
        default:
          // Otherwise, we can't handle this scale
          return;
        }

        if (CastInst *CI = dyn_cast<CastInst>(idx))
          if (CI->getOperand(0)->getType() == Type::IntTy ||
              CI->getOperand(0)->getType() == Type::UIntTy)
            idx = CI->getOperand(0);

        AM.IndexReg = MBB ? getReg(idx, MBB, IP) : 1;
      }

      GEPOps.pop_back();        // Consume a GEP operand
      GEPTypes.pop_back();
    }
  }

  // GEPTypes is empty, which means we have a single operand left.  Set it as
  // the base register.
  //
  assert(AM.Base.Reg == 0);

  if (AllocaInst *AI = dyn_castFixedAlloca(GEPOps.back())) {
    AM.BaseType = X86AddressMode::FrameIndexBase;
    AM.Base.FrameIndex = getFixedSizedAllocaFI(AI);
    GEPOps.pop_back();
    return;
  }

#if 0   // FIXME: TODO!
  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
    // FIXME: When addressing modes are more powerful/correct, we could load
    // global addresses directly as 32-bit immediates.
  }
#endif

  AM.Base.Reg = MBB ? getReg(GEPOps[0], MBB, IP) : 1;
  GEPOps.pop_back();        // Consume the last GEP operand
}


/// isGEPFoldable - Return true if the specified GEP can be completely
/// folded into the addressing mode of a load/store or lea instruction.
bool ISel::isGEPFoldable(MachineBasicBlock *MBB,
                         Value *Src, User::op_iterator IdxBegin,
                         User::op_iterator IdxEnd, X86AddressMode &AM) {

  std::vector<Value*> GEPOps;
  GEPOps.resize(IdxEnd-IdxBegin+1);
  GEPOps[0] = Src;
  std::copy(IdxBegin, IdxEnd, GEPOps.begin()+1);
  
  std::vector<const Type*>
    GEPTypes(gep_type_begin(Src->getType(), IdxBegin, IdxEnd),
             gep_type_end(Src->getType(), IdxBegin, IdxEnd));

  MachineBasicBlock::iterator IP;
  if (MBB) IP = MBB->end();
  getGEPIndex(MBB, IP, GEPOps, GEPTypes, AM);

  // We can fold it away iff the getGEPIndex call eliminated all operands.
  return GEPOps.empty();
}

void ISel::emitGEPOperation(MachineBasicBlock *MBB,
                            MachineBasicBlock::iterator IP,
                            Value *Src, User::op_iterator IdxBegin,
                            User::op_iterator IdxEnd, unsigned TargetReg) {
  const TargetData &TD = TM.getTargetData();

  // If this is a getelementptr null, with all constant integer indices, just
  // replace it with TargetReg = 42.
  if (isa<ConstantPointerNull>(Src)) {
    User::op_iterator I = IdxBegin;
    for (; I != IdxEnd; ++I)
      if (!isa<ConstantInt>(*I))
        break;
    if (I == IdxEnd) {   // All constant indices
      unsigned Offset = TD.getIndexedOffset(Src->getType(),
                                         std::vector<Value*>(IdxBegin, IdxEnd));
      BuildMI(*MBB, IP, X86::MOV32ri, 1, TargetReg).addImm(Offset);
      return;
    }
  }

  std::vector<Value*> GEPOps;
  GEPOps.resize(IdxEnd-IdxBegin+1);
  GEPOps[0] = Src;
  std::copy(IdxBegin, IdxEnd, GEPOps.begin()+1);
  
  std::vector<const Type*> GEPTypes;
  GEPTypes.assign(gep_type_begin(Src->getType(), IdxBegin, IdxEnd),
                  gep_type_end(Src->getType(), IdxBegin, IdxEnd));

  // Keep emitting instructions until we consume the entire GEP instruction.
  while (!GEPOps.empty()) {
    unsigned OldSize = GEPOps.size();
    X86AddressMode AM;
    getGEPIndex(MBB, IP, GEPOps, GEPTypes, AM);
    
    if (GEPOps.size() != OldSize) {
      // getGEPIndex consumed some of the input.  Build an LEA instruction here.
      unsigned NextTarget = 0;
      if (!GEPOps.empty()) {
        assert(AM.Base.Reg == 0 &&
           "getGEPIndex should have left the base register open for chaining!");
        NextTarget = AM.Base.Reg = makeAnotherReg(Type::UIntTy);
      }

      if (AM.BaseType == X86AddressMode::RegBase &&
              AM.IndexReg == 0 && AM.Disp == 0)
        BuildMI(*MBB, IP, X86::MOV32rr, 1, TargetReg).addReg(AM.Base.Reg);
      else
        addFullAddress(BuildMI(*MBB, IP, X86::LEA32r, 5, TargetReg), AM);
      --IP;
      TargetReg = NextTarget;
    } else if (GEPTypes.empty()) {
      // The getGEPIndex operation didn't want to build an LEA.  Check to see if
      // all operands are consumed but the base pointer.  If so, just load it
      // into the register.
      if (GlobalValue *GV = dyn_cast<GlobalValue>(GEPOps[0])) {
        BuildMI(*MBB, IP, X86::MOV32ri, 1, TargetReg).addGlobalAddress(GV);
      } else {
        unsigned BaseReg = getReg(GEPOps[0], MBB, IP);
        BuildMI(*MBB, IP, X86::MOV32rr, 1, TargetReg).addReg(BaseReg);
      }
      break;                // we are now done

    } else {
      // It's an array or pointer access: [ArraySize x ElementType].
      const SequentialType *SqTy = cast<SequentialType>(GEPTypes.back());
      Value *idx = GEPOps.back();
      GEPOps.pop_back();        // Consume a GEP operand
      GEPTypes.pop_back();

      // Many GEP instructions use a [cast (int/uint) to LongTy] as their
      // operand on X86.  Handle this case directly now...
      if (CastInst *CI = dyn_cast<CastInst>(idx))
        if (CI->getOperand(0)->getType() == Type::IntTy ||
            CI->getOperand(0)->getType() == Type::UIntTy)
          idx = CI->getOperand(0);

      // We want to add BaseReg to(idxReg * sizeof ElementType). First, we
      // must find the size of the pointed-to type (Not coincidentally, the next
      // type is the type of the elements in the array).
      const Type *ElTy = SqTy->getElementType();
      unsigned elementSize = TD.getTypeSize(ElTy);

      // If idxReg is a constant, we don't need to perform the multiply!
      if (ConstantInt *CSI = dyn_cast<ConstantInt>(idx)) {
        if (!CSI->isNullValue()) {
          unsigned Offset = elementSize*CSI->getRawValue();
          unsigned Reg = makeAnotherReg(Type::UIntTy);
          BuildMI(*MBB, IP, X86::ADD32ri, 2, TargetReg)
                                .addReg(Reg).addImm(Offset);
          --IP;            // Insert the next instruction before this one.
          TargetReg = Reg; // Codegen the rest of the GEP into this
        }
      } else if (elementSize == 1) {
        // If the element size is 1, we don't have to multiply, just add
        unsigned idxReg = getReg(idx, MBB, IP);
        unsigned Reg = makeAnotherReg(Type::UIntTy);
        BuildMI(*MBB, IP, X86::ADD32rr, 2,TargetReg).addReg(Reg).addReg(idxReg);
        --IP;            // Insert the next instruction before this one.
        TargetReg = Reg; // Codegen the rest of the GEP into this
      } else {
        unsigned idxReg = getReg(idx, MBB, IP);
        unsigned OffsetReg = makeAnotherReg(Type::UIntTy);

        // Make sure we can back the iterator up to point to the first
        // instruction emitted.
        MachineBasicBlock::iterator BeforeIt = IP;
        if (IP == MBB->begin())
          BeforeIt = MBB->end();
        else
          --BeforeIt;
        doMultiplyConst(MBB, IP, OffsetReg, Type::IntTy, idxReg, elementSize);

        // Emit an ADD to add OffsetReg to the basePtr.
        unsigned Reg = makeAnotherReg(Type::UIntTy);
        BuildMI(*MBB, IP, X86::ADD32rr, 2, TargetReg)
                          .addReg(Reg).addReg(OffsetReg);

        // Step to the first instruction of the multiply.
        if (BeforeIt == MBB->end())
          IP = MBB->begin();
        else
          IP = ++BeforeIt;

        TargetReg = Reg; // Codegen the rest of the GEP into this
      }
    }
  }
}

/// visitAllocaInst - If this is a fixed size alloca, allocate space from the
/// frame manager, otherwise do it the hard way.
///
void ISel::visitAllocaInst(AllocaInst &I) {
  // If this is a fixed size alloca in the entry block for the function, we
  // statically stack allocate the space, so we don't need to do anything here.
  //
  if (dyn_castFixedAlloca(&I)) return;
  
  // Find the data size of the alloca inst's getAllocatedType.
  const Type *Ty = I.getAllocatedType();
  unsigned TySize = TM.getTargetData().getTypeSize(Ty);

  // Create a register to hold the temporary result of multiplying the type size
  // constant by the variable amount.
  unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
  unsigned SrcReg1 = getReg(I.getArraySize());
  
  // TotalSizeReg = mul <numelements>, <TypeSize>
  MachineBasicBlock::iterator MBBI = BB->end();
  doMultiplyConst(BB, MBBI, TotalSizeReg, Type::UIntTy, SrcReg1, TySize);

  // AddedSize = add <TotalSizeReg>, 15
  unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
  BuildMI(BB, X86::ADD32ri, 2, AddedSizeReg).addReg(TotalSizeReg).addImm(15);

  // AlignedSize = and <AddedSize>, ~15
  unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
  BuildMI(BB, X86::AND32ri, 2, AlignedSize).addReg(AddedSizeReg).addImm(~15);
  
  // Subtract size from stack pointer, thereby allocating some space.
  BuildMI(BB, X86::SUB32rr, 2, X86::ESP).addReg(X86::ESP).addReg(AlignedSize);

  // Put a pointer to the space into the result register, by copying
  // the stack pointer.
  BuildMI(BB, X86::MOV32rr, 1, getReg(I)).addReg(X86::ESP);

  // Inform the Frame Information that we have just allocated a variable-sized
  // object.
  F->getFrameInfo()->CreateVariableSizedObject();
}

/// visitMallocInst - Malloc instructions are code generated into direct calls
/// to the library malloc.
///
void ISel::visitMallocInst(MallocInst &I) {
  unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
  unsigned Arg;

  if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
    Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
  } else {
    Arg = makeAnotherReg(Type::UIntTy);
    unsigned Op0Reg = getReg(I.getOperand(0));
    MachineBasicBlock::iterator MBBI = BB->end();
    doMultiplyConst(BB, MBBI, Arg, Type::UIntTy, Op0Reg, AllocSize);
  }

  std::vector<ValueRecord> Args;
  Args.push_back(ValueRecord(Arg, Type::UIntTy));
  MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
                                  1).addExternalSymbol("malloc", true);
  doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args);
}


/// visitFreeInst - Free instructions are code gen'd to call the free libc
/// function.
///
void ISel::visitFreeInst(FreeInst &I) {
  std::vector<ValueRecord> Args;
  Args.push_back(ValueRecord(I.getOperand(0)));
  MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
                                  1).addExternalSymbol("free", true);
  doCall(ValueRecord(0, Type::VoidTy), TheCall, Args);
}
   
/// createX86SimpleInstructionSelector - This pass converts an LLVM function
/// into a machine code representation is a very simple peep-hole fashion.  The
/// generated code sucks but the implementation is nice and simple.
///
FunctionPass *llvm::createX86SimpleInstructionSelector(TargetMachine &TM) {
  return new ISel(TM);
}