summaryrefslogtreecommitdiff
path: root/lib/Target/X86/X86PeepholeOpt.cpp
blob: fbc84f7e8711e52ef957163182658d94382fa884 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
//===-- PeepholeOptimizer.cpp - X86 Peephole Optimizer --------------------===//
// 
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
// 
//===----------------------------------------------------------------------===//
//
// This file contains a peephole optimizer for the X86.
//
//===----------------------------------------------------------------------===//

#include "X86.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"

namespace {
  struct PH : public MachineFunctionPass {
    virtual bool runOnMachineFunction(MachineFunction &MF);

    bool PeepholeOptimize(MachineBasicBlock &MBB,
			  MachineBasicBlock::iterator &I);

    virtual const char *getPassName() const { return "X86 Peephole Optimizer"; }
  };
}

FunctionPass *createX86PeepholeOptimizerPass() { return new PH(); }

bool PH::runOnMachineFunction(MachineFunction &MF) {
  bool Changed = false;

  for (MachineFunction::iterator BI = MF.begin(), E = MF.end(); BI != E; ++BI)
    for (MachineBasicBlock::iterator I = BI->begin(); I != BI->end(); )
      if (PeepholeOptimize(*BI, I))
	Changed = true;
      else
	++I;

  return Changed;
}


bool PH::PeepholeOptimize(MachineBasicBlock &MBB,
			  MachineBasicBlock::iterator &I) {
  MachineInstr *MI = *I;
  MachineInstr *Next = (I+1 != MBB.end()) ? *(I+1) : 0;
  unsigned Size = 0;
  switch (MI->getOpcode()) {
  case X86::MOVrr8:
  case X86::MOVrr16:
  case X86::MOVrr32:   // Destroy X = X copies...
    if (MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
      I = MBB.erase(I);
      delete MI;
      return true;
    }
    return false;

    // A large number of X86 instructions have forms which take an 8-bit
    // immediate despite the fact that the operands are 16 or 32 bits.  Because
    // this can save three bytes of code size (and icache space), we want to
    // shrink them if possible.
  case X86::ADDri16:  case X86::ADDri32:
  case X86::SUBri16:  case X86::SUBri32:
  case X86::IMULri16: case X86::IMULri32:
  case X86::ANDri16:  case X86::ANDri32:
  case X86::ORri16:   case X86::ORri32:
  case X86::XORri16:  case X86::XORri32:
    assert(MI->getNumOperands() == 3 && "These should all have 3 operands!");
    if (MI->getOperand(2).isImmediate()) {
      int Val = MI->getOperand(2).getImmedValue();
      // If the value is the same when signed extended from 8 bits...
      if (Val == (signed int)(signed char)Val) {
        unsigned Opcode;
        switch (MI->getOpcode()) {
        default: assert(0 && "Unknown opcode value!");
        case X86::ADDri16:  Opcode = X86::ADDri16b; break;
        case X86::ADDri32:  Opcode = X86::ADDri32b; break;
        case X86::SUBri16:  Opcode = X86::SUBri16b; break;
        case X86::SUBri32:  Opcode = X86::SUBri32b; break;
        case X86::IMULri16: Opcode = X86::IMULri16b; break;
        case X86::IMULri32: Opcode = X86::IMULri32b; break;
        case X86::ANDri16:  Opcode = X86::ANDri16b; break;
        case X86::ANDri32:  Opcode = X86::ANDri32b; break;
        case X86::ORri16:   Opcode = X86::ORri16b; break;
        case X86::ORri32:   Opcode = X86::ORri32b; break;
        case X86::XORri16:  Opcode = X86::XORri16b; break;
        case X86::XORri32:  Opcode = X86::XORri32b; break;
        }
        unsigned R0 = MI->getOperand(0).getReg();
        unsigned R1 = MI->getOperand(1).getReg();
        *I = BuildMI(Opcode, 2, R0).addReg(R1).addZImm((char)Val);
        delete MI;
        return true;
      }
    }
    return false;

#if 0
  case X86::MOVir32: Size++;
  case X86::MOVir16: Size++;
  case X86::MOVir8:
    // FIXME: We can only do this transformation if we know that flags are not
    // used here, because XOR clobbers the flags!
    if (MI->getOperand(1).isImmediate()) {         // avoid mov EAX, <value>
      int Val = MI->getOperand(1).getImmedValue();
      if (Val == 0) {                              // mov EAX, 0 -> xor EAX, EAX
	static const unsigned Opcode[] ={X86::XORrr8,X86::XORrr16,X86::XORrr32};
	unsigned Reg = MI->getOperand(0).getReg();
	*I = BuildMI(Opcode[Size], 2, Reg).addReg(Reg).addReg(Reg);
	delete MI;
	return true;
      } else if (Val == -1) {                     // mov EAX, -1 -> or EAX, -1
	// TODO: 'or Reg, -1' has a smaller encoding than 'mov Reg, -1'
      }
    }
    return false;
#endif
  case X86::BSWAPr32:        // Change bswap EAX, bswap EAX into nothing
    if (Next->getOpcode() == X86::BSWAPr32 &&
	MI->getOperand(0).getReg() == Next->getOperand(0).getReg()) {
      I = MBB.erase(MBB.erase(I));
      delete MI;
      delete Next;
      return true;
    }
    return false;
  default:
    return false;
  }
}